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ABSTRACT
Driving assistance systems (DAS) offer support in poten-
tially dangerous situations, especially for unexperienced dri-
vers. Co-operative systems improve their performance by
sharing information with each other. One key-enabler for
describing and exchanging context between intelligent ve-
hicles, which use it for reasoning about their environment,
is a common context-model. In this paper, we briefly dis-
cuss the influence of the driving context on decision-making
and present an OWL-based context-model for abstract scene
representation of driving scenarios. We further outline the
integration of scene-descriptions with a logic-based reason-
ing system, based on a set of transformation rules.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalism and Methods; I.2.10 [Artificial Intelligence]:
Vision and Scene Understanding

1. INTRODUCTION
One of the key-enablers for bringing context-awareness to

collaborative driver assistance systems (DAS) is a common
domain representation for information exchange. By con-
text we mean ”context” in the understanding of ”situation-
awareness”, as defined by Endsley [5] and cited by [1] as
”... the perception of elements in the environment within a
span of space and time, the comprehension of their meaning
and the projection of their status in the near future”. So,
context for a driving assistance system refers to the driving
situation, consisting of the environment and all objects and
traffic participants within it, which are currently relevant to
the own vehicle. Additionally, the driver, the own vehicle’s
state and the national driving regulations are part of the
context.
Current approaches of DAS (e.g. ACC - adaptive cruise con-
trol) are mostly stand-alone solutions, focusing on a highly
specialized sub-task, with limited context-awareness. For
the future - with the ongoing development in the fields of
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machine-vision and sensor technology - we expect integra-
tion of stand-alone sub-solutions to take place, thus resulting
in smarter DASs. The overall driving context will become
important for correctly recognizing and interpreting complex
driving situations. DAS will become increasingly knowledge-
based and methods will be needed for modeling and handling
the vast amount of context information. A context-model
serves as common domain description and is necessary to
represent context information and to exchange it between
collaborating vehicles and infrastructure. Collaboration al-
lows DAS to achieve better performance in supporting the
driver in difficult situations, simply because it provides ad-
ditional information about a vehicle’s surrounding. An ab-
stract model of this information is the basis for a reasoning
process that deduces driving recommendations.
We start the paper with a discussion of related work. We
then briefly describe the driving context and present an
ontology-based context-model for representation of driving
scenarios. Afterwards we show the integration of the model
into a constraint-based reasoning process and conclude with
a discussion of the proposed approach.

2. RELATED WORK

2.1 Context-Modeling
Several methods have been introduced for context model-

ing. [9] proposed the Context Modeling Language (CML).
CML is a graphical modeling approach extending the Object-
Role Modeling Language (ORM1). Because of the closeness
between ORM and relational algebra, CML can be used to
directly transform a context-model to an underlying rela-
tional database. CML provides situation abstraction to de-
fine high-level context using a form of predicate logic. Situ-
ations can be arbitrarily combined to reuse and model more
complex situations. The model has been recently extended
to support unknown, ambiguous, imprecise and erroneous
context-data.
[21] present a context-modeling profile (CMP). The CMP
approach uses meta-model extension capabilities provided
by the Unified Modeling Language (UML) - stereotypes,
tagged values and Object Constraint Language (OCL). CMP
graphically supports context meta-information, especially
for source and validity of context-information, as well as for
privacy managment. CMP is a lightweight extension of the
UML meta-model, meaning it extends the existing meta-
model without changing it. Lightweight profiles have the

1http://www.orm.net
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advantage of being supported by a great number of UML
modeling tools, whereas heavyweight profiles, which change
the UML meta-model [20], are not.
Context-Modeling has also been done using the Semantic
Web resp. the Ontology Web Language (OWL2). [4] pre-
sentes COBRA-ONT, a collection of ontologies formulated
in OWL for pervasive context-aware systems. Further exam-
ples for OWL-based approaches are [22], [7] and [26]. OWL
has the main advantage that simple reasoning about the
structure of designed ontologies is possible without neces-
sary transformation to other representations (e.g. descrip-
tion logics). The reasoning capabilities of OWL are lim-
ited to concepts like inheritance, transitivity between OWL-
classes, symmetry etc.
[23] provides a survey of the most common context model-
ing approaches, based on a set of previously identified re-
quirements. The authors conclude that ontology-based ap-
proaches are most promising for context modeling in ubiq-
uitous environments, since they outperform the other ap-
proaches in all points.

2.2 Context-Modeling for DAS
In [24], Toennis et al present their context-aware deduc-

tion system, called SCORE (Spatial Context Ontology Rea-
soning Environment). SCORE consists of separate autonomous
components that distribute context knowledge and reason
about spatial properties of the contextual data. SCORE
uses low-level spatial information together with ontologi-
cal context-representation for high-level context-processing.
However, it remains unclear which context objects the ontol-
ogy contains and how their spatial information and relation-
ships are actually represented (qualitative vs. quantitative,
egocentric vs. allocentric etc.). It is also unclear which traf-
fic objects the ontology contains (vehicles only, other par-
ticipants, etc.) A rule-based approach derives information
from the gathered spatial data. Spatial queries like ”Is car
X overtaking car Y?” can be processed by the system, but
the authors do not explain the content of their rule base or
reasoning mechanisms behind it. Therefore, in our opinion,
the modeling capabilities and reasoning power of the ap-
proach remain undemonstrated. The authors further claim
that their rule base handles spatial regulations from traffic
rules, but it is not clear how these are incorporated into the
knowledge base. Also, the approach seems to consider nei-
ther temporal concepts nor uncertain information.
[18] proposes a framework for modeling and predicting driver
behavior using Dynamic Belief Networks. The authors state
that a driver’s behavior is evolving dynamically within a
certain situation. Context is necessary to explain driving
behavior and to improve generalizability and reliability of
behavior models. The framework uses Bayesian networks
and conditional probability tables to represent contextual-
ized driver actions. For integration of time dependencies
the authors suggest using Dynamic Belief Networks. The
presented approach focuses on predicting driver behavior,
which is of course important, but only a small part of the
overall driving environment. Concepts with substantial in-
fluence onto the driver’s behavior are left out, e.g. spatial
relationships between vehicles, environmental conditions or
traffic regulations. The question remains if the approach
will scale well for modeling more complicated scenarios.
In [15, 13] the authors present a knowledge-based approach

2http://www.w3.org/2004/OWL/

for modeling spatio-temporal driving situations using qual-
itative motion descriptions. Direction, speed and distance
are mapped from quantitative data into qualitative classes
for high-level abstraction. A rule-base reasons on the qual-
itative scene descriptions to deduce driving behavior. The
authors clearly demonstrate the appropriateness of quali-
tative scene representation for successful reasoning about
spatio-temporal patterns of moving objects. Beside abstrac-
tion to qualitative classes, no further concepts for dealing
with imprecise and uncertain data are introduced. How-
ever, this would be important, since the approach is meant
for the operational level of autonomous vehicles. Further, it
seems questionable if qualitative classes are the best solu-
tions for all parameters of driving patterns. For example, to
reason about an overtaking situation it seems more feasible
to use absolute speed and distance values to determine the
necessary speed difference and time-frames for the overtak-
ing maneuver. The presented rule-based focuses solely on
spatio-temporal reasoning, further influence factors on the
driving task that where already mentioned are not taken
into account.
[2] presents an ontology for representing road traffic situa-
tions in a traffic management center, involving representa-
tion and reasoning for qualitative spatio-temporal patterns.
The applicability of the developed ontology to the recogni-
tion of road traffic management scenarios is demonstrated.
Situations that need the attention of the human supervisor
are recognized and pointed out, e.g. an accident in front of
a traffic jam inside a tunnel. The presented ontology is kept
very simple and tailored to the needs of the traffic manage-
ment task, but it demonstrates the applicability of ontology-
based techniques to context-modeling outside the semantic
web. The spatio-temporal concepts for traffic management
are similar to those needed within DAS and the presented
solution has potential for reuse, but besides the two problem
fields have little in common.
It seems that most of the current modeling approaches fo-
cus on the spatio-temporal representation. None of them
has tried to extend and include additional relevant informa-
tion, like traffic objects, environmental conditions and traf-
fic rules. The remainder of the paper briefly motivates the
need for representing the overall context within a DAS and
presents our approach for a more comprehensive context-
model for scene description of driving situations, which ex-
tends around the already well-researched spatio-temporal
representation.

3. A CONTEXT-MODEL FOR DRIVING
SCENE REPRESENTATION

The overall context for a driving situation consists of four
major sub-contexts:

1. the operating environment of the vehicle and all rele-
vant objects within it,

2. the driver,

3. the vehicle with the built-in DAS (own vehicle) and

4. national traffic regulations.

These four contexts have been identified in most projects
concerned with intelligent DAS (examples are [14], [3], [25]).
The most complex context with the greatest variety of par-
ticipating objects is the environment. By ”spatial” context



Figure 1: Example: How does context-awareness in-
fluence decisions of a DAS?

we refer to the type of the road the own vehicle is currently
driving on. The ”local” context is a regional physical envi-
ronment where special driving rules apply and it is located
within a spatial context. Examples for a local context are
intersections, level crossings, tunnel, crosswalks etc. Traffic
objects like signs, pedestrians, markings, etc. are located
within and valid for a spatial or local context, respectively.
Representing the relationship between traffic objects and
their spatial/local context improves the scene-analysis and
reasoning process, because non-likely objects and scenarios
can be excluded in advance. Road conditions complement
the driving environment.
The driver-context comprises the current state, experi-
ence, the risk-willingness - using qualitative classes - and
also the driver’s intent for the next planned manoeuvre.
For the own vehicle, in addition to standard-parameters
like speed, built-in safety systems must be considered, be-
cause recommended driving behavior differs with their pres-
ence/absence.
Driving regulations also have substantial influence on the
recommended behavior and have to be incorporated in the
reasoning process.
We take detection of traffic objects as well as driver states
with sensor systems for granted, as there are already success-
ful research projects in this field. In traffic object detection
exemplary tasks are pedestrian recognition [19, 6] and traffic
sign recognition [16]. Projects concerned with driver state
detection are [8, 17, 25].

Figure 1 shows the influence of all four context parts on
the recommendation given to the driver by a DAS. The spa-
tial context (type of road) dictates the applicable standard
driving rules under optimal conditions. Any other object
within the context presents an additional constraint to the
given standard behavior. In the example, under best condi-
tions the DAS would only monitor the maximum speed limit.
If a front-driving car with a speed of 90 km/h appears, the
DAS can give the recommendation to overtake, depending
on the driver’s preferences (defensive or offensive behavior).
If further scene analysis detects a ban-of-passing and a 100
km/h speed limit, the DAS deduces to follow the car within
safety-distance. With additional bad weather conditions the
system may even propose a lower speed. The last step in the
reasoning hierarchy - ”Incompatibility” - is used for deter-
mining unforeseen circumstances, which are conflicting with
the current context (e.g. a pedestrian on a highway) and

demand immediate attention.
This simple example shows the high influence context-awareness
has on an intelligent DAS. Still, as we have discussed in
the previous section, most present-day projects only focus
on certain small parts of the context. The example fur-
ther shows that it is feasible to analyze driving situations
step-wise in a hierarchical fashion, reducing the number of
possible decisions. Reasoning starts with determining the
standard behavior. Additional objects detected throughout
the hierarchy impose further restrictions.
In the next section, we show an ontology-based model for
textual driving scene representation, containing information
from the overall context.

3.1 The Context-Model
We developed an OWL-based context-model for represent-

ing information about traffic objects and relationships rele-
vant for the driving task. We started with a comprehensive
UML-model as a design base and transformed it to an ontol-
ogy, utilizing the OWL-modeling-tool ”Protégé”. OWL was
finally chosen over UML to facilitate the common informa-
tion representation and exchange process between collabo-
rating vehicles. Since OWL was developed with the intent
of describing context to software agents, it is a suitable rep-
resentation language for information sharing (cf. [22, 23]).
Modeled objects can be processed, exchanged with other
systems and transformed into a variety of other languages
for further processing with reasonable effort. Figure 2 shows
an overview of our driving ontology.

Figure 2: Driving scenario ontology for scene repre-
sentation

As we can see immediately, the number of possible ob-
jects participating in a driving context is comparatively low;
the main challenge for the reasoning system arises from the
extensive number of possible object-combinations within a
traffic scene. The ontology was developed with the main
intention of providing a framework for description of traffic
scenarios based on the egocentric view of the own vehicle,
independent of a certain task (be it overtaking, turning or



holding distance to a vehicle). Abstract scene representa-
tions can be exchanged between collaborating vehicles and
infrastructure and used for reasoning on a tactical level. For
the operational level (autonomous driving), the model is eas-
ily extendable using the OWL super/subclass structure. Ev-
ery object can be further detailed with additional informa-
tion, without changing the high-level representation.
The classes in the ontology represent traffic objects from
the four context categories, together with their attributes
(datatype properties), one-to-one relationships (object prop-
erties) and many-to-many relationships (classes). Appropri-
ate domains and ranges, as well as cardinality restrictions,
are assigned to each property.
The class ”trafficObject” is further extended into a more
detailed hierarchy with the subclasses marking, trafficLight
and trafficSign. Each of those is a generic traffic object,
valid for a specific number of lanes and restricting driving
maneuver. However, each object has specific properties, not
shared by the others: a traffic light has a certain state (e.g.
red) and is valid for specific directions of a lane (e.g. straight
and right-turn), whereas a traffic sign has a specific name,
additional add-on signs etc. The ”traffic sign” class is again
extended into danger, information and order, deploying dif-
ferent behavior during the reasoning process.
Modeling of separate lanes of the street network was done
in the style of the TeleAtlas c©lane representation, in order
to facilitate future integration with their digital map data.
Two Lanes are connected with each other if the are reachable
by driving maneuver. Additionally, an adjacency relation-
ship is maintained.
To represent noisy and imprecise data, information about
an object’s quality is included. In our model, we have a spe-
cial class ”Meta-Information” that is related to each context-
object and object-relationship. This class contains the name
and reliability of each source, a quality-measurement and a
time-span for the object’s validity. The list of meta-attributes
and their allowed values can be arbitrarily extended as needed.
For modeling the spatio-temporal data, the model was in-
spired by existing approaches, discussed in section 2.2, espe-
cially [15] and [13]. The meta-property ”time-span” is used
to integrate the notion of time for moving objects. It gives
the time-interval for which the current object-relationship-
state is going to be valid. [15] shows that a single time-
interval is sufficient to represent high-level motion descrip-
tion. The spatial relationship attributes ”direction” and ”di-
rectionMovement” defining the relative relation between the
own vehicle and other participants are represented using
quality classes with finite domains, e.g. direction domain
= {front, frontLeft, frontRight, left, right, rear, rearLeft, re-
arRight}. However, for distance, speed measures and line
of sight we vote for numerical values. They are compara-
tively easy to obtain from various sensing systems (unlike
e.g. driver state) and support for many difficult driving ma-
neuvers, like overtaking, relies heavily on the calculation of
necessary time-frames and speed/distance differences, which
need numerical values. Although humans apparently cope
with this situations using estimated measures all the time,
one should keep in mind that most accidents related to e.g.
overtaking are due to underestimation of the parameters
speed and distance.
Complex relationships between traffic objects are modeled
with separate classes (as mentioned above), assigned to the
superclass ”ObjectRelationships” to distinguish them from

context objects. Some relationships consist solely of object
properties, referencing to the participating context-object
classes, e.g. ”trafficObjectIsValidForLane” has object prop-
erties for the traffic object’s id and the lane’s id. If a traf-
fic object is valid for more than one lane, separate class
instances have to be created for every lane. This facili-
tates the reasoning process, where the lane is usually given
and the question is, which objects are valid for this lane at
the moment. Other relationship classes additionally have
datatype properties, to represent association attributes for
a relationship between context objects. The class ”partici-
pantUseLane”, for example, has additional properties for the
remaining space on the left and right of the participant with
respect to the lane’s width.
Further context-objects, attributes and relationships with
influence on the decision process are included in the model.
Examples are the driver, road conditions, technical features
of the own vehicle and spatial/local context, described in
the previous section.
It is not possible to discuss every aspect of the context-model
within this paper, therefore we refer to the complete ontol-
ogy, published on our homepage3. The ontology is restrained
to the representation of traffic scene descriptions. Because
OWL has no framework yet for the intuitive representation
of complex and sophisticated rules [10, 11], a logic-based ap-
proach is used for representation of traffic regulations. The
next section describes the process of transferring ontology-
based scene description to the logic knowledge base.

3.2 Mapping from OWL to ECLiPSe
As already mentioned, OWL does not support represen-

tation of complex reasoning rules. We therefore decided
to represent traffic rules with a logic-based approach: as
user-defined constraints within the open-source prolog-based
logic programming environment ”ECLiPSe”. We expect good
results from using constraint logic programming (CLP) for
the reasoning component. Few decision variables together
with a countless number of possible combinations is a com-
mon situation in CLP and a number of efficient algorithms
exist to cope with the resulting difficulties.
For representing scenarios in ECLiPSE, we introduced a
transformation step: each OWL-based scenario description
is translated to ECLiPSe syntax and fed into the knowledge
base as a collection of dynamic facts. Translation is rather
straightforward, since ECLiPSE allows for abstract object
representation by utilizing structures, a concept similar to a
C/C++-Struct. An ECLiPSe structure is a special notation
used for annotating facts with field names, thus improving
readability and ease of modification, without loosing effi-
ciency. A structure and it’s attributes have to be defined
before it’s first use, using a struct-predicate, e.g. :-local

struct(driver(id, name, age, state)). Afterwards, dy-
namic facts based on the structure can be assert with :-

assert(driver{id:d1, name:sfuchs, age:28}). Attribu-
tes are optional, if they are not listed in the assert-statement,
they are assigned a variable. The statement is equivalent
to :-assert(driver(d1, sfuchs, 28, _)). The main ad-
vantage of using structs is that fields within the structure
can be addressed using their name, without knowing the ex-
act sequence within the predicate - the translation to the
underlying dynamic predicate is automatically done by the
parser.

3http://vi.uni-klu.ac.at/ontology/DrivingContext.owl



We defined nine rules for mapping the abstract objects of
the context-model to ECLiPSe structs.

R1: A class is mapped into a new structure, using the class
name as functor.

<owl:Class rdf:about="#driver">
...</owl:Class>

is mapped to
struct(driver(...)).

R2: A subclass is mapped into a new structure, with the
superclass’ structure as nested field.

<owl:Class rdf:about="#spatialContext">
... <rdfs:subClassOf rdf:resource="#context"/>...
</owl:Class>

is mapped to
struct(spatialContext(c:context,...))

R3: A functional datatype property is mapped into a struc-
ture field of the corresponding class.

<owl:FunctionalProperty rdf:ID="driverId">
...<rdfs:domain rdf:resource="#driver"/>
</owl:FunctionalProperty>

is mapped to
struct(driver(driverId,...))

R4: A non-functional datatype property is mapped into a
structure field with a list as valid value. This makes
a difference for dynamic facts based on the structure,
not for the structure’s definition.

<owl:DatatypeProperty rdf:ID="state">
<rdfs:domain rdf:resource="#driver"/>
<rdfs:range>
<owl:DataRange>
<owl:oneOf rdf:parseType="Resource">
<rdf:first rdf:datatype="...">
tired</rdf:first>...

</owl:oneOf>
</owl:DataRange>
</rdfs:range>

</owl:DatatypeProperty>

is mapped to the structure
struct(driver(driverId,state,...))

and used in the dynamic fact
driver{driverId:sfuchs,state:[tired],...}.

R5: A datatype property hierarchy is mapped into a new
structure and used as nested field inside the class struc-
ture.

<owl:FunctionalProperty rdf:about="#gpsPosition">
<rdfs:domain rdf:resource="#ownVehicle"/>
...

</owl:FunctionalProperty>

<owl:DatatypeProperty rdf:ID="latitude"> ...
<rdfs:subPropertyOf>
<owl:FunctionalProperty rdf:ID="gpsPosition"/>
</rdfs:subPropertyOf>

</owl:DatatypeProperty>

is mapped to a new structure
struct(gpsPosition(latitude,...)).

and nested as field
struct(ownVehicle(vehicleId,g:gpsPosition,...)).

R6: A functional object property, representing a simple re-
lationship, is mapped into a structure field of the do-
main class.

<owl:FunctionalProperty rdf:ID="drives">...
<rdfs:domain rdf:resource="#driver"/>
<rdfs:range rdf:resource="#ownVehicle"/>

</owl:FunctionalProperty>

is mapped to
struct(driver(driverId,state,drives,...)).

R7: A non-functional object property, representing a com-
plex relationship, is mapped into a new structure: the
functor consists of ”Domain Class Name + Property
Name + Range Class Name”and the domain and range
class IDs are fields.

<owl:ObjectProperty rdf:ID="execute">
<rdfs:domain rdf:resource="#driver"/>
<rdfs:range rdf:resource="#drivingManeuver"/>

</owl:ObjectProperty>

is mapped to
struct(driverExecuteDrivingManeuver(driverId, driv-

ingManeuverType,...)).

R8: The special Metainformation class, assigned to every
class via the object-property hasAdditionalInformation,
is mapped into a new structure and is inserted as nested
field into every other structure.

struct(metaInformation(source,quality,validity,
timespan))
...
struct(context(contextId,...,
meta:metaInformation)).

R9: An enumeration of a datatype property is mapped into
a static fact with one field containing the enumerated
values as list. The functor is made up of ”e + datatype
property name”.

eDriverState([tired,drunk,stressed,distracted,
ill, medicated]).

An additional check-constraint is generated that vali-
dates a field value against the corresponding enumera-
tion. This constraint is used later during the reasoning
process to filter out invalid field values.

check_eDriverState(Value, Result):-
eDriverState(List),
( member(Value,List)->
Result=valid
;
Result=invalid

).

The rules help generating the static framework for the knowl-
edge base. This mapping has to be done once for initializa-
tion and afterwards every time, the ontology changes.
Traffic scenario descriptions for specific scenarios can now
be described using individuals of the classes defined in the
ontology. Individuals are mapped to dynamic facts using a
similar mapping process:



• Every individual is translated to one dynamic fact.

• Every datatype property value is assigned to the cor-
responding structure field of the dynamic fact.

• For every enumeration datatype property, a list of val-
ues is constructed and assigned to the structure field.

• For every object property, the id of the corresponding
relationship class is assigned to the structure field.

• References to nested object properties are resolved and
assigned to the corresponding structure field.

• References to the related metainformation class are re-
solved and nested into the structure.

Example: The current description of the own vehicle is de-
scribed with an individual of the ”ownVehicle” class and a
related meta-information individual, assigned to it with the
object property hasAdditionalInformation.

<ownVehicle rdf:ID="ownVehicle_7">
<speed rdf:datatype="&xsd;int">110</speed>
<lineOfSight rdf:datatype="&xsd;float">450.0</lineOfSight>
<steeringWheelAngle rdf:datatype="&xsd;int">2</steeringWheelAngle>
<length rdf:datatype="&xsd;float">3.09</length>
<gear rdf:datatype="&xsd;int">5</gear>
<width rdf:datatype="&xsd;float">1.65</width>
<hasAdditionalInformation rdf:resource="#MetaInf_ownVehicle_7"/>
<drivesIn rdf:resource="#spatialContext_1"/>

</ownVehicle>

<MetaInformation rdf:ID="MetaInf_ownVehicle_7">
<source rdf:datatype="&xsd;string">staticallyProvided</source>
<source rdf:datatype="&xsd;string">onBoardSensing</source>

</MetaInformation>

The ontology-based description is then mapped to the assert-
statement of a dynamic eclipse fact:

:-assert(
ownVehicle{

objId:ownVehicle_7,
speed: 110,
lineOfSight: 450.0,
steeringWheelAngle:2,
length: 3.09,
gear: 5,
width: 1.65,
source:[staticallyProvided, onBoardSensing],
drivesIn:spatialContext_1}).

The result of the overall transformation is a number of dy-
namic facts, the so-called dynamic knowledge base. In con-
trast to static predicates, dynamic facts can be added to
resp. retracted from the knowledge base on demand, with-
out recompiling the rest of the program. Complex rules are
further added to the reasoning process for representation of
traffic rules. The transformation from OWL to eclipse can
be easily automated, using the mapping rules, as will be
shown in the next section.

4. DISCUSSION OF THE PROPOSED AP-
PROACH

In addition to the standard ontological tests provided by
Protégé, the quality of the ontology was assessed using the
ontology engineering criteria defined in [12]:

• Reusability, standardization: The model was de-
veloped with the main intent of providing a common

domain-understanding and a framework for scene de-
scription of driving situations. The resulting machine-
readable descriptions enable information exchange and
reasoning for DAS. The model can be used for all tasks
that need driving scenario descriptions (e.g. ACC, in-
tersection assistance, etc.) on a tactical level.

• Flexibility, extensibility: New definitions can be
added to the context-model without changing existing
dependencies. Particularly stepwise refinement using
OWL class hierarchies is easily possible, thus enabling
applications to enhance the class-descriptions to the
level of detail needed.

• Genericity: Our context-model is restricted to the
driving domain and does not provide a domain-independent
upper ontology.

• Granularity: The model consists of abstract objects
representing a high-level description for the tactical
level of the driving domain. Refinement to finer de-
scriptions for the operative level is easy (see also flex-
ibility).

• Consistency: No contradictions where found in the
ontological content.

• Completeness: The empirical validation showed that
the model is complete for high-level scene representa-
tion of driving scenarios. The rules necessary for ef-
ficient reasoning are implemented outside the model
with a logic-based approach as discussed before.

• Redundancy: The context model does not contain
redundant information.

• Readability: Labels of classes and properties where
chosen with respect to understandability by human de-
signers. Although the models main intent is informa-
tion exchange between DAS, it should be understand-
able by human developers.

• Scalability: Cognitive and engineering scalability of
the context-model is unproblematic, since the model
contains a small number of possible objects. Reasoning
scalability is unapplicable, because reasoning is done
outside the model.

• Language, formalism: Description logics (more spe-
cific OWL) is used for scene representation. For the
reasoning process we use a logic-based approach (based
on the scene description).

We found that the model is sufficiently exhaustive to repre-
sent all relevant traffic objects in a driving situation, as well
as their relationships to each other and the own vehicle. To
summarize, the model fulfills the applicable ontological engi-
neering criteria to a great extent, and is suitable for all tasks
within a driver assistance system that need driving scenario
descriptions on a tactical level. The model can be easily
extended, without changing existing dependencies, using a
step-wise refinement process exploiting OWL class hierar-
chies. Applications can enhance the class descriptions to a
higher detail-level, any time, if needed.
For the empirical validation, we chose a number (about
120) of representative driving scenarios from both real-world



video-streams and a driving school’s teaching resource, as a
start. Most scenarios contained intersections or overtaking
scenes, because our prototypical DAS will be implemented
around these maneuvers. Intersection scenarios were chosen
from both cities and rural roads, containing various num-
bers (including zero) and types of traffic participants with
different relationships to the own vehicle. From the overall
120 scenarios, 50 where used for representation of overtaking
maneuvers, 40 for intersections and the rest for various situ-
ations. Different scenarios were chosen for validating traffic
objects (with/without signs, traffic lights and markings) as
well as for various weather conditions (day/night/twilight)
and driver states. For overtaking, scenarios where chosen
from highway, city and rural roads, with a different number
of lanes, with and without oncoming traffic, with different
distance/speed combinations, line of sights and much more.
We modeled every scenario description manually and com-
prehensively based on the developed context ontology, rep-
resenting all relevant traffic objects and their relationships
to the own vehicle that were present in the chosen scenario.
Assumptions were made for values that will be provided by
sensors in the real system and that were not known explicitly
for the scenario: examples are the state of the driver, road
surface temperature, technical features of the own vehicle
and their state. A mapping component then was developed
that automatically transforms the OWL-based individuals
and relationships to dynamic facts, using the context on-
tology. The result set of facts is afterwards automatically
compiled into the dynamic knowledge base of an ECLiPSe
environment to check the syntactical correctness. Compari-
son for semantic equivalence was done manually against both
the scenario description and the original traffic scene.
The ECLiPSe environment provides a tightly coupled in-
terface to the programming languages TCL/TK and C++.
A loose interface is available for Java. We chose the open-
source script language TCL/TK for the development of the
mapping component. The program takes the context-ontology
and the OWL-based scenario descriptions as input and cre-
ates a dynamic fact file. First, the ontology structure is
analyzed (identification of classes, enumerations, etc.). The
results are then used for interpretation and transformation
of the individuals file. Each scene description file has be-
tween 5 and 20 Kb, depending on the number of involved
context objects. Although TCL/TK is an interpreted script
language, this process only takes between 100 and 150 mil-
liseconds on average on a standard laptop PC with Windows
XP, a 2 GHz processor and 2 GB RAM (see fig. 3).
The mapping component is only one part of a prototype

for an overtaking and intersection assistant: a rule-base is
currently under development for deducing overtaking and
intersection-crossing recommendations, using the dynamic
knowledge base, created by the mapping component, as in-
put. The rule-base is not complete yet, but first results look
promising: for the average overtaking situation, the deduc-
tion process takes about 1 to 2 milliseconds on the laptop
PC described above.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we presented an example that emphasizes

the need for including the traffic context in the decision pro-
cess of a DAS. Especially co-operative DAS demand a com-
mon domain understanding for scene representation to en-
able information exchange between vehicles. We developed

Figure 3: Mapping component for transforming the
OWL scene description to a dynamic knowledge base

an ontology-based driving context-model that is sufficiently
exhaustive to describe a representative variety of traffic sce-
narios and serve as common basis for domain-understanding,
information-sharing and decision-making. We further dis-
cussed the integration of modeled scenarios and traffic rules
within a logic programming environment, because OWL’s
support for rule representation is still in it’s infancy. The
presented approach for information integration shows first
promising results and demonstrates the feasibility of combin-
ing the advantages of ontologies with the reasoning power of
logic-based languages. Future work will be concerned with a
more comprehensive extension of the overtaking knowledge
base that is able so adapt its decisions to the individual
needs of the driver and that takes the meta-information of
traffic objects into account during the reasoning process.
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