
Assisting Elders via Dynamic Multi-tasks Planning – A
Markov Decision Processes based Approach

François Courtemanche

Department of Computer Science
University of Sherbrooke

J1K 2R1 Quebec, Canada
1 819 821 8000 - 63000

f.courtemanche@usherbrooke.ca

Mehdi Najjar

Department of Computer Science
University of Sherbrooke

J1K 2R1 Quebec, Canada
1 819 821 8000 - 63000

mehdi.najjar@usherbrooke.ca

André Mayers

Department of Computer Science
University of Sherbrooke

J1K 2R1 Quebec, Canada
1 819 821 8000 - 62041

andre.mayers@usherbrooke.ca

Blandine Paccoud
DOMUS Research Lab

University of Sherbrooke
J1K 2R1 Quebec, Canada
1 819 821 8000 - 63825

blandine.paccoud@usherbrooke.ca

ABSTRACT
This paper presents a novel planning approach to assist

elders with memory deficit to carry out complex daily

activities. The proposed planner uses Markov decision

processes (MDPs) in dynamic multi-tasks planning to help

memory-impaired elders achieving and finalising their

activities of daily living (ADLs) already undertaken. The

article also reports empirical results of the experimental

validation and discusses distinctions between our approach

and related works.

Categories and Subject Descriptors

I.2.1 [Computing Methodologies]: Artificial Intelligence,

Planning .

General Terms

Algorithms, Design, Experimentation, Human Factors,

Theory.

Keywords

Ambiant Intelligence, Smart Assistance, Activity of Daily

Living, Multi-Tasks Planning, Markov Decision Process.

1. INTRODUCTION
Since the seventies, assistance in smart homes has been

defined as a support to occupiers for the completion of their

activities of daily living (ADLs) [4] and particular attention

was made for cognitively-impaired people. Nowadays, the

improvement of the life quality in the developed nations has

systematically generated an increase of the life expectancy.

Nevertheless, the increasing number of elderly person

implies more resources for aftercare, paramedical care and

natural assistance in their habitats. The situation further

complicated if elders suffer from memory disorders [6]. In

this case a permanent assistance is necessary whenever they

are. However, and in order to grant to the memory impaired

elder a minimal freedom to act in a not-alarming situation,

an intelligent assistance must not dictate her/him what to do

according to a predefined static stereotyped behavioural

plan, but should adapt dynamically suggested plans

depending on what the elderly occupier wants to make. A

consequence of this starting premise is the necessity of a

prior knowledge about the ADLs and the environment, but

also – and especially – a constantly inferred knowledge

about the occupier intentions.

This paper presents a novel planning approach to assist

elders with memory troubles to carry out ADLs. The

proposed planner uses Markov Decision Processes (MDPs)

in dynamic multi-tasks planning to help memory-impaired

elders achieving and finalising their ADLs already

undertaken. The remainder of the article is organised as

follow. In section 2, we expound the theoretical background

of MDPs. Section 3 presents our modular architecture that

contains various modules permitting to the planner (which

also takes part of the architecture) to act according to the

proposed dynamic approach. The fourth section is devoted

to a detailed description of the planning module

functioning. After reporting on experimental validation and

presenting empirical results in section 5, originalities of the

proposed planning approach are addressed in the sixth

section. We also discuss relations and distinctions between

our approach and other related works. Concluding remarks

are given in section 7.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Ambi-sys 2008, February 11-14, 2008, Quebec, Canada.
© 2008 ICST 978-963-9799-16-5.

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
AMBI-SYS 2008, February 11-13, Quebec, Canada
Copyright © 2008 ICST 978-963-9799-16-5
DOI 10.4108/ICST.AMBISYS2008.2865

2. THEORETICAL BACKGROUND
To give a definition of MDPs, we take up the introductive

proposal of Dietterich [3] by considering the general AI

problem in which an agent interact with an environment. At

each time step, the agent observes the environment, chooses

and executes an action and receives a real value reward.

The goal of the agent is to choose actions in order to

maximise the sum of these rewards. For the case where the

agent can perceive the entire state of the environment and

where the actions are stochastic (i.e., the state resulting

from an action is a probabilistic function of the previous

state and the chosen action), the resulting sequential

decision problem is known as a Markov decision process

(MDP) [7].

A MDP is a 4-tuple <S, A, P, R> where S is a finite set of

states, A is a finite set of actions, P is a transition

distribution P: S × A × S → [0,1] such that P(s,a,s’) is a

probability distribution over S for any s Є S and a Є A; and

R: S × A → IR is a bounded reward function. Intuitively,

P(s,a,s’) denotes the probability of moving to state s’ when

action a is performed at state s, while R(s,a) is the

immediate reward associated with the resulting transition.

Because MDPs provide a very general model of sequential

decision-making under uncertainty, they have provided a

foundation of much recent work on probabilistic planning

where it is assumed the agent knows the state transition

distribution P and the reward function R. Thus, given a

MDP, the objective is to construct a policy that maximises

the expected accumulated reward over some horizon of

interest. I. e., to infer a policy π: S → A which indicates for

each state s Є S what action a Є A should be performed.

The optimal policy π* maximises the expected cumulative

reward received by the agent. There are many algorithms

for finding optimal policies, such as the dynamic

programming algorithms value iteration and policy iteration

[1]. Most of these algorithms involve computing a function

known as the value function V(s) which estimates the

expected cumulative reward of starting in state s and

following the optimal policy. Formally, the value function

is given by the Bellman equation :

A simple variant of the value iteration algorithm is

expressed by Algorithm 1 illustrated in figure 1.

 Figure 1. The value iteration algorithm.

3. THE MODULAR ARCHITECTURE
The modular architecture is composed of five (5) modules:

the scenarios generation module (SGM), the recognition

module (RM), the analysis module (AM), the diagnosis

module (DM) and the planning module (PM). These

modules operate and handle shared data represented in

XML structures. The modules communicate by messages. A

data base gathers randomly generated scenarios (via the

SGM) which are used during simulations for the

reconstitution of real events. Figure 2 illustrates the general

view of the architecture.

 Figure 2. General view of the architecture.

The overall environment is an accessible structure. Data in

the environment allow the modules to reason in order to

properly achieve their functionalities. Modifying the

environment is done via an exclusive write access granted

to only one component of the architecture (this detail will

be clarified below). To make the environment easier to

consult, reading (R) is managed by a circular order. This

can change if a module notifies another and requests its

intervention when detecting anomalies or critical situations.

The various modules of the architecture reason on data that

are collected by parsing an XML file which contains the

scenario. As mentioned above, the letter represents a set of

events reconstructing simultaneous achievements of several

daily activities. Although they are generated randomly,

these events are selected according to logical constraints.

For example, for the scenario of the realisation of the

"coffee preparation" activity, if the events "coffee-maker

alarm is ringing", "coffee cup is full" and "sugar bowl is

open" were chronologically generated, then when the event

"coffee cup is clean" is generated, it will not be accepted in

the scenario. On the other hand, the event "holding the

coffee spoon" will be added to the scenario.

An interpreter of scenarios (INT) scans the XML file and –

at each temporal unit – sends information relating to one

event to the recognition module (RM). Having the exclusive

write access (W) on the environment, the interpreter

updates it. The environment is a structure that recreates

what really occurs in the intelligent apartment thanks to

variables which represent all the detectable housing

elements (e.g., furniture, kitchen utensils, taps, household

electric appliances, etc). In a real context, the state of each

detectable element is determined by a sensor.

3.1 Memorising Activities
The set of temporary views of started tasks (STVST) allows

to constantly informing on the level of progression of each

task in terms of accomplished achievements of its sub-tasks

(recursively, of the sub-sub-tasks of each sub-task). The

STVST is updated by the analysis module (AM) and

consulted by the diagnosis module (DM). The hierarchical

model of the defined activities (HMDA) defines, for each

activity, its hierarchical structure, the concerned variables

of the environment and their final states when the activity is

accomplished. The HMDA also takes account of constraints

of order, sequence and possible mutual exclusivenesses

between sub-tasks of an activity.

3.2 The Recognition Module
The recognition of activities is based on data that simulate

information transmitted by sensors in the intelligent

apartment. At each unit of time and for each sent datum, a

Hidden Markov Model (HMM) of the recognition

(incorporated into the RM) identifies the activity in

progress [8]. This is done relying on the probability

calculus of transitions between the defined states of the

HMM. Probabilities of transitions are calculated and

refined during the learning stage. This is generally done at

the beginning of the simulation. An automatic training of

the HMM is carried out by means of typical scenarios

stored in the machine learning scenarios database (MLS). In

order to reinforce learning, some generated scenarios of the

SGM, that present particular cases, are also added to the

MLS. Once an activity is recognised, the RM notifies the

analysis module (AM). This examines the sequence of

activities. It is based on the hierarchical model of the

defined activities (HMDA) which links up each activity to

its sub-tasks. In a recursive fashion, each sub-task is divided

into an ordered set of "sub-subtasks". This recursion stops

when components of a sub-task represent the perceived

events that are transposed in the environment.

3.3 The Analysis Module
The AM works symbiotically and in a bidirectional way

with the RM. At each temporal unit, the latter notifies the

analyser on a change in an activity in progress or a creation

of a new one. The AM consults the environment to update

the partial state of the activity. When detecting a new

activity, the AM creates a view, initialises it and adds it to

the set of temporary views of started tasks (STVST). The

analysis consists of (1) scouring in the HMDA the

hierarchical structure of the activity in a bottom/up way,

starting from the leaf nodes (the non-decomposable events)

in order to update one STVST partial view and (2)

informing the diagnosis module (DM) of the last change.

3.4 The Diagnosis Module
The DM possess three (3) functionalities: (1) it evaluates

the impact of the last detected event and decides if

necessary measures have to be taken, (2) communicates its

decisions to the planning module (PM) and (3) reports

critical cases via the interface when detecting anomalies in

the behaviour of the simulated person. The impact of an

event is measured with regards to the change introduced in

the activity in progress and in relation to the possible

constraints imposed by the other already started activities.

A recent event can develop an activity, suspend another,

create a new one, bring about its resumption or belong to a

set of disparate and singular events that are not defined in

the HMDA. The impact is evaluated regarding to the partial

states of all started tasks. A critical situation is detected

when at least one constraint imposed by an activity in

progress is violated. A constraint can be of chronological

nature. For example, if the DM notes a time exceeding for

the realisation of a sub-task or for the suspension of an

activity. Constraints can also represent relations of

sequences dependence. If no critical situation is detected,

the DM simply notifies the PM. The planning module is

deeply depicted in the next section.

4. THE PLANNING MODULE
The planning module (PM) takes as input information

provided by the analysis module. It aims to maintain the

order of the undertaken sub-activities as it is defined in the

HMDA. At each unit of time, the PM receives an ordered

list of sub-activities (for example, as illustrated in figure 3)

for which it must provide a resolution optimal plan.

 Figure 3 – An example of an ordered list of sub-activities

given to the planner in input.

A first stage consists in sorting this list to optimize the

latency between sub-activities. For example, – and

referring to figure 3 – if the minimum time required

between achieving preparing pasta and starting rinsing pasta

is about 10 minutes and if preparing tomato sauce takes

about 7 minutes, then there is a slack period (3 minutes)

between the two last sub-activities. Thus, the PM moves a

subsequent sub-activity towards this place to fill the latency

(see figure 4). In this sense, the planner respects the order

of the activities undertaken by the occupant but finds the

best way of interleaving their achievements. In a real

context, this kind of temporal dependence between sub-

activities is frequent when realising activities of the daily

living (ADL), our hierarchical decomposition of activities

allows a more profitable planning in terms of duration of

the suggested plan.

 Figure 4 – Interleaving sub-activities thanks to latency

optimisation.

The second stage consists in finding an optimal sequence of

actions to achieve each sub-activity starting from the

current state of the environment (variables’ values at a

given time t). The planner applies the Value Iteration

algorithm [1] to find a partial plan related to each sub-

activity. The Value Iteration algorithm aims to find the

minimal set of actions leading from the initial state of the

activity (values of the variables of the environment at t) to a

final state. Figure 5 shows the proposed (by the planner)

optimal sequence of actions to carry out each one of the

sub-activities started by the elder.

Prepare Pasta Prepare Sauce Rinse Pasta

 Figure 5 – An example of optimal sequence of actions.

During the third stage, all the partial plans are assembled to

form the total plan. Figure 6 shows the suggested series of

actions allowing the elderly person to finish all the started

activities. This plan is valid at t, according to the current

intentions of the occupier. At t+1, the list of the activities,

provided to the planning module (by the analysis module)

will be modified according to the last action undertaken by

the person. This modified list reflects the inferences made

by the recognition module on data of the environment to

determine the current activity in progress.

 Figure 6 – The suggested series of actions at t to finish all

the started activities.

Since the occupier of the intelligent apartment is completely

free to follow the proposed plan or to ignore it, the system

must be reactive and able to be readjusted at any time to

provide assistance to the elder. Thus, this dynamic

approach of planning allows a real-time monitoring and

assisting a subject evolving/moving in its environment.

5. EXPERIMENTAL VALIDATION
To validate our approach we have done multiple series of

simulations representing different sequences of activities a

subject can proceed to. Figure 7 shows diagrams

illustrating the duration of the total plans proposed to the

user in relation to their complexity. The complexity

represents the number of simultaneous activities (each one

composed of sub-activities) carried out by the subject. For

each complexity level the activities where chosen randomly.

The duration is expressed in terms of time unit needed to

execute each of the multiple actions dictated by the plans.

The ordinate axe represents the time unit mean of all series

of 250 simulations done for each complexity level. It

enables us to appreciate the reduction of plans duration by

the optimization algorithm. The variations between the two

columns of each complexity level represent mainly the time

spared by reducing latencies between sub-activities. This is

the effect of a smart parallelism in the realisation of

activities. The randomly chosen series of activities

highlight the planning dynamicity because it represents all

choices a user can make over time (this will be explained in

more details in section 6.3).

0,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

1 2 3 4 5 6 7

Complexity

T
im

e
 u

n
it

Non-optimized plan duration

Optimized plan duration

 Figure 7 – The duration of the proposed plans in relation

to their complexity.

Figure 8 shows the plan duration improvement brought

about the proposed optimization of the latencies. The linear

evolution of the gain with regard to the complexity of the

plans is expressed by the third curve. The amount of

having gains on plan duration is conceivable as the

complexity raises. This is explained by the fact that

opportunities to optimise latencies grows with the number

of activities (and sub-activities) carried out at the same time

by the subject. The more the subject is undertaking

activities simultaneously, the more the optimisation

algorithm is effective.

0,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

1 2 3 4 5 6 7

Complexity

T
im

e
 u

n
it

Non-optimized plan duration

Optimized plan duration

Time saved

 Figure 8 – The plan duration improvement brought about

the optimization of latencies.

6. DISCUSSION
As mentioned before, this section discusses relations and

distinctions between our planning approach and other

related works. Originalities of our planner are also

addressed.

6.1 The MDP Partitions and Sub-MDPs

Connections
In order to solve a planning problem in terms of actions

plan, Dean & Lin [2] propose some techniques of (i)

regions’ partitioning (where each region represents a sub-

problem) and (ii) combination of partial solutions whose

each one would result from a partition. These techniques

(DTPSD, for Decomposition Techniques for Planning in

Stochastic Domains) rest on the use of parameters

describing the relation between a partition R (a sub-MDP

resulting from the decomposition of the initial problem. i.e.

the full MDP) and its neighbours. These parameters are

initially defined and remain unchanged since the structure

of the problem never changes. Thus, the problem to be

solved is seen as a task to achieve (mono-task) which does

not take account of the notion of time. In our approach,

each partition R does not have fixed and predefined

neighbours. These will change constantly during the

resolution of the problem which, in this case, consists of

several concurrent tasks (multi-tasks). The vicinity of a

partition is dynamically given according to the interleaving

of the various tasks in progress and whose simultaneous

achievements progress in time. Whereas our planning

approach proceeds chronologically, DTPSD is timeless and

static. Partitions in DTPSD share the same variables of

environment but they do not share the values of these

variables. The coherence of each variable value (for

example, Cupboard#2-Open = True) for the various

partitions is maintained thanks to static transitions [2]. Our

dynamic partitioning can not be possible via this type of

transitions. In our case, the DTPSD strong link notion is

replaced by a weak connection: the share out by all

partitions (sub-MDPs) of a pool of environment variables

which allow specifying at any time the internal states of

these variables. The coherence of the variables’ values is

maintained using a general structure – that we call the

environment (see figure 2) – containing the values of all the

variables. As these values can change at each unit of time,

each partition consults the environment to know in which

state the variables are. This lead to assuring the coherence

while allowing a dynamic partitioning.

Meuleau et al. [5] present a technique for computing

approximately optimal solutions to stochastic resource

allocation problems modeled as MDPs. Their approach

exploits two key properties to avoid explicitly enumerating

the very large state and action spaces associated with these

problems. First, the problems are composed of multiple

tasks whose utilities are independent. Second, the actions

taken with respect to (or resources allocated to) a task do

not influence the status of any other task. Each task is

therefore viewed as an MDP. However, these MDPs are

weakly coupled by resource constraints: actions selected for

one MDP restrict the actions available to others. In

addition, the second property makes the approach unusable

for a dynamic partitioning with various levels of

dependences.

6.2 Scheduling Partial Plans
Scheduling partial plans allows developing a total plan

which takes into account – intelligently – the various

constraints related to the problem. More precisely, in smart

homes and in multi-goals planning context, scheduling is

used to plan simultaneous realisations of several activities

while ensuring that the plan will not be confusing nor too

complex for a memory or cognitively impaired person. For

example, if the two activities to be achieved are <to watch a

movie> and <to make Pasta>, then it is necessary to avoid a

plan which would repetitively send the elderly from one

room to another. i.e., <turning on the VCR> → <Putting on

the stove> → <Rewinding the video tape> → <Taking a

cauldron>, etc. In this sense, the necessity of partial plans is

crucial in multi-goals planning and their scheduling makes

it possible to benefit from relations between certain goals.

MaxQ [3] offers a tree graphical notation for describing the

goal/subgoals structure of a task. The MaxQ tree contains

two kinds of nodes: Max nodes and Q nodes. Max nodes

with no children denote primitive actions. Those with

children represent subtasks. The immediate children of each

Max node are Q nodes. Each Q node represents an action

that can be performed to achieve its parent’s subtask.

Figure 9 shows a MaxQ graph for the taxi domain

mentioned in [3]. MaxQ does not consider the scheduling

of partial plans, since the approach suppose one total static

goal related to the achievement of one task. The MaxQ tree

never changes. Its corresponding task has always the same

fixed sequence of sub-activities. Actions represented by the

Max nodes (under each Q node) can define the contents of

partial plans. However, since the tree is fixed, there cannot

be scheduling of partial plans. In addition, MaxQ is Q-

Learning based. This learning technique determines a priori

the values of the parameters of each sub-MDP

(probabilities of transition and rewards). This is possible

only if the hierarchy of the Max nodes and the Q nodes is

fixed (see [3] for more details). If the tree changed in time,

then all calculations would have to be started again. This

static structure allowing the Q-Learning cannot be applied

in multi-tasks planning that requires scheduling of the

partial plans.

 Figure 9 – The MAXQ graph for the taxi domain

The tree-based organisation is useful and serves two main

goals which are consequently dependent. The first goal is

how to give more coherence to the whole plan. The second

is about optimizing the plan by managing the latencies. To

broach the first goal, let us suppose that the general context

of the problem is to spend one ordinary day in an intelligent

habitat (approximately a hundred of environment variables

which reflect the states of realisation of ten or so activities).

This problem is broken up into various partitions. Each one

of them is split up in turn in several sub-regions. Finally,

this leads to a significant number of partitions. Since the

topology of our partitioning is dynamic (i.e., the neighbours

of an area change constantly), if we wish to avoid

synthesizing senseless plans (for example, an unreasonable

simultaneous achievement of activities) it is necessary to

establish temporary link between some partitions (for

example, those belonging to the same activity). In this

sense, the tree-based structuring of activities is used to

solve the problem of the temporal abstraction [3]. The tree

structure is useful to determine which partitions must be

dependent between them for a certain time (the reader can

refer to [3, p.4-6] for more details and explanations). As

mentioned above, the second goal is to optimize the plan by

an effective management of the latencies. Planning the

complete realisation of an activity before passing to the

achievement of another does not allow benefiting from idle

times between sub-activities of the same activity. For

example, waiting for boiling to infuse tea. We associate a

tree to our MDPs in order to add a hierarchical aspect to the

topology of the problem decomposition. This aspect makes

it possible to interlace the achievements of sub-activities of

several activities in progress (for example, to rewind a

video tape while water heats in the kettle and pasta cook on

the stove). This offers a finer and more intelligent treatment

in planning.

6.3 The Optimality of Plans
The last addressed key issue leads us to argue about the

objective to find the shortest path in planning. MaxQ

introduces MDPs-based models within the framework of a

stochastic problem of finding the shortest path in planning.

Our approach uses MDPs within the framework of

decision-making in multitasks realisation context. For

MaxQ and DTPSD, the shortest path problem consists in

finding by algorithmic means which local plan (policy) to

choose for each partition so that the joint of these regional

plans gives a total plan going from the first partition to the

last using the minimum of possible actions. In dynamic

multi-tasks planning where the solution of the problem

consists in satisfying a set of goals, the notion of “from the

first partition towards the last” has less of sense. Here the

objective is to provide a total plan allowing the satisfaction

of several simultaneous goals. Since the topology of the

partitioning varies according to the current states of the

subgoals and, hierarchically, according to those of the sub-

subgoals (because of the dynamicity in time) we cannot

consider a fixed state space as for DTPSD and MaxQ.

Hence, it is necessary to make more flexible the

representation of the states1 (as it is impossible to have

variables of transition) what involves in some cases few

actions in excess (for example, opening and closing the

1 To define the possible states of an activity, our planning

approach only uses variables of environment that are relevant to

the activity (or even to its sub-activities). Indeed, we cannot

define nor make use of concepts such as the border or the

periphery of region (activity), as in DTPSD.

same cupboard twice). But this is not really

disadvantageous, since multi-tasks planning does not have

the same objective as the shortest path problem. However,

dynamic multi-tasks planning makes more difficult the

shortest path search. Each time that a sub-MDP seeks the

best sequence of actions to carry out for planning a sub-

activity, a part of the set of the beliefs related to the

problem is hidden from it. For example, a sub-MDP does

not know preconditions of its neighbour sub-MDPs

because, due to the dynamic partitioning, it cannot know its

neighbours in advance. Thus, a sub-MDP cannot be able to

consider the effects that its proposed partial plan will have

on the others partial plans computed by its neighbour sub-

MDPs. Vis-à-vis the compromise between the quality of the

solution and the flexibility of the representation, this choice

seems quiet justified by the nature of the targeted people

(cognitively impaired elders). Insofar as we want to give the

possibility to elders to interrupt/resume and to change

activities dynamically, it is tolerable that sometimes an

action involves additional actions when realising later

activities.

6.4 Originalities
The planning approaches – as DTSPD – aim to conceive an

optimal plan that the user will have to follow to achieve a

goal initially defined. Our approach reverses the

dependence between the planning and the user. It is the

planner who adjusts its suggested plan regarding to the

user’s needs; and not the opposite. Our objective is to assist

an elder moving/evolving within a controlled environment

in order to provide him/her a logistic support in the

realisation of its activities of daily living (ADL). Thus, the

planning philosophy is to provide a plan which is always a

function of the multiple current intentions of the occupier.

This latter is free to follow or not the step proposed by the

planner. If s/he does not do it, then the plan will have to be

readjusted according to the choice of the person. This leads

to adding new goals and/or changing the order of the

realisation of existing sub-goals. In this sense, we think that

our approach has innovated in the context of the dynamicity

of goals and the flexibility of the planning representation.

Our first originality lies in the dynamic goals treatment. The

DTPSD planning approach is functional only in a mono-

task context. Thus, the key issue of dynamic goals is not

addressed. In the MaxQ approach, the structure of the

hierarchical tree cannot change without having to start all

calculations. In our approach, it is possible to include new

goals (new tasks/activities) in the planning process, to

withdraw others and/or to change their order. This is done

in real time without need for starting again any algorithms.

The second originality relates to the dynamic partitioning.

As mentioned above, we provide a solution to the

impossibility of making fixed and predefined partitioning

according to a DTPSD-based philosophy in dynamic multi-

tasks planning; because the topography (i.e., the repartition

of the neighbours regions) is variable. For example – and

thanks to the optimisation caused by the effective

management of the latencies – a sub-activity, such as <to

make boil water> can as well be followed by <to prepare

the tomato salsa> or by <to rewind a video-cassette>.

7. CONCLUSION
We have presented a novel dynamic multi-tasks planning

approach to assist memory-impaired elder to carry out

complex activities of daily living (ADLs). The planner uses

Markov Decision Processes (MDPs) to occupiers of a smart

home achieving and finalising their ADLs already

undertaken. In addition, our planning module adapts

dynamically suggested plans depending on what the elderly

person wants to do in a not-alarming situation context. We

are currently investigating a new idea for integrating

Partially Observable MDPs into the planner. Detailed

aspects of this research work and its experimental

validation will be presented in future papers.

8. ACKNOWLEDGMENTS
The authors want to thank (1) Jérémy Bauchet for his

agreement on the use of the Actirec environement for the

realisation of the graphical simulator of the intelligent

ambient, (2) Alexandre Dion, Wojtek Jurewicz, Gilbert

Samson, Jonathan Berriault and François Lizotte for their

help on the realisation of the modular architecture.

9. REFERENCES
[1] Bellman, R. E. Dynamic Programming. Princeton

University Press, 1957.

[2] Dean, T., Lin, S.-H. Decomposition techniques for

planning in stochastic domains. TR CS-95-10,

Department of Computer Science, Brown University,

Providence, Rhode Island 02912, USA. 1995.

[3] Dietterich, T. G., The MAXQ Method for Hierarchical

Reinforcement Learning. In Proceedings of the

Fifteenth International Conference on Machine

Learning, 118-126, 1998.

[4] Katz, S., Ford, A. B., Moskowitz, R. W., Jckson, B. A.

and Jaffe, M. W. Studies of illness in the aged. The

Index of ADL: a standardised measure of biological

and psychosocial function. Journal of the American

Medical Association 185, 914-919, 1963.

[5] Meuleau, N., Hauskrecht, K.-E. K., Peshkin, L., Pack

Kaelbling, L., Dean, T. and Boutilier C. Solving very

large weakly coupled Markov decision processes. In

Proceedings of the fifteenth national/tenth conference

on Artificial intelligence/Innovative applications of

artificial intelligence, 165 - 172, 1998.

[6] Pigot, H., Bauchet, J. and Giroux, S. Assisted devices

for people with cognitive impairment. In Technology

for aging disability and independence. Vol 2. Wiley

and sons (Eds.) 2006.

[7] Puterman, M. L. Markov Decision Processes: Discrete

Stochastic Dynamic Programming. J. Wiley & Sons,

New York, 1994.

[8] Rabiner, L. R. A tutorial on Hidden Markov Models

and selected Applications in Speech Recognition. In

Proceedings of the IEEE, 77(2), p.257-288, 1989.

