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ABSTRACT 
This paper presents a novel planning approach to assist 

elders with memory deficit to carry out complex daily 

activities. The proposed planner uses Markov decision 

processes (MDPs) in dynamic multi-tasks planning to help 

memory-impaired elders achieving and finalising their 

activities of daily living (ADLs) already undertaken. The 

article also reports empirical results of the experimental 

validation and discusses distinctions between our approach 

and related works. 

Categories and Subject Descriptors 

I.2.1 [Computing Methodologies]: Artificial Intelligence, 

Planning . 

General Terms 

Algorithms, Design, Experimentation, Human Factors, 

Theory. 

Keywords 

Ambiant Intelligence, Smart Assistance, Activity of Daily 

Living, Multi-Tasks Planning, Markov Decision Process. 

1. INTRODUCTION 
Since the seventies, assistance in smart homes has been 

defined as a support to occupiers for the completion of their 

activities of daily living (ADLs) [4] and particular attention 

was made for cognitively-impaired people. Nowadays, the 

improvement of the life quality in the developed nations has 

systematically generated an increase of the life expectancy. 

Nevertheless, the increasing number of elderly person 

implies more resources for aftercare, paramedical care and 

natural assistance in their habitats. The situation further 

complicated if elders suffer from memory disorders [6]. In 

this case a permanent assistance is necessary whenever they 

are. However, and in order to grant to the memory impaired 

elder a minimal freedom to act in a not-alarming situation, 

an intelligent assistance must not dictate her/him what to do 

according to a predefined static stereotyped behavioural 

plan, but should adapt dynamically suggested plans 

depending on what the elderly occupier wants to make.  A 

consequence of this starting premise is the necessity of a 

prior knowledge about the ADLs and the environment, but 

also – and especially – a constantly inferred knowledge 

about the occupier intentions.  

This paper presents a novel planning approach to assist 

elders with memory troubles to carry out ADLs. The 

proposed planner uses Markov Decision Processes (MDPs) 

in dynamic multi-tasks planning to help memory-impaired 

elders achieving and finalising their ADLs already 

undertaken. The remainder of the article is organised as 

follow. In section 2, we expound the theoretical background 

of MDPs. Section 3 presents our modular architecture that 

contains various modules permitting to the planner (which 

also takes part of the architecture) to act according to the 

proposed dynamic approach. The fourth section is devoted 

to a detailed description of the planning module 

functioning. After reporting on experimental validation and 

presenting empirical results in section 5, originalities of the 

proposed planning approach are addressed in the sixth 

section. We also discuss relations and distinctions between 

our approach and other related works. Concluding remarks 

are given in section 7. 
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2. THEORETICAL BACKGROUND 
To give a definition of MDPs, we take up the introductive 

proposal of Dietterich [3] by considering the general AI 

problem in which an agent interact with an environment. At 

each time step, the agent observes the environment, chooses 

and executes an action and receives a real value reward. 

The goal of the agent is to choose actions in order to 

maximise the sum of these rewards. For the case where the 

agent can perceive the entire state of the environment and 

where the actions are stochastic (i.e., the state resulting 

from an action is a probabilistic function of the previous 

state and the chosen action), the resulting sequential 

decision problem is known as a Markov decision process 

(MDP) [7].  

A MDP is a 4-tuple <S, A, P, R> where S is a finite set of 

states, A is a finite set of actions, P is a transition 

distribution P: S × A × S → [0,1] such that P(s,a,s’) is a 

probability distribution over S for any s Є S and a Є A; and  

R: S × A → IR is a bounded reward function. Intuitively, 

P(s,a,s’) denotes the probability of moving to state s’ when 

action a is performed at state s, while R(s,a) is the 

immediate reward associated with the resulting transition.  

Because MDPs provide a very general model of sequential 

decision-making under uncertainty, they have provided a 

foundation of much recent work on probabilistic planning 

where it is assumed the agent knows the state transition 

distribution P and the reward function R. Thus, given a 

MDP, the objective is to construct a policy that maximises 

the expected accumulated reward over some horizon of 

interest. I. e., to infer a policy π: S → A which indicates for 

each state s Є S what action a Є A should be performed. 

The optimal policy π* maximises the expected cumulative 

reward received by the agent. There are many algorithms 

for finding optimal policies, such as the dynamic 

programming algorithms value iteration and policy iteration 

[1]. Most of these algorithms involve computing a function 

known as the value function V(s) which estimates the 

expected cumulative reward of starting in state s and 

following the optimal policy. Formally, the value function 

is given by the Bellman equation :  

 

 

 

A simple variant of the value iteration algorithm is 

expressed by Algorithm 1 illustrated in figure 1.  

 

         Figure 1. The value iteration algorithm. 

3. THE MODULAR ARCHITECTURE 
The modular architecture is composed of five (5) modules: 

the scenarios generation module (SGM), the recognition 

module (RM), the analysis module (AM), the diagnosis 

module (DM) and the planning module (PM). These 

modules operate and handle shared data represented in 

XML structures. The modules communicate by messages. A 

data base gathers randomly generated scenarios (via the 

SGM) which are used during simulations for the 

reconstitution of real events. Figure 2 illustrates the general 

view of the architecture. 

 

 

         Figure 2. General view of the architecture. 

The overall environment is an accessible structure. Data in 

the environment allow the modules to reason in order to 

properly achieve their functionalities. Modifying the 



environment is done via an exclusive write access granted 

to only one component of the architecture (this detail will 

be clarified below). To make the environment easier to 

consult, reading (R) is managed by a circular order. This 

can change if a module notifies another and requests its 

intervention when detecting anomalies or critical situations. 

The various modules of the architecture reason on data that 

are collected by parsing an XML file which contains the 

scenario. As mentioned above, the letter represents a set of 

events reconstructing simultaneous achievements of several 

daily activities. Although they are generated randomly, 

these events are selected according to logical constraints. 

For example, for the scenario of the realisation of the 

"coffee preparation" activity, if the events "coffee-maker 

alarm is ringing", "coffee cup is full" and "sugar bowl is 

open" were chronologically generated, then when the event 

"coffee cup is clean" is generated, it will not be accepted in 

the scenario. On the other hand, the event "holding the 

coffee spoon" will be added to the scenario. 

An interpreter of scenarios (INT) scans the XML file and – 

at each temporal unit – sends information relating to one 

event to the recognition module (RM). Having the exclusive 

write access (W) on the environment, the interpreter 

updates it. The environment is a structure that recreates 

what really occurs in the intelligent apartment thanks to 

variables which represent all the detectable housing 

elements (e.g., furniture, kitchen utensils, taps, household 

electric appliances, etc). In a real context, the state of each 

detectable element is determined by a sensor. 

3.1 Memorising Activities 
The set of temporary views of started tasks (STVST) allows 

to constantly informing on the level of progression of each 

task in terms of accomplished achievements of its sub-tasks 

(recursively, of the sub-sub-tasks of each sub-task). The 

STVST is updated by the analysis module (AM) and 

consulted by the diagnosis module (DM). The hierarchical 

model of the defined activities (HMDA) defines, for each 

activity, its hierarchical structure, the concerned variables 

of the environment and their final states when the activity is 

accomplished. The HMDA also takes account of constraints 

of order, sequence and possible mutual exclusivenesses 

between sub-tasks of an activity. 

3.2 The Recognition Module 
The recognition of activities is based on data that simulate 

information transmitted by sensors in the intelligent 

apartment. At each unit of time and for each sent datum, a 

Hidden Markov Model (HMM) of the recognition 

(incorporated into the RM) identifies the activity in 

progress [8]. This is done relying on the probability 

calculus of transitions between the defined states of the 

HMM. Probabilities of transitions are calculated and 

refined during the learning stage. This is generally done at 

the beginning of the simulation. An automatic training of 

the HMM is carried out by means of typical scenarios 

stored in the machine learning scenarios database (MLS). In 

order to reinforce learning, some generated scenarios of the 

SGM, that present particular cases, are also added to the 

MLS. Once an activity is recognised, the RM notifies the 

analysis module (AM). This examines the sequence of 

activities. It is based on the hierarchical model of the 

defined activities (HMDA) which links up each activity to 

its sub-tasks. In a recursive fashion, each sub-task is divided 

into an ordered set of "sub-subtasks". This recursion stops 

when components of a sub-task represent the perceived 

events that are transposed in the environment.  

3.3 The Analysis Module 
The AM works symbiotically and in a bidirectional way 

with the RM. At each temporal unit, the latter notifies the 

analyser on a change in an activity in progress or a creation 

of a new one. The AM consults the environment to update 

the partial state of the activity. When detecting a new 

activity, the AM creates a view, initialises it and adds it to 

the set of temporary views of started tasks (STVST). The 

analysis consists of (1) scouring in the HMDA the 

hierarchical structure of the activity in a bottom/up way, 

starting from the leaf nodes (the non-decomposable events) 

in order to update one STVST partial view and (2) 

informing the diagnosis module (DM) of the last change.  

3.4 The Diagnosis Module 
The DM possess three (3) functionalities:  (1) it evaluates 

the impact of the last detected event and decides if 

necessary measures have to be taken, (2) communicates its 

decisions to the planning module (PM) and (3) reports 

critical cases via the interface when detecting anomalies in 

the behaviour of the simulated person. The impact of an 

event is measured with regards to the change introduced in 

the activity in progress and in relation to the possible 

constraints imposed by the other already started activities. 

A recent event can develop an activity, suspend another, 

create a new one, bring about its resumption or belong to a 

set of disparate and singular events that are not defined in 

the HMDA. The impact is evaluated regarding to the partial 

states of all started tasks. A critical situation is detected 

when at least one constraint imposed by an activity in 

progress is violated. A constraint can be of chronological 

nature. For example, if the DM notes a time exceeding for 

the realisation of a sub-task or for the suspension of an 

activity. Constraints can also represent relations of 

sequences dependence. If no critical situation is detected, 

the DM simply notifies the PM. The planning module is 

deeply depicted in the next section. 

4. THE PLANNING MODULE 
The planning module (PM) takes as input information 

provided by the analysis module. It aims to maintain the 



order of the undertaken sub-activities as it is defined in the 

HMDA. At each unit of time, the PM receives an ordered 

list of sub-activities (for example, as illustrated in figure 3) 

for which it must provide a resolution optimal plan.   

 

       Figure 3 – An example of an ordered list of sub-activities 

given to the planner in input. 

A first stage consists in sorting this list to optimize the 

latency between sub-activities.  For example, – and 

referring to figure 3 – if the minimum time required 

between achieving preparing pasta and starting rinsing pasta 

is about 10 minutes and if preparing tomato sauce takes 

about 7 minutes, then there is a slack period (3 minutes) 

between the two last sub-activities. Thus, the PM moves a 

subsequent sub-activity towards this place to fill the latency 

(see figure 4). In this sense, the planner respects the order 

of the activities undertaken by the occupant but finds the 

best way of interleaving their achievements. In a real 

context, this kind of temporal dependence between sub-

activities is frequent when realising activities of the daily 

living (ADL), our hierarchical decomposition of activities 

allows a more profitable planning in terms of duration of 

the suggested plan.  

 

      Figure 4 – Interleaving sub-activities thanks to latency 

optimisation. 

The second stage consists in finding an optimal sequence of 

actions to achieve each sub-activity starting from the 

current state of the environment (variables’ values at a 

given time t). The planner applies the Value Iteration 

algorithm [1] to find a partial plan related to each sub-

activity.  The Value Iteration algorithm aims to find the 

minimal set of actions leading from the initial state of the 

activity (values of the variables of the environment at t) to a 

final state. Figure 5 shows the proposed (by the planner) 

optimal sequence of actions to carry out each one of the 

sub-activities started by the elder. 

Prepare Pasta Prepare Sauce Rinse Pasta

 

      Figure 5 – An example of optimal sequence of actions.  

During the third stage, all the partial plans are assembled to 

form the total plan.  Figure 6 shows the suggested series of 

actions allowing the elderly person to finish all the started 

activities. This plan is valid at t, according to the current 

intentions of the occupier. At t+1, the list of the activities, 

provided to the planning module (by the analysis module) 

will be modified according to the last action undertaken by 

the person. This modified list reflects the inferences made 

by the recognition module on data of the environment to 

determine the current activity in progress. 

 

       Figure 6 – The suggested series of actions at t to finish all 

the started activities. 

Since the occupier of the intelligent apartment is completely 

free to follow the proposed plan or to ignore it, the system 

must be reactive and able to be readjusted at any time to 

provide assistance to the elder. Thus, this dynamic 

approach of planning allows a real-time monitoring and 

assisting a subject evolving/moving in its environment.   



5. EXPERIMENTAL VALIDATION 
To validate our approach we have done multiple series of 

simulations representing different sequences of activities a 

subject can proceed to.  Figure 7 shows diagrams 

illustrating the duration of the total plans proposed to the 

user in relation to their complexity.  The complexity 

represents the number of simultaneous activities (each one 

composed of sub-activities) carried out by the subject.  For 

each complexity level the activities where chosen randomly.  

The duration is expressed in terms of time unit needed to 

execute each of the multiple actions dictated by the plans.  

The ordinate axe represents the time unit mean of all series 

of 250 simulations done for each complexity level.  It 

enables us to appreciate the reduction of plans duration by 

the optimization algorithm.  The variations between the two 

columns of each complexity level represent mainly the time 

spared by reducing latencies between sub-activities.  This is 

the effect of a smart parallelism in the realisation of 

activities.  The randomly chosen series of activities 

highlight the planning dynamicity because it represents all 

choices a user can make over time (this will be explained in 

more details in section 6.3). 
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       Figure 7 – The duration of the proposed plans in relation 

to their complexity.  

 

Figure 8 shows the plan duration improvement brought 

about the proposed optimization of the latencies.  The linear 

evolution of the gain with regard to the complexity of the 

plans is expressed by the third curve.  The amount of 

having gains on plan duration is conceivable as the 

complexity raises.  This is explained by the fact that 

opportunities to optimise latencies grows with the number 

of activities (and sub-activities) carried out at the same time 

by the subject.  The more the subject is undertaking 

activities simultaneously, the more the optimisation 

algorithm is effective. 
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       Figure 8 – The plan duration improvement brought about 

the optimization of latencies.  

 

6. DISCUSSION 
As mentioned before, this section discusses relations and 

distinctions between our planning approach and other 

related works. Originalities of our planner are also 

addressed. 

6.1 The MDP Partitions and Sub-MDPs 

Connections 
In order to solve a planning problem in terms of actions 

plan, Dean & Lin [2] propose some techniques of (i) 

regions’ partitioning (where each region represents a sub-

problem) and (ii) combination of partial solutions whose 

each one would result from a partition. These techniques 

(DTPSD, for Decomposition Techniques for Planning in 

Stochastic Domains) rest on the use of parameters 

describing the relation between a partition R (a sub-MDP 

resulting from the decomposition of the initial problem. i.e. 

the full MDP) and its neighbours. These parameters are 

initially defined and remain unchanged since the structure 

of the problem never changes. Thus, the problem to be 

solved is seen as a task to achieve (mono-task) which does 

not take account of the notion of time. In our approach, 

each partition R does not have fixed and predefined 

neighbours. These will change constantly during the 

resolution of the problem which, in this case, consists of 

several concurrent tasks (multi-tasks). The vicinity of a 

partition is dynamically given according to the interleaving 

of the various tasks in progress and whose simultaneous 

achievements progress in time. Whereas our planning 

approach proceeds chronologically, DTPSD is timeless and 

static. Partitions in DTPSD share the same variables of 

environment but they do not share the values of these 



variables. The coherence of each variable value (for 

example, Cupboard#2-Open = True) for the various 

partitions is maintained thanks to static transitions [2]. Our 

dynamic partitioning can not be possible via this type of 

transitions. In our case, the DTPSD strong link notion is 

replaced by a weak connection: the share out by all 

partitions (sub-MDPs) of a pool of environment variables 

which allow specifying at any time the internal states of 

these variables. The coherence of the variables’ values is 

maintained using a general structure – that we call the 

environment (see figure 2) – containing the values of all the 

variables. As these values can change at each unit of time, 

each partition consults the environment to know in which 

state the variables are. This lead to assuring the coherence 

while allowing a dynamic partitioning. 

Meuleau et al. [5] present a technique for computing 

approximately optimal solutions to stochastic resource 

allocation problems modeled as MDPs. Their approach 

exploits two key properties to avoid explicitly enumerating 

the very large state and action spaces associated with these 

problems. First, the problems are composed of multiple 

tasks whose utilities are independent. Second, the actions 

taken with respect to (or resources allocated to) a task do 

not influence the status of any other task. Each task is 

therefore viewed as an MDP. However, these MDPs are 

weakly coupled by resource constraints: actions selected for 

one MDP restrict the actions available to others. In 

addition, the second property makes the approach unusable 

for a dynamic partitioning with various levels of 

dependences. 

6.2 Scheduling Partial Plans 
Scheduling partial plans allows developing a total plan 

which takes into account – intelligently – the various 

constraints related to the problem. More precisely, in smart 

homes and in multi-goals planning context, scheduling is 

used to plan simultaneous realisations of several activities 

while ensuring that the plan will not be confusing nor too 

complex for a memory or cognitively impaired person. For 

example, if the two activities to be achieved are <to watch a 

movie> and <to make Pasta>, then it is necessary to avoid a 

plan which would repetitively send the elderly from one 

room to another. i.e., <turning on the VCR> → <Putting on 

the stove> → <Rewinding the video tape> → <Taking a 

cauldron>, etc. In this sense, the necessity of partial plans is 

crucial in multi-goals planning and their scheduling makes 

it possible to benefit from relations between certain goals.  

MaxQ [3] offers a tree graphical notation for describing the 

goal/subgoals structure of a task. The MaxQ tree contains 

two kinds of nodes: Max nodes and Q nodes. Max nodes 

with no children denote primitive actions. Those with 

children represent subtasks. The immediate children of each 

Max node are Q nodes. Each Q node represents an action 

that can be performed to achieve its parent’s subtask.  

Figure 9 shows a MaxQ graph for the taxi domain 

mentioned in [3]. MaxQ does not consider the scheduling 

of partial plans, since the approach suppose one total static 

goal related to the achievement of one task. The MaxQ tree 

never changes. Its corresponding task has always the same 

fixed sequence of sub-activities. Actions represented by the 

Max nodes (under each Q node) can define the contents of 

partial plans. However, since the tree is fixed, there cannot 

be scheduling of partial plans.  In addition, MaxQ is Q-

Learning based. This learning technique determines a priori 

the values of the parameters of each sub-MDP 

(probabilities of transition and rewards). This is possible 

only if the hierarchy of the Max nodes and the Q nodes is 

fixed (see [3] for more details). If the tree changed in time, 

then all calculations would have to be started again. This 

static structure allowing the Q-Learning cannot be applied 

in multi-tasks planning that requires scheduling of the 

partial plans. 

 

         Figure 9 – The MAXQ graph for the taxi domain 

The tree-based organisation is useful and serves two main 

goals which are consequently dependent. The first goal is 

how to give more coherence to the whole plan. The second 

is about optimizing the plan by managing the latencies. To 

broach the first goal, let us suppose that the general context 

of the problem is to spend one ordinary day in an intelligent 

habitat (approximately a hundred of environment variables 

which reflect the states of realisation of ten or so activities). 

This problem is broken up into various partitions. Each one 

of them is split up in turn in several sub-regions. Finally, 

this leads to a significant number of partitions. Since the 

topology of our partitioning is dynamic (i.e., the neighbours 

of an area change constantly), if we wish to avoid 

synthesizing senseless plans (for example, an unreasonable 



simultaneous achievement of activities) it is necessary to 

establish temporary link between some partitions (for 

example, those belonging to the same activity). In this 

sense, the tree-based structuring of activities is used to 

solve the problem of the temporal abstraction [3]. The tree 

structure is useful to determine which partitions must be 

dependent between them for a certain time (the reader can 

refer to [3, p.4-6] for more details and explanations). As 

mentioned above, the second goal is to optimize the plan by 

an effective management of the latencies. Planning the 

complete realisation of an activity before passing to the 

achievement of another does not allow benefiting from idle 

times between sub-activities of the same activity. For 

example, waiting for boiling to infuse tea. We associate a 

tree to our MDPs in order to add a hierarchical aspect to the 

topology of the problem decomposition. This aspect makes 

it possible to interlace the achievements of sub-activities of 

several activities in progress (for example, to rewind a 

video tape while water heats in the kettle and pasta cook on 

the stove). This offers a finer and more intelligent treatment 

in planning. 

6.3 The Optimality of Plans 
The last addressed key issue leads us to argue about the 

objective to find the shortest path in planning. MaxQ 

introduces MDPs-based models within the framework of a 

stochastic problem of finding the shortest path in planning. 

Our approach uses MDPs within the framework of 

decision-making in multitasks realisation context. For 

MaxQ and DTPSD, the shortest path problem consists in 

finding by algorithmic means which local plan (policy) to 

choose for each partition so that the joint of these regional 

plans gives a total plan going from the first partition to the 

last using the minimum of possible actions. In dynamic 

multi-tasks planning where the solution of the problem 

consists in satisfying a set of goals, the notion of “from the 

first partition towards the last” has less of sense. Here the 

objective is to provide a total plan allowing the satisfaction 

of several simultaneous goals. Since the topology of the 

partitioning varies according to the current states of the 

subgoals and, hierarchically, according to those of the sub-

subgoals (because of the dynamicity in time) we cannot 

consider a fixed state space as for DTPSD and MaxQ. 

Hence, it is necessary to make more flexible the 

representation of the states1 (as it is impossible to have 

variables of transition) what involves in some cases few 

actions in excess (for example, opening and closing the 

                                                                 

1 To define the possible states of an activity, our planning 

approach only uses variables of environment that are relevant to 

the activity (or even to its sub-activities). Indeed, we cannot 

define nor make use of concepts such as the border or the 

periphery of region (activity), as in DTPSD. 

 

same cupboard twice). But this is not really 

disadvantageous, since multi-tasks planning does not have 

the same objective as the shortest path problem. However, 

dynamic multi-tasks planning makes more difficult the 

shortest path search. Each time that a sub-MDP seeks the 

best sequence of actions to carry out for planning a sub-

activity, a part of the set of the beliefs related to the 

problem is hidden from it. For example, a sub-MDP does 

not know preconditions of its neighbour sub-MDPs 

because, due to the dynamic partitioning, it cannot know its 

neighbours in advance. Thus, a sub-MDP cannot be able to 

consider the effects that its proposed partial plan will have 

on the others partial plans computed by its neighbour sub-

MDPs. Vis-à-vis the compromise between the quality of the 

solution and the flexibility of the representation, this choice 

seems quiet justified by the nature of the targeted people 

(cognitively impaired elders). Insofar as we want to give the 

possibility to elders to interrupt/resume and to change 

activities dynamically, it is tolerable that sometimes an 

action involves additional actions when realising later 

activities. 

6.4 Originalities 
The planning approaches – as DTSPD – aim to conceive an 

optimal plan that the user will have to follow to achieve a 

goal initially defined. Our approach reverses the 

dependence between the planning and the user. It is the 

planner who adjusts its suggested plan regarding to the 

user’s needs; and not the opposite. Our objective is to assist 

an elder moving/evolving within a controlled environment 

in order to provide him/her a logistic support in the 

realisation of its activities of daily living (ADL). Thus, the 

planning philosophy is to provide a plan which is always a 

function of the multiple current intentions of the occupier.  

This latter is free to follow or not the step proposed by the 

planner. If s/he does not do it, then the plan will have to be 

readjusted according to the choice of the person. This leads 

to adding new goals and/or changing the order of the 

realisation of existing sub-goals. In this sense, we think that 

our approach has innovated in the context of the dynamicity 

of goals and the flexibility of the planning representation.   

Our first originality lies in the dynamic goals treatment. The 

DTPSD planning approach is functional only in a mono-

task context. Thus, the key issue of dynamic goals is not 

addressed.  In the MaxQ approach, the structure of the 

hierarchical tree cannot change without having to start all 

calculations. In our approach, it is possible to include new 

goals (new tasks/activities) in the planning process, to 

withdraw others and/or to change their order. This is done 

in real time without need for starting again any algorithms. 

The second originality relates to the dynamic partitioning. 

As mentioned above, we provide a solution to the 

impossibility of making fixed and predefined partitioning 

according to a DTPSD-based philosophy in dynamic multi-



tasks planning; because the topography (i.e., the repartition 

of the neighbours regions) is variable. For example – and 

thanks to the optimisation caused by the effective 

management of the latencies – a sub-activity, such as <to 

make boil water> can as well be followed by <to prepare 

the tomato salsa> or by <to rewind a video-cassette>.  

7. CONCLUSION 
We have presented a novel dynamic multi-tasks planning 

approach to assist memory-impaired elder to carry out 

complex activities of daily living (ADLs). The planner uses 

Markov Decision Processes (MDPs) to occupiers of a smart 

home achieving and finalising their ADLs already 

undertaken. In addition, our planning module adapts 

dynamically suggested plans depending on what the elderly 

person wants to do in a not-alarming situation context. We 

are currently investigating a new idea for integrating 

Partially Observable MDPs into the planner. Detailed 

aspects of this research work and its experimental 

validation will be presented in future papers. 
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