
The Korrontea Data Modeling 
Emmanuel Bouix 

LIUPPA – IUT de Bayonne 
Château Neuf – Place Paul Bert 

64100 Bayonne, France 
+33(0)559574326 

ebouix@acm.org 

Philippe Roose 
 LIUPPA – IUT de Bayonne 

Place Paul Bert 
64100 Bayonne, France 

+33(0)559574348 

roose@iutbayonne.univ-pau.fr  

Marc Dalmau 

LIUPPA – IUT de Bayonne 
Château Neuf – Place Paul Bert 

64100 Bayonne, France 
+33(0)559574321 

dalmau@ieee.org  

ABSTRACT 
Needs of multimedia systems evolved due to the evolution of their 

architecture which is now distributed into heterogeneous contexts 

like the Internet network. A critical issue lies in the fact that they 

handle, process, and transmit multimedia data. This data 

integrates several properties which should be considered since it 

holds a considerable part of its semantic, e.g. the lips 

synchronization in a video. In this paper, we focus on the 

definition of a basic abstraction for describing and modeling data 

in multimedia systems by taking into account their properties. 

This abstraction is proposed with synchronization policies to 

ensure synchronous transport of multimedia data. We use it in a 

component model that we develop for the design and deployment 

of distributed multimedia systems. 

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures – Data 

abstraction.  

General Terms 
Algorithms, Management, Design. 

Keywords 
Distributed multimedia applications, data flows, temporal 

constraints, synchronization policies, component model. 

1. INTRODUCTION 
The aim of our works is to provide a global method for 

designing and developing distributed multimedia applications 

through the Internet. This work is QoS (Quality of Service) driven 

because these applications impose stringent requirements that the 

network layer of the Internet does not consider. Indeed, the 

quality required by end-users and the one provided by runtime 

environments are not taken into account. Thus, using these 

applications in such environments is compromised due to their 

moving and non-predictable characteristics (e.g. network 

bandwidth, terminal characteristics, operating system 

functionalities but also handicaps and languages of end-users). 

We define a software architecture suited to these applications 

[11]. They are composed of components connected together by 

connectors. These entities can be supervised by a middleware 

introduced to manage QoS [10], [12]. As an example of such 

applications, we can quote remote video monitoring which allows 

to monitor events or physical phenomena by using sensors like in 

[1]. We can use this kind of applications to keep watch on car 

parks or critical sections of roads where risks of traffic jam are 

higher [2]. Another more common example is videoconferencing 

systems which allow the meeting of several persons physically 

located in different places [3]. 

This paper introduces a data model that we use in this 

application architecture [11] in order to define a way for handling 

and transporting multimedia data. We call it “Korrontea” which 

means “the data flow” in the Basque language. 

The rest of the paper is structured as follows: Section 2 

provides some justification on the needs of such a model. Section 

3 presents the Korrontea data model and its main characteristics. 

Section 4 describes briefly the Osagaia component model 

specified to develop these applications, the aim is to show the use 

of the Korrontea model. Section 5 presents the prototypes used to 

validate our works. Section 6 describes the related works. Section 

7 provides some conclusions and discusses future work. 

2. WHY DO WE NEED A MODEL? 
We try to motivate our approach in detailing what we believe 

to be the important issues in modeling multimedia data. 

2.1 The Media 
The multimedia data handled by this kind of applications are 

generally called media. This term has a rich set of connotations. 

Media are form of information content where the goal is to inform 

or entertain end-users or audience. They are related to how 

information is conveyed and distributed. They exist in different 

forms and are very used in applications nowadays. Several 

research works are interested in the classification of multimedia 

applications [4], [5]. Some of them show the importance of data 

in such applications. In [5], the authors define multimedia 

applications as an information processing system which handles a 

combination of media like e.g. text, graphics, images, audio, video 

or control information. 

Some media are constituted of a sequence of media elements, 

also called samples, which describe an information part 

represented by the media in an adequate coding format. They exist 

under the form of data flows. A data flow is a structure which 

provides information concerning the physical organization of 

samples, for instance their physical ordering and placement. Since 

these media are based on human sensory properties, their 

properties must be considered in applications. These media are 

called continuous. One of their particular characteristics is that 

they integrate synchronization relations between samples of both a 

single and several media [6]: 

� intra-media synchronization refers to time relations between 

samples of the same media; 

� inter-media synchronization refers to time relations between 

samples of several media. 

These relations are very important for the media because they 

allow to achieve a natural impression at rendering time. Some 

studies on human perception of media and synchronization [7], 
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[8] prove this viewpoint. Video and audio are examples of this 

kind of media. 

We distinguish other kinds of media where the time factor is 

not preponderant. They are composed of a set of indivisible data 

necessary to render the media correctly. Habitually, they are 

called discrete media. For instance, an image is a discrete media 

composed of a finite set of pixels. Text and graphics are other 

examples. 

Sometimes, it is necessary to synchronize discrete and 

continuous media in an inter-media way. This is the case of a 

video composed of audio, images and subtitles. 

2.2 Functional Specifications of Multimedia 

Applications 
In our works, the functional specifications of multimedia 

applications are described by means of graphs oriented and polar 

noted G(V, Es, Ec). We called them functional graphs; they are 

based on conditional process graphs described in [9]. More details 

about functional graphs are done in [10]. The set V represents the 

nodes of the graph where each of them represents a basic role or 

functionality of an application noted Ri-j. Concretely, roles are 

performed by either software or hardware components. Es and Ec 

are the sets of simple and conditional edges. Whatever its type, an 

edge is used to link the output of a node to the input of another 

node. A conditional edge (set Ec) has an associated condition 

value. The paths described by these edges can be considered only 

if the associated condition value is true. They allow to indicate 

different configuration choices and thus constraints in the using of 

particular roles. A simple edge (set Es) specifies that the node 

linked is an element of the application whatever the chosen 

configuration. Edges represent media, i.e. data of applications. 

The functional graphs allow to specify inter-media 

synchronization by means of synchronization links between 

edges. Such links specify the fact that media must be kept 

synchronous during their transport in applications in spite of the 

processing that can be applied on them. Indeed, media processing 

introduces a problem that we identify as inter-media 

desynchronization. It is due to the fact that some media 

synchronized with others can be processed. Processing introduces 

temporal delays on media and so desynchronizes the processed 

media with the others. 

Another source of inter-media desynchronization can occur 

when synchronous media are transmitted through the Internet 

network. Some services used to transport data on this network 

introduce an increase of the network load but also packet loss, 

delay and jitter [13]. These problems are well-known and harmful 

to media synchronization [14]. 

2.3 Summary of Requirements 
The handling of media in applications is not an easy task. 

Indeed, this data has properties that we should consider in order to 

avoid the loss of their semantic. Thus, we propose to integrate 

media at design time by means of the Korrontea model that we 

present in this paper. In Table 1, we summarize the requirements 

imposed by the handling of media and by the pattern given by the 

functional graphs.  

We propose a data model which meets these requirements. 

The aim is to define a structure which allows integration of the 

media and in a general way of all the data that may exist in 

distributed multimedia applications: we propose to use data flows. 

An advantage is to allow an easy integration of heterogeneous 

data. 

Table 1. Requirements and Suggested Solutions 

Requirements/Specifications Suggested Solutions

Defining the internal structure of data flows handled by 

implementation units

Based upon their temporal constraints

A structure which allows an easy integration of all the 

kinds of media 
Media are existing in the form of data flows 

Using an approach based upon a logical clock 

Using an approach based upon a physical clock

Classification of media

Allowing transmission of media through Internet 

network

Ensuring inter-media synchronization Defining Synchronization policies

Defining objects and mechanisms for this task

Considering the physical ordering of data that composes 

a flow

Considering the intra-media synchronization relations

Allowing the handling and processing of media in 

applications

 

All the data has sequence and synchronization relations 

properties. The data which composes data flows is ordered with a 

sequence number given by a logical clock. Time stamps are used 

in order to define and consider the synchronization relations. We 

define synchronization policies with the aim of keeping these 

relations. These policies are based upon temporal behavior of data 

flows, i.e. the temporal constraints they integrate. Finally, this 

model proposes one way to handle, to process and to transfer 

media into applications in both local and distributed cases. 

3. THE KORRONTEA DATA MODEL 
Before giving details of the model, we give a representation 

of it under a formalism based on a UML [23] class diagram 

described in Figure 1. 
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Figure 1. The Korrontea Data Flows Conceptual Model 

3.1 A Common Structure: the Data Flows 
The two kinds of media identified previously differ mainly 

by time constraints and data structure. This implies different ways 

for handling them and the necessity to know their types a priori. A 

lot of frameworks defined to provide multimedia programming 

proceed suchlike (see e.g. the sun one JMF [22]). Moreover, it is 

possible to define inter-media relations between data of different 

types. For facilitating this possibility and the handling of all kinds 

of media and data without a priori knowing their characteristics, 

we propose to use a unique abstraction: data flows. Such an 

abstraction is an interesting solution for the integration of media 

into these applications [5]. In functional graphs, we detail them by 

means of edges. Each edge takes its origin in one particular node 

of capture or creation. Thus, a data flow is produced by a unique 



concrete component located on a unique site. These particular 

components are called located sources. 

Definition 1 Located Sources  

We call a located source LS a couple (S, L) where S is a 

component and L the site where S is located. 

An important notion brought by this component is the 

characteristic of distribution. An important property of these 

components is the site where they are located.  

Data flows are composed of a sequence of data called 

samples. They include such things as video-frames, images, text, 

audio samples, events, etc.  

Definition 2 Data Flows 

A data flow f is composed of a possibly infinite sequence of 

samples with finite size. Each sample of f is produced by the same 

located source LS=(S, L). 

Attributes of a data flow: 

� locatedSource(f)=LS 

� source(f)=S 

� site(f)=L (capture or creation site of the flow) 

The creation of data flows by located sources consists in the 

continuous production of samples at either regular or irregular 

rate. Samples are produced in an adequate coding format which 

describes the information transported by the flow. We consider 

that all data flows are a priori composed of an infinite sequence of 

samples. Undoubtedly, data flows composed of a finite sequence 

can exist too, as in the case of data flows stored in files. 

When data flows have no more samples that mean that this 

data is not used any more by an application. In such a case, these 

flows and components which produced and processed them must 

be removed from the application. It is important to notice that the 

operators, properties and policies that we define can be only 

applied onto data flows which have samples. 

At creation time but also during the handling and processing 

of samples, the property of sequence must be explicitly defined. 

For that reason, we use a logical clock to stamp each sample or set 

of samples with an integer which allows to distinguish two 

successive samples or set of samples and so allows to maintain 

this property. Each component of an application provides, for 

each flow it produces, a mechanism which produces incremented 

integers. These integers are called sequence numbers. This 

concept was initially defined by Lamport [15] and classically used 

in distributed systems to preserve the order of data production 

[16], [17]. 

Handling data flows in applications depends on intrinsic 

characteristics of the supported information. A media can be seen 

according to several hierarchical levels where each of them 

describes a different granularity. For instance, a video can be 

decomposed into scenes, images, blocks and pixels. Applications 

are defined to handle one of these units. However, when a fine-

grained one is chosen, like pixel for a video, it will be difficult or 

even impossible to keep the intra-media relations in a software 

way. Some works [18] try to provide hardware solutions for the 

handling and processing of fine-grained units of media. In order 

to avoid this problem, it is necessary to consider a sufficient 

number of samples. We propose to gather sufficient set of samples 

into information units. For instance, audio data are handled into 

programs by means of audio segment which gather samples which 

correspond to approximately 200 milliseconds [25]. This quantity 

of information is associated with the sequence number. In [5], the 

authors use nearly the same idea through the concept of Logical 

Data Units (LDU). 

Definition 3 Information Units 

We call an information unit IU, a couple (E, i) where E={e1, e2, 

…, en} is a finite set of samples of the same data flow f and i an 

integer used to define the sequence property for this data flow. 

We will see that this property is defined between information units 

of the same data flow. 

Attributes of information units: 

� flow(IU)=f (data flow from whom elements of E belongs to) 

� samples(IU)=E 

� sequenceNumber(IU)=i 

� locatedSource(IU)=locatedSource(flow(IU)) 

� source(IU)=source(flow(IU)) 

� site(IU)=site(flow(IU)) (capture or creation site of the unit) 

The constitution of information units depends on the 

considered media and on the specifications of the application. For 

example, in a video we can gather the pixels which constitute an 

image. According to the specifications, we can decide to compose 

information units by one, two or three images, etc. 

Therefore, data flows are composed of sequence of 

information units. Two successive units are separated by certain 

durations. The creation of a unit is done at a particular time earlier 

than the creation of the next one. Physical clocks are mechanisms 

used to define temporal values and to stamp data in distributed 

systems. The main difference with logical one is that with a 

physical clock, we manipulate real time. Thus, we can handle time 

value, time interval and duration. More details about physical 

clocks can be found in [19] where a time model is defined. 

Physical clocks can be global or local. Global ones allow to 

dispose of a unique temporal reference in distributed systems. A 

time value provided by these clocks describes the same physical 

instant on every site where such a system is deployed. Several 

research works deal with this solution. Their definition is based 

upon clocks at each site. These approaches impose 

approximations due to temporal skews of clocks in relation with 

others [20]. This kind of research is based upon both probability 

and statistical approaches. Such a solution will probably influence 

the degree of synchronization because it is impossible to have a 

perfect and absolute synchronization of clocks through the 

Internet network [21]. Consequently, it is difficult to use a global 

clock without introducing a margin of error. A second approach 

consists in using local physical clocks. This solution recommends 

the use of physical clocks at each site where a distributed system 

is deployed. The time can be handled but in this case relatively to 

the clock of a particular site: temporal relations can be defined 

and kept between data created on the same site. We consider that 

the synchronization of media created or captured on different sites 

is something artificial and so it is not necessary to have strict 

temporal relations for this task. Our purpose is not to create 

synchronization but to keep it in order to prevent the loss of 

information (the one of synchronization) which existed at creation 

time of several media coming from the same site. On the basis of 

these arguments, we choose to use an approach based upon local 

physical clocks. Thus, located sources presented in definition 1 

allow to introduce this notion of localization. These particular 

components take their meaning in the following definitions and 

properties. 

Definition 4 Local Physical Clock 

We assume that in every site L, there is a unique component Cp 

(local physical clock of L). Samples produced by LS=(Cp, L) are 

integers strictly increasing called time stamps. 



These integers considered independently of each other have 

no meanings. Nevertheless, they are linked to real time by a 

proportionality ratio. Thus, if LS produces integer n1 at the time 

value t1 and integer n2 at the time value t2, then (n2-n1)=kL(t2-t1) 

where kL is a constant known in site L. 

Assumption 1 Time Constant 

On each site of a multimedia application, constant kL is the same 

and is equal to k. 

This assumption means that all the local physical clocks of an 

application have the same rate. Time values produced by local 

physical clocks (Cp1, L1) and (Cp2, L2) cannot be compared; we 

can only compare differences between time values produced 

respectively by these located sources. This is an important 

characteristic of our model. Indeed, knowing the constant kL 

allows to respect intra-flow synchronization relations at rendering 

time and whatever the site where data flows come from. 

Synchronization between data flows which come from the 

same site can be kept during their transport with the time stamps 

done by local physical clocks. We define an object that we call 

synchronous slice. It is used to gather a set of information units 

created or captured in the same site and which corresponds to the 

same time interval. 

Definition 5 Synchronous Slices 

Let F={f1, f2, …, fn} a set of data flows such as ∀ fi ∈ F, 

site(fi)=L. We call a synchronous slice, defined on F, an object 

which contains an information quantity which corresponds to the 

same time interval and that we define as follows: SS=(t, U) where 

t is a time stamp created by LS=(Cp, L) and U is a finite set of 

information units such as ∀ x ∈ U, flow(x) ∈ F. Sequence 

numbers of information units are defined in order to respect the 

following property: let Af={e ∈ U / flow(e)=f} then ∀ e ∈ Af, 1 ≤ 

sequenceNumber(e) ≤ |Af| (cardinal of set Af) and ∀ e1, ∀ e2 ∈ Af, 

e1≠e2 ⇔ sequenceNumber(e1) ≠ sequenceNumber(e2). 

Attributes of Synchronous Slices: 

� flow(SS)=F (this attribute allows to know the data flows of a 

particular synchronous slice) 

� timeStamp(SS)=t 

� informationUnits(SS)=U 

� site(SS)=L 

The time stamps are assigned to slices after the creation of 

information units that will be gathered in them. In a same slice, 

the information units are stamped with sequence numbers. 

Synchronous slices are the units of synchronous transport of 

data in applications. We define synchronous flows that are 

composed of a sequence of synchronous slices. 

Definition 6 Synchronous Flows 

A synchronous flow SF is composed of a possibly infinite 

sequence of synchronous slices with the same flow set such as ∀ 

SS ∈ SF, flow(SS)=F (see definition 5). Synchronous slices of a 

same synchronous flow have different time stamps, i.e.: ∀ SS1, ∀ 

SS2 ∈ SF, SS1≠SS2 ⇔ timeStamp(SS1)≠timeStamp(SS2). 

Property of Synchronous Flows: 

� ∀ SS1, ∀ SS2 ∈ SF, site(SS1)=site(SS2)=L 

� Proof: According to this definition, we have ∀ SS1, ∀ SS2 ∈ 

SF: flow(SS1)=flow(SS2)=F. According to definition 5, F is a 

set of data flows such as ∀ fi ∈ F, site(fi)=L 

Attributes of Synchronous Flows: 

� flow(SF)=F where F is the set of data flows (see definition 2) 

which composes synchronous flows 

� site(SF)=L (all the flows, which compose synchronous slices 

of SF, come from the same site) 

An information unit is an element of one and only one 

synchronous slice. In the same way, a synchronous slice is an 

element of one and only one synchronous flow. 

Property 1 Property of Information Units Membership 

� synchronousSlice(IU)=SS ∈ SF such as IU ∈ 

informationUnits(SS) 

According to the composition of synchronous slices, we 

distinguish two kinds of synchronous flows: the primitive one and 

the composed one. 

Definition 7 Primitive Synchronous Flows 

A synchronous flow is defined as primitive when |flow(SS)|=1. 

Data flows linked by inter-flow synchronization relations are 

put in composed flows. For each data flow, synchronous slices of 

composed flows contain information units which correspond to 

the same time interval. The provided policies that we will describe 

are used to create composed flows. 

Definition 8 Composed Synchronous Flows 

A synchronous flow is called composed when |flow(SS)|>1. 

Information units of synchronous flows can be ordered by 

time and by an integer which represents the sequence. We define 

strict total order relations between information units of a same 

synchronous flow. This property can be used at presentation time 

of data in order to have ordered rendering. 

Property 2 Strict Total Order Relations (< and >) between 

information units of a data flow into a synchronous flow SF 

We define < (respectively >) as a strict total order relation 

between information units of a same synchronous flow. Let IU1 

and IU2 two information units ∈ SF, with flow(IU1)=flow(IU2). 

We have: 

� t1=timeStamp(synchronousSlice(IU1)), 

n1=sequenceNumber(IU1) 

� t2=timeStamp(synchronousSlice(IU2)), 

n2=sequenceNumber(IU2) 

IU1<IU2 (respectively IU1>IU2) ⇔ (t1<t2) OR ((t1=t2) AND 

(n1<n2)) (respectively (t1>t2) OR ((t1=t2) AND (n1>n2))). If t1 ≠ t2, 

the order is done by the time stamp. If t1=t2, the order is done by 

the sequence number. 

Proof: A strict order has properties of irreflexivity and 

transitivity. Moreover, this order is total if we have: ∀ IU1 and 

IU2 two information units ∈ SF, with flow(IU1)=flow(IU2), 

IU1<IU2 OR IU1=IU2 OR IU2<IU1. 

� Irreflexivity: ∀ x ∈ SF, let SS a synchronous slice / x ∈ 

informationUnits(SS). 

timeStamp(synchronousSlice(x))<timeStamp(synchronousSli

ce(x)) is false because these two time stamps are equals. In 

the same way, sequenceNumber(x)<sequenceNumber(x) is 

false because these two numbers are equals. Hence, relation 

x<x is false. 

� Transitivity: ∀ IU1, IU2 and IU3 three information units ∈ 

SF, with flow(IU1)=flow(IU2)=flow(IU3) such as IU1<IU2 

and IU2<IU3. We have: 

t1=timeStamp(synchronousSlice(IU1)), 

n1=sequenceNumber(IU1) and 

t2=timeStamp(synchronousSlice(IU2)), 

n2=sequenceNumber(IU2) and 

t3=timeStamp(synchronousSlice(IU3)), 

n3=sequenceNumber(IU3). 



- if IU1<IU2 is due to the fact that t1<t2, IU2<IU3 ⇒ t2 ≤ t3, 

so we have t1 < t2 ≤ t3 ⇒ IU1<IU3. 

- if IU1<IU2 is due to the fact that t1=t2 AND n1<n2 and 

IU2<IU3 is due to the fact that t2<t3, so we have t1=t2<t3 ⇒ 

IU1<IU3. If IU2<IU3 is due to the fact that t2=t3 AND n2<n3, 

so we have t1=t2=t3 and n1<n2<n3 ⇒ IU1<IU3 

Hence, < is a strict order relation. The same proof can be 

established for relation >. 

Now, we must prove that these relations are total. Let 

t1=timeStamp(synchronousSlice(IU1)), n1=sequenceNumber(IU1) 

and t2=timeStamp(synchronousSlice(IU2)), 

n2=sequenceNumber(IU2). t1 and t2 are produced by a physical 

clock, they are integers and we know that < is a total order 

relation on integers, so we have: 

� t1<t2 ⇒ IU1<IU2 

� or t2<t1 ⇒ IU2<IU1 

� or t1=t2: IU1 and IU2 are information units which verify 

flow(IU1)=flow(IU2)=f. According to the definition 5, we 

know that ∀ e1, ∀ e2 ∈ Af, e1≠e2 ⇔ 

sequenceNumber(e1)≠sequenceNumber(e2), so we know that 

IU1≠IU2 ⇔ n1≠n2 and by contraposition IU1=IU2 ⇔ n1=n2. 

The relation < is a total order on integers, so we have: 

- n1<n2 ⇒ IU1<IU2 

- or n2<n1 ⇒ IU2<IU1 

- or n2=n1 ⇒ IU2=IU1 

Thus, < (respectively >) is a strict total order relation. 

The relation < means “earlier than” and the relation > means 

“later than”. In the same way, we define strict total order relations 

between synchronous slices of synchronous flows. 

Property 3 Strict Total Order Relations (< and >) between 

synchronous slices of a synchronous flow SF 

We define < (respectively >) as a strict total order relation 

between synchronous slices of a same synchronous flow by: ∀ SS1 

∈ SF, ∀ SS2 ∈ SF, SS1<SS2 (respectively SS1>SS2) ⇔ 

timeStamp(SS1) < timeStamp(SS2) (respectively timeStamp(SS1) > 

timeStamp(SS2)). 

Proof: ∀ SS1, SS2 ∈ SF with SS1≠SS2, we have 

timeStamp(SS1)≠timeStamp(SS2) (see definition 6). Moreover, 

timeStamp() is an integer and so we have timeStamp(SS1) < 

timeStamp(SS2) or timeStamp(SS1) > timeStamp(SS2). We have 

also SS1<SS2 or SS1>SS2. Thus, all synchronous slices of a 

synchronous flow can be ordered by relations < and > ⇒ these 

relations are strict total order between synchronous slices of a 

synchronous flow. 

Property 4 Properties of synchronous flows (part 2) 

Synchronous slices of a synchronous flow are totally ordered by 

< and > strict total order relations (see property 3). Information 

units of slices are totally ordered by < and > strict total order 

relations (see property 2). 

Thanks to these relations, we can handle sequence and time. 

We define operators which permit, for each synchronous slice, to 

handle the sequence in flows. For each slice we can know the 

previous and the next ones. 

Definition 9 Previous (prev) and Next (next) Operators 

According to the property 3, synchronous slices of a synchronous 

flow SF are totally ordered by < and > relations. So, we can 

define: 

� ∀ SS1 ∈ SF, ∃ SS2 ∈ SF called prev(SS1) / SS2<SS1 and ∀ 

SS3 ∈ SF, we have: SS3<SS2 or SS3>SS1 

� ∀ SS1 ∈ SF, ∃ SS4 ∈ SF called next(SS1) / SS4>SS1 and ∀ 

SS3 ∈ SF, we have: SS3>SS4 or SS3<SS1 

We can handle time intervals too. The using of a local 

physical clock imposes that these intervals are defined between 

slices with the same site of capture/creation. 

Definition 10 Time Intervals 

We define time intervals between synchronous slices of a 

synchronous flow SF as follows: ∀ SS1, SS2 ∈ SF, we define 

<SS1, SS2>=|timeStamp(SS2)-timeStamp(SS1)|.  

3.2 The Temporal Constraints 
In this model, the data must be classified according to their 

temporal behaviors in order to handle its in an efficient way in 

applications. Such a classification depends on the specifications 

of applications to develop. We mean it depends on the media 

used. The relevance of this classification is guided by the fact that 

the temporal behavior defines the way of handling media. Thus, 

we distinguish synchronous flows with either soft or hard 

temporal constraints. We consider that continuous media have 

hard temporal constraint due to their types of information and to 

their types of temporal constraints (studies on human perception 

of media argue this viewpoint [7], [8]) and also because non-

observance of these constraints involves the loss of the media 

semantics. In the UML diagram, we specified this property by 

means of an <<implies>> dependency [23] (see Figure 1). On the 

other hand, discrete media can be with hard or soft temporal 

constraints. 

Property 5 Hard Temporal Constraint 

A synchronous flow has hard temporal constraints if, θ being 

defined for an application, ∀ SS ∈ SF / <SS, next(SS)> ≤ θ. 

For distinguishing the temporal constraints of data, we 

introduce a parameter θ which must be defined at design time. It 

represents the maximal time value between two successive 

synchronous slices. 

Property 6 Soft Temporal Constraint 

A synchronous flow has soft temporal constraints if, θ being 

defined for an application, ∃ SS ∈ SF / <SS, next(SS)> > θ. 

The synchronization policies that we will define in the next 

section are based upon this. Moreover, components of an 

application will know how to handle data thanks to these 

constraints. 

3.3 Multimedia Synchronization Policies 
We saw that it is essential to ensure synchronization. Indeed, 

without synchronization the media look somewhat artificial and 

incomprehensible [7], [8]. Functional graphs allow specifying 

inter-flow relations. This specification means that flows linked by 

this way must be kept synchronous during their transport into 

applications. Intra-flow relations are not clarified because they are 

explicitly defined in synchronous flows by means of time stamps.  

3.3.1 Intra-Flow Synchronization 
These relations correspond to the rate of flows; they give 

temporal relations between data which compose a flow. For 

instance, a 25 image per second rate video needs displaying one 

image every 40 milliseconds. These relations are not strict, 

tolerances may be accepted [7], [8]. The rendering of synchronous 

flows must be defined at design time and implemented in 

rendering components. For each synchronous flow, we can define 

intra-flow synchronization by using the sequence number of 

information units and the time stamp of synchronous slices. The 



strict total order relations permit to order all information units of 

these flows and so all samples. Temporal constraints of these 

flows determine the kind of intra-flow synchronization in relation 

with the time value θ defined at design time. 

Sequence numbers, time stamps and temporal constraints are 

defined for each flow at creation or capture time by located 

sources (see definition 1). Some processing and handling of flows 

can affect this information. In order to avoid this problem, we are 

planning to update, by particular services attached to the 

components, these characteristics during the transport of flows 

into applications. These services are described by the component 

model defined for the implementation of these applications [12]. 

3.3.2 Inter-Flow Synchronization 
Inter-flows synchronization corresponds to temporal 

relations that may exist between data of several flows. This is for 

instance the relations that link audio and images in a video. They 

are described in functional graphs by mean of synchronization 

links. In our works, this kind of synchronization can be ensured 

between flows captured or created in the same site. 

Keeping these relations requires expressing relations between 

synchronous slices of different flows. We define these relations by 

providing operators that return particular time stamps used by 

policies in order to handle synchronous slices. 

Definition 11 minimalTimeStamp and maximalTimeStamp 

Operators 

We define operators that return the synchronous slices with the 

smallest and the greatest time stamp from a set of slices E. E={e1, 

e2, …, en} with ∀ ei, ∀ ej ∈ E, site(ei)=site(ej), such as: 

� minimalTimeStamp(E)= min (timeStamp(e ))ie Ei∈
 

� maximalTimeStamp(E)= max (timeStamp(e ))ie Ei∈
 

Several synchronous slices issue from the same site can have 

the same time stamp. Consequently, more than one element of a 

set E can match to minimalTimeStamp(E) (respectively 

maximalTimeStamp(E)). 

Now, we define operators that may be applied on a set of 

slices coming from one or several synchronous flows. 

Definition 12 First Occurrence Operator on a set of Synchronous 

Flows 

Let SG={f1, f2, …, fn} a set of synchronous flows such as ∀ fi ∈ 

SG, site(fi)=L. On such a set, we define an operator called 

firstOccurenceSG(t) as follows: 

� firstOccurenceSG(t)=minimalTimeStamp(E) with E={ei ∈ f / 

timeStamp(ei) ≥ t with f ∈ SG} 

Definition 13 Last Occurrence Operator on a set of Synchronous 

Flows 

Let SG={f1, f2, …, fn} a set of synchronous flows such as ∀ fi ∈ 

SG, site(fi)=L. On such a set, we define an operator called 

lastOccurenceSG(t) as follows: 

� ∀ f ∈ SG, we define the set firstSlicef(t) by: firstSlicef(t)={SS 

/ SS ∈ f such as timeStamp(SS) ≥ t and timestamp(prev(SS)) 

< t}. This set contains first synchronous slice of f which time 

stamp is greater or equal to t. 

� lastOccurenceSG(t)=maximalTimeStamp(E’) with 

E' = firstSlice (t)
fif SGi∈

∪  

Property 7 Properties of Occurrence Operators 

� lastOccurenceSG(t) ≥ firstOccurenceSG(t) ≥ t 

� Proof: ∃ e ∈ f such as: timeStamp(e)= 

minimalTimeStamp(E)= min (timeStamp(e ))ie Ei∈
We 

will demonstrate that e ∈ firstSlicef(t). We know that 

timeStamp(e) ≥ t (see definition 13). prev(e) verifies property 

timeStamp(prev(e)) < t because if not that means that prev(e) 

∈ E and in this case we would have 

minimalTimeStamp(E)=timestamp(prev(e)) < timeStamp(e) 

because prev(e)<e (see definition 9). Hence, we have e ∈ 

firstSlicef(t), then 

lastOccurrenceSG(t)=maxsimalTimeStamp(E’) with 

E' = firstSlice (t)
fif SGi∈

∪ , so e ∈ E’ and 

maximalTimeStamp(E’)≥timeStamp(e). Hence, we have 

lastOccurenceSG(t)≥firstOccurrenceSG(t). Moreover, 

firstOccurrenceSG(t)=minimalTimeStamp({ei ∈ f / 

timeStamp(ei) ≥ t}) ≥ t because it is defined such as 

synchronous slices which have the minimum time stamp 

greater or equal to t. 

The aim of these policies is to define composed flows and so 

their synchronous slices. Composition depends on the temporal 

constraints of the synchronous flows used. Policies are applied on 

set of synchronous flows. Such a set can contain indifferently 

primitive or composed flows. The policies produce composed 

flows. 

Property 8 Property of a set of Synchronous Flows 

� A set of Synchronous Flows can be decomposed into two 

subsets as follows: SG={SGhard}∪{SGsoft}. Thus, SGhard={fi 

∈ SG / fi is a flow with hard temporal constraint} and 

SGsoft={fi ∈ SG / fi is a flow with soft temporal constraint}. 

This property is important because it allows to define the 

way to constitute the synchronous slices of the composed flows. 

According to the constraints of synchronous flows, we define 

three different policies: 

� the first one is applied when the set of synchronous flows 

contains only flows with hard temporal constraint; 

� the second one is applied when the set of synchronous flows 

contains flows with both constraints; 

� the third one is applied when the set of synchronous flows 

contains only flows with soft temporal constraint.  

In these policies, we consider the fact that synchronous flows 

can arrive ahead of time or after the ones in relation with the 

others. We take into account these possible temporal delays 

between flows and so propose efficient policies. To do this, we 

introduce a parameter α which represents the maximum delay of 

synchronous slices on each flow. After, this delay we consider 

that all the slices of all the flows are available. 

3.3.2.1 Hard Policy: SGhard≠∅ and SGsoft=∅ 
The principle of hard policy is to make synchronous slices of 

the resulting composed flow by gathering every slice of whose 

time stamp is included between the first occurrence and the last 

occurrence. This guarantees that every resulting slice will contain 

at least one information unit of each flow. In synchronous flows 

with hard temporal constraint, we are sure to receive a slice with a 

maximal delay of α+θ. 

The hard policy algorithm is done in Figure 2. The first task 

consists in waiting at least one synchronous flow on each flow. 

On the set formed by these slices, we apply the operator 

lastOccurence in order to determine a time value called TMAX. In 



order to compensate time delays between flows, we wait for the 

slices which verify timeStamp(SS) > TMAX. Once these tasks have 

ended, we can constitute the resulting slice by adding every 

information unit of the received slices which verify 

timeStamp(SS) ≤ TMAX. Then, we assign successive sequence 

number to each information unit. The time stamp of the resulting 

slice will be equal to firstOccurence applied to the slices used to 

compose it. 
repeat

     - wait until each flow∈ SG has at least one synchronous slice (each flow has its set firstSlicef(t) defined)

     - TMAX ← lastOccurrence({every slice received})

     - wait until each flow has a synchronous slice SS which verifies timeStamp(SS) > TMAX
     - result slice is composed as follows:

               - by adding every information unit of the slices received which verify timeStamp(SS) ≤ TMAX
               - for each information unit of each flow, we assign successive sequence numbers (initialized to 1 for each flow)
               - by adding a time stamp = firstOccurrence({synchronous slices used})

end repeat

 

Figure 2. Hard Policy Algorithm 

3.3.2.2 Mixed Policy: SGhard≠∅ and SGsoft≠∅ 
In mixed policy, we compose resulting slices by gathering 

every slice of synchronous flows where the time stamp is included 

between firstOccurrence and lastOccurrence applied in the subset 

SGhard. This guarantees that the resulting slice contains at least 

one information unit on each flow element of SGhard. 

Nevertheless, flows element of SGsoft can have information units 

or not. We use a delay equal to α in order to wait for synchronous 

slices of flows with soft temporal constraint, beyond which we 

consider that all the slices of these flows have been received. 

This algorithm is more complex than the previous because it 

is necessary to consider the flows with soft temporal constraint 

where it is not possible to know a priori if data is available or not. 

Thus, we propose to use a principle similar to the one of 

semaphore in operating system field. Each arrival of a slice on one 

of the flow with hard temporal constraint triggers a delay α. At the 

end of this delay, an authorization of slice constitution is done. 

This mechanism allows to take into consideration the possible 

delay of receiving slices of same time stamp in other flows. Every 

slices received during this delay will not be obligatorily put in the 

same slice than the one which triggered the delay. Indeed, they 

will put in the same slice only if their time stamps verify the 

adequate properties. 

The algorithm of this policy is done onto Figure 3. First, we 

initialize the variable “autorisation” to 0. Then, we wait on each 

flow with hard temporal constraint at least one synchronous slice. 

When a slice is available on these synchronous flows, we run a 

timer with a delay α. At each end of the delay, the process 

executes: autorisation ← autorisation + 1. TMAX is defined with 

the operator lastOccurence applied on every synchronous slices 

received. We wait until each flow with a hard temporal constraint 

has a synchronous slice SS which verifies timeStamp(SS)>TMAX. 

Finally, the resulting slice is composed by adding every 

information unit of slices received whose time stamps verify 

timeStamp(SS) ≤ TMAX. Each of these units is associated with a 

sequence number initialized to 1 for each flow. The time stamp of 

the resulting slice will be equal to firstOccurrence applied on 

synchronous slices of flows with hard temporal constraint used. 

The variable “autorisation” is decreased by the number of slices of 

flows with hard temporal constraint used. 

3.3.2.3 Soft Policy: SGhard=∅ and SGsoft≠∅ 
The last policy consists in composing the resulting slices by 

gathering every received slice whose time stamp is included 

between firstOccurrence and firstOccurrence+θ. This guarantees 

that a slice will contain at least one information unit. We wait for 

the first synchronous slice which allows defining firstOccurrence. 
- autorisation← 0
repeat

repeat

          - when a synchronous slice is available onto one of flows ∈ SGhard, run a timer with a delay α

until  we dispose o f firstSli cef(t) for each flow ∈∈∈∈ SGhard

end repeat

     - TMAX← lastOccurrence({synchronous slices received})

     - wait until each flow∈ SGhard has a synchronous slice SS which verifies timeStamp(SS) > TMAX
     - wait until autorisation > 0

     - result slice is composed as follows:

               - by adding every information unit of slices received (onto both SGhard and SGs oft) which verify timeStamp(SS) ≤ TMAX
               - for each information unit of each flow, we assign successive sequence numbers (initialized to 1 for each flow)

               - by adding a time stamp = firstOccurrence({synchronous slices of flows ∈ SGhard used})

     - autorisation← autorisation - number of slices of flows ∈ SGhard  used

end repeat

At each end of timer, the process executes: autorisation← autorisation +1  

Figure 3. Mixed Policy Algorithm 

We put in the resulting slices every slice whose time stamp 

does not exceed firstOccurence of a delay θ. Using θ, which 

constitutes the limit between both hard and soft temporal 

constraints, implies that we consider synchronous slices produced 

in this time interval. In this policy, we use the same mechanism 

than in the previous one. The authorization of the slices 

constitution is now based on a delay α+θ. 

The soft policy algorithm is detailed in Figure 4. We 

initialize the “autorisation” variable to 0. As soon as a slice is 

available on one of the synchronous flows with soft temporal 

constraint, a timer is run with a delay α+θ. When autorisation is 

strictly greater than 0, we can begin to compose the resulting slice 

by adding every slice received which verifies timeStamp(SS) ≤ 

firstOccurence({slices received})+θ. Information units are 

associated with a sequence number. The time stamp of the 

resulting slice is equal to firstOccurrence applied on slices used to 

compose it. Finally, the variable “autorisation” is decreased by the 

number of slices used. 
- autorisation← 0

repeat

- when a synchronous slice is available onto one of flows ∈ SGsoft, run a timer with a delay α+θ

if autorisation > 0
- result slice is composed as follows:

               - by adding every information unit of slices received which verify timeStamp(SS) ≤ firstOccurence({synchronous slices received})+θ
               - for each information unit of each flow, we assign successive sequence numbers (initialized to 1 for each flow)
               - by adding a time stamp = firstOccurrence({synchronous slices used})

         - autorisation← autorisation - number of slices of flows used
end if

end repeat

At each end of timer, the process executes: autorisation← autorisation +1  

Figure 4. Soft Policy Algorithm 

3.3.2.4 Notice 
The mechanism used to manage temporal delays is based 

upon the semaphore mechanism. At each end of the delay, we 

give an authorization to make up a slice by executing autorisation 

← autorisation + 1. In the same way, each composition of the 

resulting slices corresponds to the consumption of such 

authorizations. 

The delay α introduced to compensate delay between flows 

allows to synchronize these flows by considering margin of errors. 

If we choose for α a low value, we do not wait all the slices on all 

the flows and so the temporal relations between flows will 

introduce delays. If we choose for α a great value, we wait for all 

the slices and so the synchronization will be efficient without 

margin of errors. However, a too great value for α will increase 

latency in applications. We must find a compromise in the choice 

of this value. We developed a prototype in order to perform this 

study. 

4. THE OSAGAIA COMPONENT MODEL 
The last part of our work is to define a software component 

model [12] in order to ensure the implementation of distributed 



multimedia applications in accordance with the specifications 

given by functional graphs. This model is called “Osagaia” which 

means “the software component” in the Basque language. The 

nodes of graphs will be implemented by software components. 

These components will be connected by means of connectors 

whose role is to transport media and data according to the 

Korrontea model. 

We identify two kinds of software components: the 

functional ones and the nun-functional ones. Functional 

components are in charge of the implementation of the basic 

functionalities of an application. They are components of 

creation/capture, processing, rendering or storage. Non-functional 

components are in charge of the implementation of the aspects 

which associate non-functional properties to the applications 

necessary for their implementation [24]. Among these non-

functional components, we define a component called “fusion” 

whose goal is to produce composed flows from a set of 

synchronous flows by applying the synchronization policies we 

defined previously. In fact, this component allows defining 

synchronization links introduced by functional graphs. A 

component which realizes the opposite function is also defined, it 

is called “separation”. It is used to break composed flows into 

primitive ones. Other non-functional components are used but not 

described here. 

The functional components need to be executed in a 

container whose role is to provide non-functional implementation 

for components. This container is called the elementary processor. 

Its role is to perform interactions between functional components 

and their outside. It is divided into two main parts: the exchange 

unit (composed of input and output units) and the control unit. 

The exchange unit manages synchronous flows input/output 

connections of the processor. The control unit manages the life 

cycle of the functional component and the interactions with the 

runtime platform. Thus, the platform supervises all elementary 

processors and indirectly all functional components. 

Thanks to the elementary processor, functional components 

can read and write slices of synchronous flows even if these slices 

contain several data flows. Indeed, the functional component 

processes some flows, the others are transferred from input unit to 

output unit into the processor. When processings are achieved by 

the component, the output unit executes synchronization policies 

in order to compose slices broke by input unit. This solution is the 

one that we propose in order to prevent the desynchronization of 

flows induced by processing. 

Synchronous flows are transported between elementary 

processor by means of a connector called the conduit. Its main 

role is to connect components (functional and non-functional) of 

applications. The conduit receives slices of synchronous flows 

produced by components and conveys them. It is made up of two 

parts. The control unit implements interactions between the 

conduit and the platform while an exchange unit manages the 

input/output connections with components. The conduit is the 

distributed entity of our model, i.e. it can transfer synchronous 

flows between different sites of distributed applications. Its 

internal architecture is based upon the client/server model. It 

constitutes the solution that we propose in order to avoid the 

desynchronization of flows caused by network transmission. 

5. PROTOTYPE IMPLEMENTATION 
In order to validate our approach and the different models 

presented in this paper, we developed several prototypes. 

5.1 Synchronization Policies Simulator 
The simulator developed allows to apply the synchronization 

policies on synchronous flows with both temporal constraints. It 

permits to produce synchronous slices of flows with only time 

stamps because the policies use these stamps. The aim of the 

simulator is to test the constitution of the composed flows. For 

each flow defined, we can choose its properties of the flows. The 

results of the constitution of the slices are displayed on a graphic 

interface and stored in a text file. Thus, we can analyze the results 

after the runtime of the simulator. 

In order to create synchronous flows, the simulator uses the 

parameters θ and α. Others parameters are used to indicate the 

number of flows with both hard and soft temporal constraint. 

Each flow is created with three properties. The first one is an 

integer which represents the total number of data flows. The 

second one gives the intra-flow synchronization relation between 

two successive slices. For the flows with soft temporal constraint, 

this is the maximal time between two slices. Indeed, for these 

flows this time may vary. Finally, with the last property, it is 

possible to introduce a maximal delay for the arrival of slices at 

the input of the simulator. Thus, we introduce delay. 

The simulator is composed of a set of windows described on 

Figure 5. The main window gives the constitution of the created 

slices of the resulting composed flow. Each slice indicates, for 

each flow, the number of slices used. These slices are indicated by 

the mean of their time stamps. The time TMAX used to constitute a 

slice is indicated for each resulting slice except when the soft 

policy is applied. The flows indicated by a capital letter are with 

hard temporal constraint and the flows indicated with a small 

letter are with soft temporal constraint. For a given slice, on flows 

with soft temporal constraint we can obtain the following 

description: {f0=}. This means that slices are available for this 

flow but for the moment they do not correspond to the criteria 

used by the policy. This kind of slices is available too early. 

 

Figure 5. Synchronization Policies Simulator 

This simulator can be used by the interested readers in order to 

test the synchronization policies of our model. This simulator can 

be downloaded at the following URL: 

http://www.iutbayonne.univ-pau.fr/~roose/V2/korronteaSimulator  

5.2 Application prototype 
We develop a prototype in order to test dynamic adaptation 

of an application and the synchronization policies. This prototype 

is distributed and is divided into two parts. The first one 

implements two video capture components, one from a WebCam 

and the other from a file. Each of these two components produces 

two same video flows that are put in a composed flow in order to 



keep their synchronization relations. This composed flow is 

transmitted to the other part of the application by the mean of a 

distributed conduit. This part is composed of one ore several 

components. This composition depends on the configurations that 

we want to implement. We can find a displaying component 

which allows to display the two video flows. We can add one ore 

more processing components applied on one of the two flows. 

These components can be added or removed dynamically. This 

prototype provides six processing components: an image size 

reduction, a negative transformation, a black and white 

transformation, an edge detection, a blured video and a skin color 

detection. Each component is executed in an elementary 

processor. 

A graphic interface allows to simulate the runtime platform 

by adding or removing and starting and stopping the processing 

components. It permits equally to choose the source of the video 

flows. 

The creation component produces two video flows with hard 

temporal constraint. Thus, the hard synchronization policy is 

applied. The composed flow is transmitted to the second part of 

the application. Then, it is transmitted to the displaying 

component after one or several processing components chosen by 

the user. The processing components receive the composed flow 

and apply their processing only on the second flow. The first one 

allows to know if the inter-flow synchronization relations between 

the two flows are kept. Moreover, the prototype allows to test the 

dynamic adaptation of the application. 

The Figure 6 shows an example of the runtime of this 

prototype. In this case, we add an edge detection component and a 

component which applies a blur on the video. We can see on the 

video that they are synchronous despite the processing applied on 

the second flows. 

 

Figure 6. Edge Detection and Blur 

6. RELATED WORKS 
The development of pervasive and ubiquitous computing 

imposes stringent requirements that the deployment of multimedia 

applications must consider in order to dispose of efficient 

implementations. These requirements impose to adapt both 

applications and data. For instance, many works deal with data 

adaptation according to the characteristics of the runtime context. 

These adaptations are performed by increasing or decreasing data 

intrinsic quality [26]. The components paradigm allows this kind 

of adaptation by adding components in critical locations of a 

distributed application. This solution is used by our platform in 

order to adapt data to provided QoS. 

Data must be structured in order to be handled by the entities 

that compose an application. Some works use coding formats like 

the MPEG one [27]. This kind of solution allows to consider data 

properties but is open to criticism for many reasons. Data 

integration is an important criterion in multimedia applications 

[5]. An MPEG solution is based on the multiplexing of several 

media or data. Thus, this kind of solution goes against the data 

integration because we loose the possibility to process single data 

except with the implementation of complex architectures. Indeed, 

this solution is not efficient due to the considerable times of 

compression and decompression processes. Moreover, the 

multiplexing of several data implies to consider a global QoS for 

the data. The adaptation of each media by increasing or 

decreasing their intrinsic quality [26] is not possible. Other 

disadvantages of solutions oriented multiplexing are given in [28]. 

Consequently, we prefer to define our own data model suitable for 

our works. 

The properties of this data must be ensured in such 

applications. We identified two sources of desynchronization. The 

first one is due to the fact that some data synchronized with others 

must be processed. Processing introduces temporal delays on 

media and so desynchronizes the processed media in comparison 

with the others. The second one can occur when synchronous data 

are transmitted through network. Some services used to transport 

data on a network introduce an increase of the network load but 

also packet loss, delay and jitter [13]. These problems are well-

known and harmful to media synchronization [14]. Some works 

provide models to ensure synchronous presentation of media 

whose characteristics are known a priori [5]. However, it is hard 

to know a priori all the characteristics of data that can be used in 

multimedia applications. Other works provide models to allow 

synchronous transmission of media through networks [29]. The 

RTP protocol [30] gives this possibility. These works do not 

consider the first problem of desynchronization. We think that 

synchronization models are efficient only if they are extended to 

the whole application in order to avoid these two sources of 

desynchronization. With this aim, we use a data model which 

allows to keep synchronization relations in real-time from the 

source to the sink of an application. 

7. CONCLUSION 
In this paper, we presented both data and synchronization 

models suitable for distributed multimedia applications. From 

specifications given by the runtime platform, we have specified 

the Korrontea model used to transport data and media into 

applications in either local or distributed ways. We propose to use 

a data flow structure in order to model this data. The key idea of 

this research consists in exploiting the temporal dimension of the 

data flows that can be handled in such applications. A data flow 

can be built with hard or soft temporal constraint. The temporal 

constraint is linked to the type of the data transported into the 

flow. Synchronization policies that we used are based on these 

constraints. The Korrontea model is then used in the Osagaia 

component model in order to develop multimedia applications 

with these specifications. 

The robustness of the proposed technique has been proved 

by the synchronization policies simulator. Another prototype 

allow to see that synchronization is maintained in real use case 

and this in spite of processings and network transfers. 
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