
The Korrontea Data Modeling
Emmanuel Bouix

LIUPPA – IUT de Bayonne
Château Neuf – Place Paul Bert

64100 Bayonne, France
+33(0)559574326

ebouix@acm.org

Philippe Roose
 LIUPPA – IUT de Bayonne

Place Paul Bert
64100 Bayonne, France

+33(0)559574348

roose@iutbayonne.univ-pau.fr

Marc Dalmau

LIUPPA – IUT de Bayonne
Château Neuf – Place Paul Bert

64100 Bayonne, France
+33(0)559574321

dalmau@ieee.org

ABSTRACT
Needs of multimedia systems evolved due to the evolution of their

architecture which is now distributed into heterogeneous contexts

like the Internet network. A critical issue lies in the fact that they

handle, process, and transmit multimedia data. This data

integrates several properties which should be considered since it

holds a considerable part of its semantic, e.g. the lips

synchronization in a video. In this paper, we focus on the

definition of a basic abstraction for describing and modeling data

in multimedia systems by taking into account their properties.

This abstraction is proposed with synchronization policies to

ensure synchronous transport of multimedia data. We use it in a

component model that we develop for the design and deployment

of distributed multimedia systems.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures – Data

abstraction.

General Terms
Algorithms, Management, Design.

Keywords
Distributed multimedia applications, data flows, temporal

constraints, synchronization policies, component model.

1. INTRODUCTION
The aim of our works is to provide a global method for

designing and developing distributed multimedia applications

through the Internet. This work is QoS (Quality of Service) driven

because these applications impose stringent requirements that the

network layer of the Internet does not consider. Indeed, the

quality required by end-users and the one provided by runtime

environments are not taken into account. Thus, using these

applications in such environments is compromised due to their

moving and non-predictable characteristics (e.g. network

bandwidth, terminal characteristics, operating system

functionalities but also handicaps and languages of end-users).

We define a software architecture suited to these applications

[11]. They are composed of components connected together by

connectors. These entities can be supervised by a middleware

introduced to manage QoS [10], [12]. As an example of such

applications, we can quote remote video monitoring which allows

to monitor events or physical phenomena by using sensors like in

[1]. We can use this kind of applications to keep watch on car

parks or critical sections of roads where risks of traffic jam are

higher [2]. Another more common example is videoconferencing

systems which allow the meeting of several persons physically

located in different places [3].

This paper introduces a data model that we use in this

application architecture [11] in order to define a way for handling

and transporting multimedia data. We call it “Korrontea” which

means “the data flow” in the Basque language.

The rest of the paper is structured as follows: Section 2

provides some justification on the needs of such a model. Section

3 presents the Korrontea data model and its main characteristics.

Section 4 describes briefly the Osagaia component model

specified to develop these applications, the aim is to show the use

of the Korrontea model. Section 5 presents the prototypes used to

validate our works. Section 6 describes the related works. Section

7 provides some conclusions and discusses future work.

2. WHY DO WE NEED A MODEL?
We try to motivate our approach in detailing what we believe

to be the important issues in modeling multimedia data.

2.1 The Media
The multimedia data handled by this kind of applications are

generally called media. This term has a rich set of connotations.

Media are form of information content where the goal is to inform

or entertain end-users or audience. They are related to how

information is conveyed and distributed. They exist in different

forms and are very used in applications nowadays. Several

research works are interested in the classification of multimedia

applications [4], [5]. Some of them show the importance of data

in such applications. In [5], the authors define multimedia

applications as an information processing system which handles a

combination of media like e.g. text, graphics, images, audio, video

or control information.

Some media are constituted of a sequence of media elements,

also called samples, which describe an information part

represented by the media in an adequate coding format. They exist

under the form of data flows. A data flow is a structure which

provides information concerning the physical organization of

samples, for instance their physical ordering and placement. Since

these media are based on human sensory properties, their

properties must be considered in applications. These media are

called continuous. One of their particular characteristics is that

they integrate synchronization relations between samples of both a

single and several media [6]:

� intra-media synchronization refers to time relations between

samples of the same media;

� inter-media synchronization refers to time relations between

samples of several media.

These relations are very important for the media because they

allow to achieve a natural impression at rendering time. Some

studies on human perception of media and synchronization [7],
Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference name: Ambi-sys'08, February 11-14, 2008, Quebec,

Canada.

Copyright number: ISBN 978-963-9799-16-5

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
AMBI-SYS 2008, February 11-13, Quebec, Canada
Copyright © 2008 ICST 978-963-9799-16-5
DOI 10.4108/ICST.AMBISYS2008.2896

[8] prove this viewpoint. Video and audio are examples of this

kind of media.

We distinguish other kinds of media where the time factor is

not preponderant. They are composed of a set of indivisible data

necessary to render the media correctly. Habitually, they are

called discrete media. For instance, an image is a discrete media

composed of a finite set of pixels. Text and graphics are other

examples.

Sometimes, it is necessary to synchronize discrete and

continuous media in an inter-media way. This is the case of a

video composed of audio, images and subtitles.

2.2 Functional Specifications of Multimedia

Applications
In our works, the functional specifications of multimedia

applications are described by means of graphs oriented and polar

noted G(V, Es, Ec). We called them functional graphs; they are

based on conditional process graphs described in [9]. More details

about functional graphs are done in [10]. The set V represents the

nodes of the graph where each of them represents a basic role or

functionality of an application noted Ri-j. Concretely, roles are

performed by either software or hardware components. Es and Ec

are the sets of simple and conditional edges. Whatever its type, an

edge is used to link the output of a node to the input of another

node. A conditional edge (set Ec) has an associated condition

value. The paths described by these edges can be considered only

if the associated condition value is true. They allow to indicate

different configuration choices and thus constraints in the using of

particular roles. A simple edge (set Es) specifies that the node

linked is an element of the application whatever the chosen

configuration. Edges represent media, i.e. data of applications.

The functional graphs allow to specify inter-media

synchronization by means of synchronization links between

edges. Such links specify the fact that media must be kept

synchronous during their transport in applications in spite of the

processing that can be applied on them. Indeed, media processing

introduces a problem that we identify as inter-media

desynchronization. It is due to the fact that some media

synchronized with others can be processed. Processing introduces

temporal delays on media and so desynchronizes the processed

media with the others.

Another source of inter-media desynchronization can occur

when synchronous media are transmitted through the Internet

network. Some services used to transport data on this network

introduce an increase of the network load but also packet loss,

delay and jitter [13]. These problems are well-known and harmful

to media synchronization [14].

2.3 Summary of Requirements
The handling of media in applications is not an easy task.

Indeed, this data has properties that we should consider in order to

avoid the loss of their semantic. Thus, we propose to integrate

media at design time by means of the Korrontea model that we

present in this paper. In Table 1, we summarize the requirements

imposed by the handling of media and by the pattern given by the

functional graphs.

We propose a data model which meets these requirements.

The aim is to define a structure which allows integration of the

media and in a general way of all the data that may exist in

distributed multimedia applications: we propose to use data flows.

An advantage is to allow an easy integration of heterogeneous

data.

Table 1. Requirements and Suggested Solutions

Requirements/Specifications Suggested Solutions

Defining the internal structure of data flows handled by

implementation units

Based upon their temporal constraints

A structure which allows an easy integration of all the

kinds of media
Media are existing in the form of data flows

Using an approach based upon a logical clock

Using an approach based upon a physical clock

Classification of media

Allowing transmission of media through Internet

network

Ensuring inter-media synchronization Defining Synchronization policies

Defining objects and mechanisms for this task

Considering the physical ordering of data that composes

a flow

Considering the intra-media synchronization relations

Allowing the handling and processing of media in

applications

All the data has sequence and synchronization relations

properties. The data which composes data flows is ordered with a

sequence number given by a logical clock. Time stamps are used

in order to define and consider the synchronization relations. We

define synchronization policies with the aim of keeping these

relations. These policies are based upon temporal behavior of data

flows, i.e. the temporal constraints they integrate. Finally, this

model proposes one way to handle, to process and to transfer

media into applications in both local and distributed cases.

3. THE KORRONTEA DATA MODEL
Before giving details of the model, we give a representation

of it under a formalism based on a UML [23] class diagram

described in Figure 1.

ComposedFlow

PrimitiveFlow

InformationUnit

+ source

+ s ite

+ sequenceNumber

1..*

Sample

1..*

HardTemporal

Constraint

SoftTemporal

Constraint

TemporalConstraint

ContinuousMedia Dis creteMedia

SynchronousSlice

+ timeStamp

DataFlow

1..*

SynchronousFlow

1..*

1

2..*

type

1

<<implies>>

Figure 1. The Korrontea Data Flows Conceptual Model

3.1 A Common Structure: the Data Flows
The two kinds of media identified previously differ mainly

by time constraints and data structure. This implies different ways

for handling them and the necessity to know their types a priori. A

lot of frameworks defined to provide multimedia programming

proceed suchlike (see e.g. the sun one JMF [22]). Moreover, it is

possible to define inter-media relations between data of different

types. For facilitating this possibility and the handling of all kinds

of media and data without a priori knowing their characteristics,

we propose to use a unique abstraction: data flows. Such an

abstraction is an interesting solution for the integration of media

into these applications [5]. In functional graphs, we detail them by

means of edges. Each edge takes its origin in one particular node

of capture or creation. Thus, a data flow is produced by a unique

concrete component located on a unique site. These particular

components are called located sources.

Definition 1 Located Sources

We call a located source LS a couple (S, L) where S is a

component and L the site where S is located.

An important notion brought by this component is the

characteristic of distribution. An important property of these

components is the site where they are located.

Data flows are composed of a sequence of data called

samples. They include such things as video-frames, images, text,

audio samples, events, etc.

Definition 2 Data Flows

A data flow f is composed of a possibly infinite sequence of

samples with finite size. Each sample of f is produced by the same

located source LS=(S, L).

Attributes of a data flow:

� locatedSource(f)=LS

� source(f)=S

� site(f)=L (capture or creation site of the flow)

The creation of data flows by located sources consists in the

continuous production of samples at either regular or irregular

rate. Samples are produced in an adequate coding format which

describes the information transported by the flow. We consider

that all data flows are a priori composed of an infinite sequence of

samples. Undoubtedly, data flows composed of a finite sequence

can exist too, as in the case of data flows stored in files.

When data flows have no more samples that mean that this

data is not used any more by an application. In such a case, these

flows and components which produced and processed them must

be removed from the application. It is important to notice that the

operators, properties and policies that we define can be only

applied onto data flows which have samples.

At creation time but also during the handling and processing

of samples, the property of sequence must be explicitly defined.

For that reason, we use a logical clock to stamp each sample or set

of samples with an integer which allows to distinguish two

successive samples or set of samples and so allows to maintain

this property. Each component of an application provides, for

each flow it produces, a mechanism which produces incremented

integers. These integers are called sequence numbers. This

concept was initially defined by Lamport [15] and classically used

in distributed systems to preserve the order of data production

[16], [17].

Handling data flows in applications depends on intrinsic

characteristics of the supported information. A media can be seen

according to several hierarchical levels where each of them

describes a different granularity. For instance, a video can be

decomposed into scenes, images, blocks and pixels. Applications

are defined to handle one of these units. However, when a fine-

grained one is chosen, like pixel for a video, it will be difficult or

even impossible to keep the intra-media relations in a software

way. Some works [18] try to provide hardware solutions for the

handling and processing of fine-grained units of media. In order

to avoid this problem, it is necessary to consider a sufficient

number of samples. We propose to gather sufficient set of samples

into information units. For instance, audio data are handled into

programs by means of audio segment which gather samples which

correspond to approximately 200 milliseconds [25]. This quantity

of information is associated with the sequence number. In [5], the

authors use nearly the same idea through the concept of Logical

Data Units (LDU).

Definition 3 Information Units

We call an information unit IU, a couple (E, i) where E={e1, e2,

…, en} is a finite set of samples of the same data flow f and i an

integer used to define the sequence property for this data flow.

We will see that this property is defined between information units

of the same data flow.

Attributes of information units:

� flow(IU)=f (data flow from whom elements of E belongs to)

� samples(IU)=E

� sequenceNumber(IU)=i

� locatedSource(IU)=locatedSource(flow(IU))

� source(IU)=source(flow(IU))

� site(IU)=site(flow(IU)) (capture or creation site of the unit)

The constitution of information units depends on the

considered media and on the specifications of the application. For

example, in a video we can gather the pixels which constitute an

image. According to the specifications, we can decide to compose

information units by one, two or three images, etc.

Therefore, data flows are composed of sequence of

information units. Two successive units are separated by certain

durations. The creation of a unit is done at a particular time earlier

than the creation of the next one. Physical clocks are mechanisms

used to define temporal values and to stamp data in distributed

systems. The main difference with logical one is that with a

physical clock, we manipulate real time. Thus, we can handle time

value, time interval and duration. More details about physical

clocks can be found in [19] where a time model is defined.

Physical clocks can be global or local. Global ones allow to

dispose of a unique temporal reference in distributed systems. A

time value provided by these clocks describes the same physical

instant on every site where such a system is deployed. Several

research works deal with this solution. Their definition is based

upon clocks at each site. These approaches impose

approximations due to temporal skews of clocks in relation with

others [20]. This kind of research is based upon both probability

and statistical approaches. Such a solution will probably influence

the degree of synchronization because it is impossible to have a

perfect and absolute synchronization of clocks through the

Internet network [21]. Consequently, it is difficult to use a global

clock without introducing a margin of error. A second approach

consists in using local physical clocks. This solution recommends

the use of physical clocks at each site where a distributed system

is deployed. The time can be handled but in this case relatively to

the clock of a particular site: temporal relations can be defined

and kept between data created on the same site. We consider that

the synchronization of media created or captured on different sites

is something artificial and so it is not necessary to have strict

temporal relations for this task. Our purpose is not to create

synchronization but to keep it in order to prevent the loss of

information (the one of synchronization) which existed at creation

time of several media coming from the same site. On the basis of

these arguments, we choose to use an approach based upon local

physical clocks. Thus, located sources presented in definition 1

allow to introduce this notion of localization. These particular

components take their meaning in the following definitions and

properties.

Definition 4 Local Physical Clock

We assume that in every site L, there is a unique component Cp

(local physical clock of L). Samples produced by LS=(Cp, L) are

integers strictly increasing called time stamps.

These integers considered independently of each other have

no meanings. Nevertheless, they are linked to real time by a

proportionality ratio. Thus, if LS produces integer n1 at the time

value t1 and integer n2 at the time value t2, then (n2-n1)=kL(t2-t1)

where kL is a constant known in site L.

Assumption 1 Time Constant

On each site of a multimedia application, constant kL is the same

and is equal to k.

This assumption means that all the local physical clocks of an

application have the same rate. Time values produced by local

physical clocks (Cp1, L1) and (Cp2, L2) cannot be compared; we

can only compare differences between time values produced

respectively by these located sources. This is an important

characteristic of our model. Indeed, knowing the constant kL

allows to respect intra-flow synchronization relations at rendering

time and whatever the site where data flows come from.

Synchronization between data flows which come from the

same site can be kept during their transport with the time stamps

done by local physical clocks. We define an object that we call

synchronous slice. It is used to gather a set of information units

created or captured in the same site and which corresponds to the

same time interval.

Definition 5 Synchronous Slices

Let F={f1, f2, …, fn} a set of data flows such as ∀ fi ∈ F,

site(fi)=L. We call a synchronous slice, defined on F, an object

which contains an information quantity which corresponds to the

same time interval and that we define as follows: SS=(t, U) where

t is a time stamp created by LS=(Cp, L) and U is a finite set of

information units such as ∀ x ∈ U, flow(x) ∈ F. Sequence

numbers of information units are defined in order to respect the

following property: let Af={e ∈ U / flow(e)=f} then ∀ e ∈ Af, 1 ≤

sequenceNumber(e) ≤ |Af| (cardinal of set Af) and ∀ e1, ∀ e2 ∈ Af,

e1≠e2 ⇔ sequenceNumber(e1) ≠ sequenceNumber(e2).

Attributes of Synchronous Slices:

� flow(SS)=F (this attribute allows to know the data flows of a

particular synchronous slice)

� timeStamp(SS)=t

� informationUnits(SS)=U

� site(SS)=L

The time stamps are assigned to slices after the creation of

information units that will be gathered in them. In a same slice,

the information units are stamped with sequence numbers.

Synchronous slices are the units of synchronous transport of

data in applications. We define synchronous flows that are

composed of a sequence of synchronous slices.

Definition 6 Synchronous Flows

A synchronous flow SF is composed of a possibly infinite

sequence of synchronous slices with the same flow set such as ∀

SS ∈ SF, flow(SS)=F (see definition 5). Synchronous slices of a

same synchronous flow have different time stamps, i.e.: ∀ SS1, ∀

SS2 ∈ SF, SS1≠SS2 ⇔ timeStamp(SS1)≠timeStamp(SS2).

Property of Synchronous Flows:

� ∀ SS1, ∀ SS2 ∈ SF, site(SS1)=site(SS2)=L

� Proof: According to this definition, we have ∀ SS1, ∀ SS2 ∈

SF: flow(SS1)=flow(SS2)=F. According to definition 5, F is a

set of data flows such as ∀ fi ∈ F, site(fi)=L

Attributes of Synchronous Flows:

� flow(SF)=F where F is the set of data flows (see definition 2)

which composes synchronous flows

� site(SF)=L (all the flows, which compose synchronous slices

of SF, come from the same site)

An information unit is an element of one and only one

synchronous slice. In the same way, a synchronous slice is an

element of one and only one synchronous flow.

Property 1 Property of Information Units Membership

� synchronousSlice(IU)=SS ∈ SF such as IU ∈

informationUnits(SS)

According to the composition of synchronous slices, we

distinguish two kinds of synchronous flows: the primitive one and

the composed one.

Definition 7 Primitive Synchronous Flows

A synchronous flow is defined as primitive when |flow(SS)|=1.

Data flows linked by inter-flow synchronization relations are

put in composed flows. For each data flow, synchronous slices of

composed flows contain information units which correspond to

the same time interval. The provided policies that we will describe

are used to create composed flows.

Definition 8 Composed Synchronous Flows

A synchronous flow is called composed when |flow(SS)|>1.

Information units of synchronous flows can be ordered by

time and by an integer which represents the sequence. We define

strict total order relations between information units of a same

synchronous flow. This property can be used at presentation time

of data in order to have ordered rendering.

Property 2 Strict Total Order Relations (< and >) between

information units of a data flow into a synchronous flow SF

We define < (respectively >) as a strict total order relation

between information units of a same synchronous flow. Let IU1

and IU2 two information units ∈ SF, with flow(IU1)=flow(IU2).

We have:

� t1=timeStamp(synchronousSlice(IU1)),

n1=sequenceNumber(IU1)

� t2=timeStamp(synchronousSlice(IU2)),

n2=sequenceNumber(IU2)

IU1<IU2 (respectively IU1>IU2) ⇔ (t1<t2) OR ((t1=t2) AND

(n1<n2)) (respectively (t1>t2) OR ((t1=t2) AND (n1>n2))). If t1 ≠ t2,

the order is done by the time stamp. If t1=t2, the order is done by

the sequence number.

Proof: A strict order has properties of irreflexivity and

transitivity. Moreover, this order is total if we have: ∀ IU1 and

IU2 two information units ∈ SF, with flow(IU1)=flow(IU2),

IU1<IU2 OR IU1=IU2 OR IU2<IU1.

� Irreflexivity: ∀ x ∈ SF, let SS a synchronous slice / x ∈

informationUnits(SS).

timeStamp(synchronousSlice(x))<timeStamp(synchronousSli

ce(x)) is false because these two time stamps are equals. In

the same way, sequenceNumber(x)<sequenceNumber(x) is

false because these two numbers are equals. Hence, relation

x<x is false.

� Transitivity: ∀ IU1, IU2 and IU3 three information units ∈

SF, with flow(IU1)=flow(IU2)=flow(IU3) such as IU1<IU2

and IU2<IU3. We have:

t1=timeStamp(synchronousSlice(IU1)),

n1=sequenceNumber(IU1) and

t2=timeStamp(synchronousSlice(IU2)),

n2=sequenceNumber(IU2) and

t3=timeStamp(synchronousSlice(IU3)),

n3=sequenceNumber(IU3).

- if IU1<IU2 is due to the fact that t1<t2, IU2<IU3 ⇒ t2 ≤ t3,

so we have t1 < t2 ≤ t3 ⇒ IU1<IU3.

- if IU1<IU2 is due to the fact that t1=t2 AND n1<n2 and

IU2<IU3 is due to the fact that t2<t3, so we have t1=t2<t3 ⇒

IU1<IU3. If IU2<IU3 is due to the fact that t2=t3 AND n2<n3,

so we have t1=t2=t3 and n1<n2<n3 ⇒ IU1<IU3

Hence, < is a strict order relation. The same proof can be

established for relation >.

Now, we must prove that these relations are total. Let

t1=timeStamp(synchronousSlice(IU1)), n1=sequenceNumber(IU1)

and t2=timeStamp(synchronousSlice(IU2)),

n2=sequenceNumber(IU2). t1 and t2 are produced by a physical

clock, they are integers and we know that < is a total order

relation on integers, so we have:

� t1<t2 ⇒ IU1<IU2

� or t2<t1 ⇒ IU2<IU1

� or t1=t2: IU1 and IU2 are information units which verify

flow(IU1)=flow(IU2)=f. According to the definition 5, we

know that ∀ e1, ∀ e2 ∈ Af, e1≠e2 ⇔

sequenceNumber(e1)≠sequenceNumber(e2), so we know that

IU1≠IU2 ⇔ n1≠n2 and by contraposition IU1=IU2 ⇔ n1=n2.

The relation < is a total order on integers, so we have:

- n1<n2 ⇒ IU1<IU2

- or n2<n1 ⇒ IU2<IU1

- or n2=n1 ⇒ IU2=IU1

Thus, < (respectively >) is a strict total order relation.

The relation < means “earlier than” and the relation > means

“later than”. In the same way, we define strict total order relations

between synchronous slices of synchronous flows.

Property 3 Strict Total Order Relations (< and >) between

synchronous slices of a synchronous flow SF

We define < (respectively >) as a strict total order relation

between synchronous slices of a same synchronous flow by: ∀ SS1

∈ SF, ∀ SS2 ∈ SF, SS1<SS2 (respectively SS1>SS2) ⇔

timeStamp(SS1) < timeStamp(SS2) (respectively timeStamp(SS1) >

timeStamp(SS2)).

Proof: ∀ SS1, SS2 ∈ SF with SS1≠SS2, we have

timeStamp(SS1)≠timeStamp(SS2) (see definition 6). Moreover,

timeStamp() is an integer and so we have timeStamp(SS1) <

timeStamp(SS2) or timeStamp(SS1) > timeStamp(SS2). We have

also SS1<SS2 or SS1>SS2. Thus, all synchronous slices of a

synchronous flow can be ordered by relations < and > ⇒ these

relations are strict total order between synchronous slices of a

synchronous flow.

Property 4 Properties of synchronous flows (part 2)

Synchronous slices of a synchronous flow are totally ordered by

< and > strict total order relations (see property 3). Information

units of slices are totally ordered by < and > strict total order

relations (see property 2).

Thanks to these relations, we can handle sequence and time.

We define operators which permit, for each synchronous slice, to

handle the sequence in flows. For each slice we can know the

previous and the next ones.

Definition 9 Previous (prev) and Next (next) Operators

According to the property 3, synchronous slices of a synchronous

flow SF are totally ordered by < and > relations. So, we can

define:

� ∀ SS1 ∈ SF, ∃ SS2 ∈ SF called prev(SS1) / SS2<SS1 and ∀

SS3 ∈ SF, we have: SS3<SS2 or SS3>SS1

� ∀ SS1 ∈ SF, ∃ SS4 ∈ SF called next(SS1) / SS4>SS1 and ∀

SS3 ∈ SF, we have: SS3>SS4 or SS3<SS1

We can handle time intervals too. The using of a local

physical clock imposes that these intervals are defined between

slices with the same site of capture/creation.

Definition 10 Time Intervals

We define time intervals between synchronous slices of a

synchronous flow SF as follows: ∀ SS1, SS2 ∈ SF, we define

<SS1, SS2>=|timeStamp(SS2)-timeStamp(SS1)|.

3.2 The Temporal Constraints
In this model, the data must be classified according to their

temporal behaviors in order to handle its in an efficient way in

applications. Such a classification depends on the specifications

of applications to develop. We mean it depends on the media

used. The relevance of this classification is guided by the fact that

the temporal behavior defines the way of handling media. Thus,

we distinguish synchronous flows with either soft or hard

temporal constraints. We consider that continuous media have

hard temporal constraint due to their types of information and to

their types of temporal constraints (studies on human perception

of media argue this viewpoint [7], [8]) and also because non-

observance of these constraints involves the loss of the media

semantics. In the UML diagram, we specified this property by

means of an <<implies>> dependency [23] (see Figure 1). On the

other hand, discrete media can be with hard or soft temporal

constraints.

Property 5 Hard Temporal Constraint

A synchronous flow has hard temporal constraints if, θ being

defined for an application, ∀ SS ∈ SF / <SS, next(SS)> ≤ θ.

For distinguishing the temporal constraints of data, we

introduce a parameter θ which must be defined at design time. It

represents the maximal time value between two successive

synchronous slices.

Property 6 Soft Temporal Constraint

A synchronous flow has soft temporal constraints if, θ being

defined for an application, ∃ SS ∈ SF / <SS, next(SS)> > θ.

The synchronization policies that we will define in the next

section are based upon this. Moreover, components of an

application will know how to handle data thanks to these

constraints.

3.3 Multimedia Synchronization Policies
We saw that it is essential to ensure synchronization. Indeed,

without synchronization the media look somewhat artificial and

incomprehensible [7], [8]. Functional graphs allow specifying

inter-flow relations. This specification means that flows linked by

this way must be kept synchronous during their transport into

applications. Intra-flow relations are not clarified because they are

explicitly defined in synchronous flows by means of time stamps.

3.3.1 Intra-Flow Synchronization
These relations correspond to the rate of flows; they give

temporal relations between data which compose a flow. For

instance, a 25 image per second rate video needs displaying one

image every 40 milliseconds. These relations are not strict,

tolerances may be accepted [7], [8]. The rendering of synchronous

flows must be defined at design time and implemented in

rendering components. For each synchronous flow, we can define

intra-flow synchronization by using the sequence number of

information units and the time stamp of synchronous slices. The

strict total order relations permit to order all information units of

these flows and so all samples. Temporal constraints of these

flows determine the kind of intra-flow synchronization in relation

with the time value θ defined at design time.

Sequence numbers, time stamps and temporal constraints are

defined for each flow at creation or capture time by located

sources (see definition 1). Some processing and handling of flows

can affect this information. In order to avoid this problem, we are

planning to update, by particular services attached to the

components, these characteristics during the transport of flows

into applications. These services are described by the component

model defined for the implementation of these applications [12].

3.3.2 Inter-Flow Synchronization
Inter-flows synchronization corresponds to temporal

relations that may exist between data of several flows. This is for

instance the relations that link audio and images in a video. They

are described in functional graphs by mean of synchronization

links. In our works, this kind of synchronization can be ensured

between flows captured or created in the same site.

Keeping these relations requires expressing relations between

synchronous slices of different flows. We define these relations by

providing operators that return particular time stamps used by

policies in order to handle synchronous slices.

Definition 11 minimalTimeStamp and maximalTimeStamp

Operators

We define operators that return the synchronous slices with the

smallest and the greatest time stamp from a set of slices E. E={e1,

e2, …, en} with ∀ ei, ∀ ej ∈ E, site(ei)=site(ej), such as:

� minimalTimeStamp(E)= min (timeStamp(e))ie Ei∈

� maximalTimeStamp(E)= max (timeStamp(e))ie Ei∈

Several synchronous slices issue from the same site can have

the same time stamp. Consequently, more than one element of a

set E can match to minimalTimeStamp(E) (respectively

maximalTimeStamp(E)).

Now, we define operators that may be applied on a set of

slices coming from one or several synchronous flows.

Definition 12 First Occurrence Operator on a set of Synchronous

Flows

Let SG={f1, f2, …, fn} a set of synchronous flows such as ∀ fi ∈

SG, site(fi)=L. On such a set, we define an operator called

firstOccurenceSG(t) as follows:

� firstOccurenceSG(t)=minimalTimeStamp(E) with E={ei ∈ f /

timeStamp(ei) ≥ t with f ∈ SG}

Definition 13 Last Occurrence Operator on a set of Synchronous

Flows

Let SG={f1, f2, …, fn} a set of synchronous flows such as ∀ fi ∈

SG, site(fi)=L. On such a set, we define an operator called

lastOccurenceSG(t) as follows:

� ∀ f ∈ SG, we define the set firstSlicef(t) by: firstSlicef(t)={SS

/ SS ∈ f such as timeStamp(SS) ≥ t and timestamp(prev(SS))

< t}. This set contains first synchronous slice of f which time

stamp is greater or equal to t.

� lastOccurenceSG(t)=maximalTimeStamp(E’) with

E' = firstSlice (t)
fif SGi∈

∪

Property 7 Properties of Occurrence Operators

� lastOccurenceSG(t) ≥ firstOccurenceSG(t) ≥ t

� Proof: ∃ e ∈ f such as: timeStamp(e)=

minimalTimeStamp(E)= min (timeStamp(e))ie Ei∈
We

will demonstrate that e ∈ firstSlicef(t). We know that

timeStamp(e) ≥ t (see definition 13). prev(e) verifies property

timeStamp(prev(e)) < t because if not that means that prev(e)

∈ E and in this case we would have

minimalTimeStamp(E)=timestamp(prev(e)) < timeStamp(e)

because prev(e)<e (see definition 9). Hence, we have e ∈

firstSlicef(t), then

lastOccurrenceSG(t)=maxsimalTimeStamp(E’) with

E' = firstSlice (t)
fif SGi∈

∪ , so e ∈ E’ and

maximalTimeStamp(E’)≥timeStamp(e). Hence, we have

lastOccurenceSG(t)≥firstOccurrenceSG(t). Moreover,

firstOccurrenceSG(t)=minimalTimeStamp({ei ∈ f /

timeStamp(ei) ≥ t}) ≥ t because it is defined such as

synchronous slices which have the minimum time stamp

greater or equal to t.

The aim of these policies is to define composed flows and so

their synchronous slices. Composition depends on the temporal

constraints of the synchronous flows used. Policies are applied on

set of synchronous flows. Such a set can contain indifferently

primitive or composed flows. The policies produce composed

flows.

Property 8 Property of a set of Synchronous Flows

� A set of Synchronous Flows can be decomposed into two

subsets as follows: SG={SGhard}∪{SGsoft}. Thus, SGhard={fi

∈ SG / fi is a flow with hard temporal constraint} and

SGsoft={fi ∈ SG / fi is a flow with soft temporal constraint}.

This property is important because it allows to define the

way to constitute the synchronous slices of the composed flows.

According to the constraints of synchronous flows, we define

three different policies:

� the first one is applied when the set of synchronous flows

contains only flows with hard temporal constraint;

� the second one is applied when the set of synchronous flows

contains flows with both constraints;

� the third one is applied when the set of synchronous flows

contains only flows with soft temporal constraint.

In these policies, we consider the fact that synchronous flows

can arrive ahead of time or after the ones in relation with the

others. We take into account these possible temporal delays

between flows and so propose efficient policies. To do this, we

introduce a parameter α which represents the maximum delay of

synchronous slices on each flow. After, this delay we consider

that all the slices of all the flows are available.

3.3.2.1 Hard Policy: SGhard≠∅ and SGsoft=∅
The principle of hard policy is to make synchronous slices of

the resulting composed flow by gathering every slice of whose

time stamp is included between the first occurrence and the last

occurrence. This guarantees that every resulting slice will contain

at least one information unit of each flow. In synchronous flows

with hard temporal constraint, we are sure to receive a slice with a

maximal delay of α+θ.

The hard policy algorithm is done in Figure 2. The first task

consists in waiting at least one synchronous flow on each flow.

On the set formed by these slices, we apply the operator

lastOccurence in order to determine a time value called TMAX. In

order to compensate time delays between flows, we wait for the

slices which verify timeStamp(SS) > TMAX. Once these tasks have

ended, we can constitute the resulting slice by adding every

information unit of the received slices which verify

timeStamp(SS) ≤ TMAX. Then, we assign successive sequence

number to each information unit. The time stamp of the resulting

slice will be equal to firstOccurence applied to the slices used to

compose it.
repeat

 - wait until each flow∈ SG has at least one synchronous slice (each flow has its set firstSlicef(t) defined)

 - TMAX ← lastOccurrence({every slice received})

 - wait until each flow has a synchronous slice SS which verifies timeStamp(SS) > TMAX
 - result slice is composed as follows:

 - by adding every information unit of the slices received which verify timeStamp(SS) ≤ TMAX
 - for each information unit of each flow, we assign successive sequence numbers (initialized to 1 for each flow)
 - by adding a time stamp = firstOccurrence({synchronous slices used})

end repeat

Figure 2. Hard Policy Algorithm

3.3.2.2 Mixed Policy: SGhard≠∅ and SGsoft≠∅
In mixed policy, we compose resulting slices by gathering

every slice of synchronous flows where the time stamp is included

between firstOccurrence and lastOccurrence applied in the subset

SGhard. This guarantees that the resulting slice contains at least

one information unit on each flow element of SGhard.

Nevertheless, flows element of SGsoft can have information units

or not. We use a delay equal to α in order to wait for synchronous

slices of flows with soft temporal constraint, beyond which we

consider that all the slices of these flows have been received.

This algorithm is more complex than the previous because it

is necessary to consider the flows with soft temporal constraint

where it is not possible to know a priori if data is available or not.

Thus, we propose to use a principle similar to the one of

semaphore in operating system field. Each arrival of a slice on one

of the flow with hard temporal constraint triggers a delay α. At the

end of this delay, an authorization of slice constitution is done.

This mechanism allows to take into consideration the possible

delay of receiving slices of same time stamp in other flows. Every

slices received during this delay will not be obligatorily put in the

same slice than the one which triggered the delay. Indeed, they

will put in the same slice only if their time stamps verify the

adequate properties.

The algorithm of this policy is done onto Figure 3. First, we

initialize the variable “autorisation” to 0. Then, we wait on each

flow with hard temporal constraint at least one synchronous slice.

When a slice is available on these synchronous flows, we run a

timer with a delay α. At each end of the delay, the process

executes: autorisation ← autorisation + 1. TMAX is defined with

the operator lastOccurence applied on every synchronous slices

received. We wait until each flow with a hard temporal constraint

has a synchronous slice SS which verifies timeStamp(SS)>TMAX.

Finally, the resulting slice is composed by adding every

information unit of slices received whose time stamps verify

timeStamp(SS) ≤ TMAX. Each of these units is associated with a

sequence number initialized to 1 for each flow. The time stamp of

the resulting slice will be equal to firstOccurrence applied on

synchronous slices of flows with hard temporal constraint used.

The variable “autorisation” is decreased by the number of slices of

flows with hard temporal constraint used.

3.3.2.3 Soft Policy: SGhard=∅ and SGsoft≠∅
The last policy consists in composing the resulting slices by

gathering every received slice whose time stamp is included

between firstOccurrence and firstOccurrence+θ. This guarantees

that a slice will contain at least one information unit. We wait for

the first synchronous slice which allows defining firstOccurrence.
- autorisation← 0
repeat

repeat

 - when a synchronous slice is available onto one of flows ∈ SGhard, run a timer with a delay α

until we dispose o f firstSli cef(t) for each flow ∈∈∈∈ SGhard

end repeat

 - TMAX← lastOccurrence({synchronous slices received})

 - wait until each flow∈ SGhard has a synchronous slice SS which verifies timeStamp(SS) > TMAX
 - wait until autorisation > 0

 - result slice is composed as follows:

 - by adding every information unit of slices received (onto both SGhard and SGs oft) which verify timeStamp(SS) ≤ TMAX
 - for each information unit of each flow, we assign successive sequence numbers (initialized to 1 for each flow)

 - by adding a time stamp = firstOccurrence({synchronous slices of flows ∈ SGhard used})

 - autorisation← autorisation - number of slices of flows ∈ SGhard used

end repeat

At each end of timer, the process executes: autorisation← autorisation +1

Figure 3. Mixed Policy Algorithm

We put in the resulting slices every slice whose time stamp

does not exceed firstOccurence of a delay θ. Using θ, which

constitutes the limit between both hard and soft temporal

constraints, implies that we consider synchronous slices produced

in this time interval. In this policy, we use the same mechanism

than in the previous one. The authorization of the slices

constitution is now based on a delay α+θ.

The soft policy algorithm is detailed in Figure 4. We

initialize the “autorisation” variable to 0. As soon as a slice is

available on one of the synchronous flows with soft temporal

constraint, a timer is run with a delay α+θ. When autorisation is

strictly greater than 0, we can begin to compose the resulting slice

by adding every slice received which verifies timeStamp(SS) ≤

firstOccurence({slices received})+θ. Information units are

associated with a sequence number. The time stamp of the

resulting slice is equal to firstOccurrence applied on slices used to

compose it. Finally, the variable “autorisation” is decreased by the

number of slices used.
- autorisation← 0

repeat

- when a synchronous slice is available onto one of flows ∈ SGsoft, run a timer with a delay α+θ

if autorisation > 0
- result slice is composed as follows:

 - by adding every information unit of slices received which verify timeStamp(SS) ≤ firstOccurence({synchronous slices received})+θ
 - for each information unit of each flow, we assign successive sequence numbers (initialized to 1 for each flow)
 - by adding a time stamp = firstOccurrence({synchronous slices used})

 - autorisation← autorisation - number of slices of flows used
end if

end repeat

At each end of timer, the process executes: autorisation← autorisation +1

Figure 4. Soft Policy Algorithm

3.3.2.4 Notice
The mechanism used to manage temporal delays is based

upon the semaphore mechanism. At each end of the delay, we

give an authorization to make up a slice by executing autorisation

← autorisation + 1. In the same way, each composition of the

resulting slices corresponds to the consumption of such

authorizations.

The delay α introduced to compensate delay between flows

allows to synchronize these flows by considering margin of errors.

If we choose for α a low value, we do not wait all the slices on all

the flows and so the temporal relations between flows will

introduce delays. If we choose for α a great value, we wait for all

the slices and so the synchronization will be efficient without

margin of errors. However, a too great value for α will increase

latency in applications. We must find a compromise in the choice

of this value. We developed a prototype in order to perform this

study.

4. THE OSAGAIA COMPONENT MODEL
The last part of our work is to define a software component

model [12] in order to ensure the implementation of distributed

multimedia applications in accordance with the specifications

given by functional graphs. This model is called “Osagaia” which

means “the software component” in the Basque language. The

nodes of graphs will be implemented by software components.

These components will be connected by means of connectors

whose role is to transport media and data according to the

Korrontea model.

We identify two kinds of software components: the

functional ones and the nun-functional ones. Functional

components are in charge of the implementation of the basic

functionalities of an application. They are components of

creation/capture, processing, rendering or storage. Non-functional

components are in charge of the implementation of the aspects

which associate non-functional properties to the applications

necessary for their implementation [24]. Among these non-

functional components, we define a component called “fusion”

whose goal is to produce composed flows from a set of

synchronous flows by applying the synchronization policies we

defined previously. In fact, this component allows defining

synchronization links introduced by functional graphs. A

component which realizes the opposite function is also defined, it

is called “separation”. It is used to break composed flows into

primitive ones. Other non-functional components are used but not

described here.

The functional components need to be executed in a

container whose role is to provide non-functional implementation

for components. This container is called the elementary processor.

Its role is to perform interactions between functional components

and their outside. It is divided into two main parts: the exchange

unit (composed of input and output units) and the control unit.

The exchange unit manages synchronous flows input/output

connections of the processor. The control unit manages the life

cycle of the functional component and the interactions with the

runtime platform. Thus, the platform supervises all elementary

processors and indirectly all functional components.

Thanks to the elementary processor, functional components

can read and write slices of synchronous flows even if these slices

contain several data flows. Indeed, the functional component

processes some flows, the others are transferred from input unit to

output unit into the processor. When processings are achieved by

the component, the output unit executes synchronization policies

in order to compose slices broke by input unit. This solution is the

one that we propose in order to prevent the desynchronization of

flows induced by processing.

Synchronous flows are transported between elementary

processor by means of a connector called the conduit. Its main

role is to connect components (functional and non-functional) of

applications. The conduit receives slices of synchronous flows

produced by components and conveys them. It is made up of two

parts. The control unit implements interactions between the

conduit and the platform while an exchange unit manages the

input/output connections with components. The conduit is the

distributed entity of our model, i.e. it can transfer synchronous

flows between different sites of distributed applications. Its

internal architecture is based upon the client/server model. It

constitutes the solution that we propose in order to avoid the

desynchronization of flows caused by network transmission.

5. PROTOTYPE IMPLEMENTATION
In order to validate our approach and the different models

presented in this paper, we developed several prototypes.

5.1 Synchronization Policies Simulator
The simulator developed allows to apply the synchronization

policies on synchronous flows with both temporal constraints. It

permits to produce synchronous slices of flows with only time

stamps because the policies use these stamps. The aim of the

simulator is to test the constitution of the composed flows. For

each flow defined, we can choose its properties of the flows. The

results of the constitution of the slices are displayed on a graphic

interface and stored in a text file. Thus, we can analyze the results

after the runtime of the simulator.

In order to create synchronous flows, the simulator uses the

parameters θ and α. Others parameters are used to indicate the

number of flows with both hard and soft temporal constraint.

Each flow is created with three properties. The first one is an

integer which represents the total number of data flows. The

second one gives the intra-flow synchronization relation between

two successive slices. For the flows with soft temporal constraint,

this is the maximal time between two slices. Indeed, for these

flows this time may vary. Finally, with the last property, it is

possible to introduce a maximal delay for the arrival of slices at

the input of the simulator. Thus, we introduce delay.

The simulator is composed of a set of windows described on

Figure 5. The main window gives the constitution of the created

slices of the resulting composed flow. Each slice indicates, for

each flow, the number of slices used. These slices are indicated by

the mean of their time stamps. The time TMAX used to constitute a

slice is indicated for each resulting slice except when the soft

policy is applied. The flows indicated by a capital letter are with

hard temporal constraint and the flows indicated with a small

letter are with soft temporal constraint. For a given slice, on flows

with soft temporal constraint we can obtain the following

description: {f0=}. This means that slices are available for this

flow but for the moment they do not correspond to the criteria

used by the policy. This kind of slices is available too early.

Figure 5. Synchronization Policies Simulator

This simulator can be used by the interested readers in order to

test the synchronization policies of our model. This simulator can

be downloaded at the following URL:

http://www.iutbayonne.univ-pau.fr/~roose/V2/korronteaSimulator

5.2 Application prototype
We develop a prototype in order to test dynamic adaptation

of an application and the synchronization policies. This prototype

is distributed and is divided into two parts. The first one

implements two video capture components, one from a WebCam

and the other from a file. Each of these two components produces

two same video flows that are put in a composed flow in order to

keep their synchronization relations. This composed flow is

transmitted to the other part of the application by the mean of a

distributed conduit. This part is composed of one ore several

components. This composition depends on the configurations that

we want to implement. We can find a displaying component

which allows to display the two video flows. We can add one ore

more processing components applied on one of the two flows.

These components can be added or removed dynamically. This

prototype provides six processing components: an image size

reduction, a negative transformation, a black and white

transformation, an edge detection, a blured video and a skin color

detection. Each component is executed in an elementary

processor.

A graphic interface allows to simulate the runtime platform

by adding or removing and starting and stopping the processing

components. It permits equally to choose the source of the video

flows.

The creation component produces two video flows with hard

temporal constraint. Thus, the hard synchronization policy is

applied. The composed flow is transmitted to the second part of

the application. Then, it is transmitted to the displaying

component after one or several processing components chosen by

the user. The processing components receive the composed flow

and apply their processing only on the second flow. The first one

allows to know if the inter-flow synchronization relations between

the two flows are kept. Moreover, the prototype allows to test the

dynamic adaptation of the application.

The Figure 6 shows an example of the runtime of this

prototype. In this case, we add an edge detection component and a

component which applies a blur on the video. We can see on the

video that they are synchronous despite the processing applied on

the second flows.

Figure 6. Edge Detection and Blur

6. RELATED WORKS
The development of pervasive and ubiquitous computing

imposes stringent requirements that the deployment of multimedia

applications must consider in order to dispose of efficient

implementations. These requirements impose to adapt both

applications and data. For instance, many works deal with data

adaptation according to the characteristics of the runtime context.

These adaptations are performed by increasing or decreasing data

intrinsic quality [26]. The components paradigm allows this kind

of adaptation by adding components in critical locations of a

distributed application. This solution is used by our platform in

order to adapt data to provided QoS.

Data must be structured in order to be handled by the entities

that compose an application. Some works use coding formats like

the MPEG one [27]. This kind of solution allows to consider data

properties but is open to criticism for many reasons. Data

integration is an important criterion in multimedia applications

[5]. An MPEG solution is based on the multiplexing of several

media or data. Thus, this kind of solution goes against the data

integration because we loose the possibility to process single data

except with the implementation of complex architectures. Indeed,

this solution is not efficient due to the considerable times of

compression and decompression processes. Moreover, the

multiplexing of several data implies to consider a global QoS for

the data. The adaptation of each media by increasing or

decreasing their intrinsic quality [26] is not possible. Other

disadvantages of solutions oriented multiplexing are given in [28].

Consequently, we prefer to define our own data model suitable for

our works.

The properties of this data must be ensured in such

applications. We identified two sources of desynchronization. The

first one is due to the fact that some data synchronized with others

must be processed. Processing introduces temporal delays on

media and so desynchronizes the processed media in comparison

with the others. The second one can occur when synchronous data

are transmitted through network. Some services used to transport

data on a network introduce an increase of the network load but

also packet loss, delay and jitter [13]. These problems are well-

known and harmful to media synchronization [14]. Some works

provide models to ensure synchronous presentation of media

whose characteristics are known a priori [5]. However, it is hard

to know a priori all the characteristics of data that can be used in

multimedia applications. Other works provide models to allow

synchronous transmission of media through networks [29]. The

RTP protocol [30] gives this possibility. These works do not

consider the first problem of desynchronization. We think that

synchronization models are efficient only if they are extended to

the whole application in order to avoid these two sources of

desynchronization. With this aim, we use a data model which

allows to keep synchronization relations in real-time from the

source to the sink of an application.

7. CONCLUSION
In this paper, we presented both data and synchronization

models suitable for distributed multimedia applications. From

specifications given by the runtime platform, we have specified

the Korrontea model used to transport data and media into

applications in either local or distributed ways. We propose to use

a data flow structure in order to model this data. The key idea of

this research consists in exploiting the temporal dimension of the

data flows that can be handled in such applications. A data flow

can be built with hard or soft temporal constraint. The temporal

constraint is linked to the type of the data transported into the

flow. Synchronization policies that we used are based on these

constraints. The Korrontea model is then used in the Osagaia

component model in order to develop multimedia applications

with these specifications.

The robustness of the proposed technique has been proved

by the synchronization policies simulator. Another prototype

allow to see that synchronization is maintained in real use case

and this in spite of processings and network transfers.

8. REFERENCES
[1] A. Lins et al. A Tool to Generate Multimedia Monitoring

Applications for Wireless Sensor Networks. In Proceedings of the

6th IFIP/IEEE International Conference on Management of

Multimedia Networks and Services (Belfast, Northern Ireland,

September 7-10 2003).

[2] T. Totozafiny et al. Motion Reference Image JPEG 2000: Road
Surveillance Application with Wireless Device. In Proceedings of

the Visual Communications and Image Processing (Beijing, China,

July 12-15 2005).

[3] W. Zhu, N. D. Georganas. JQoS: Design and Implementation of a
QoS-based Internet Videoconferencing System using the Java Media

Framework (JMF). In Proceedings of the IEEE Canadian

Conference on Electrical and Computer Engineering (Ontario,

Canada, May 13-16 2001).

[4] A. Hafid, G. v. Bochmann, R. Dssouli. Distributed Multimedia
Applications and Quality of Service: A Review. Elec. Jour. on

Networks and Distributed Processing, 6 (1998), 1-50.

[5] G. Blakowski, R. Steinmetz. A Media Synchronization Survey:
Reference Model, Specification, and Case Studies. IEEE Jour. on

Selected Areas in Comm., 14, 1 (January 1996), 5-35.

[6] ISO/IEC/JTC1/SC29/WG12. Coding of audio, picture, multimedia

and hypermedia information. MHEG Working Group S.5, June

1999.

[7] G. Ghinea, J. Thomas. QoS impact on user perception and
understanding of multimedia video clips. In Proceedings of the 6th

ACM International Conference on Multimedia (Bristol, England,

September 12-16 1998).

[8] R. Steinmetz. Human Perception of Jitter and Media
Synchronization. IEEE Jour. on Selected Areas in Comm., 14, 1

(January 1996), 61-72.

[9] P. Eles, A. Doboli, P. Pop, Z. Peng. Scheduling with Bus Access
Optimization for Distributed Embedded Systems. IEEE Trans. On

Very Large Scale Integ. Sys., 8, 5 (October 2000), 472-491.

[10] S. Laplace. Conception d’Architectures Logicielles pour Intégrer la

Qualité de Service dans les Applications Multimédias Réparties.

Ph.D. Thesis, University of Pau, Bayonne, France, 2006.

[11] M. Dalmau, P. Roose, F. Luthon. A Distributed Architecture for
Cooperative and Adaptive Multimedia Applications. In Proceedings

of the 26th IEEE Annual International Computer Software and

Applications Conference (Oxford, England, August 26-29 2002.

[12] E. Bouix, M. Dalmau, P. Roose, F. Luthon. A Component Model for
transmission and processing of Synchronized Multimedia Data

Flows. In Proceedings of the 1st IEEE International Conference on

Distributed Frameworks for Multimedia Applications (Besançon,

France, February 6-9 2005).

[13] H. E. Gebaly. Reactive Mechanisms for Recovering Audio
Performance in Multimedia Conferencing Over Packet Switched

Networks. Intel Tech. Jour., 3, 3 (August 1999).

[14] N. Bouillot. Métaphore de l’orchestre virtuel – Etude des

contraintes systèmes et réseaux, puis prototypage. Master Thesis,

IRCAM-CEDRIC/CNAM, Paris, France, 2002.

[15] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Comm. of the ACM, 21, 7 (July 1978), 558-565.

[16] C. Fidge. Timestamps in message-passing systems that preserve the
partial ordering. Australian Comp. Science Comm., 10, 1 (February

1988), 56-66.

[17] F. Mattern. Virtual Time and Global States of Distributed Systems.
In Proceedings of International Workshop on Parallel And

Distributed Algorithms (Château de Bonas, France, October 3-6

1988).

[18] C. Dumontier, F. Luthon, J-P. Charras. Real-Time DSP
Implementation for MRF-Based Video Motion Detection. IEEE

Trans. on Image Processing, 8, 10 (October 1999), 1341-1347.

[19] OMG. UML Profile for Schedulability, Performance and Time

Specification. Version 1.1, January 2005.

[20] B. Abali, C. B. Stunkel. Time synchronization on SP1 and SP2
parallel systems. In Proceedings of the 9th International Parallel

Processing Symposium (Santa Barbara, USA, April 25-28 1995).

[21] IEEE 1588. Precision clock synchronization protocol for networked

measurement and control systems. IEC 61588, 1st edition,

September 2004.

[22] Sun Microsystems. Java Media Framework API Guide. November

1999.

[23] OMG. Unified Modeling Language Specification. March 2003.

[24] D. Garlan, M. Shaw. An Introduction to Software Architecture.
Advances in Soft. Eng. And Knowledge Eng., 2 (1993), 1-39.

[25] Sun Microsystems. Java Sound Programmer Guide. 2000.

[26] D. Hagimont, N. Layaida. Adaptation d’une application multimedia
par un code mobile. Tech. et Sciences Informatiques, 21, 6 (2002),

877-898.

[27] S-C. Chen, M-L. Shyu, N. Zhao, C. Zhang. Component-Based
Design and Integration of a Distributed Multimedia Management

System. In Proceedings of the 2003 IEEE International Conference

on Information Reuse and Integration (Las Vegas, USA, October

27-29 2003).

[28] D. L. Tennenhouse. Layered Multiplexing Considered Harmful. In
Protocols for High-Speed Networks, Elsevier Science Publishers,

1990.

[29] J-P. Courtiat and al. A General-purpose Multimedia
Synchronization Mechanism based on Causal Relations. IEEE Jour.

on Selected Areas in Comm., 14, 1 (Jan. 1996), 185-195.

[30] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson. RTP: A

Transport Protocol for Real-Time Applications. RFC 1889, 1996.

