
Cooperative Caching Techniques for Continuous Media in
Wireless Home Networks∗

Shahram Ghandeharizadeh, Shahin Shayandeh
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781

shahram@usc.edu, shayande@usc.edu

ABSTRACT
With wide spread deployment of wireless home networks,
management of data across devices is becoming increasingly
important. This is especially true for continuous media (au-
dio and video clips) because they are large in size and are
streamed at a pre-specified rate to support a display free
from disruptions and delays. Caching of clips across de-
vices is an effective way to improve key quality of service
(QoS) metrics including the fraction of requests serviced suc-
cessfully when the home’s connection to the outside infras-
tructure is lost (data availability), number of devices that
may stream and display their referenced clips simultaneously
(throughput), and the average delay incurred from when a
user references a clip to the onset of its display (average
startup latency). In this paper, we focus on home networks
consisting of a handful of devices and present a novel co-
operative caching technique named Cont-Coop. Cont-Coop
controls the content of participating caches based on the
asymmetric bandwidth of wireless connections between de-
vices. We compare this technique with an alternative that
does not control the content of cooperative caches, show-
ing Cont-Coop is superior when the access pattern to clips
is skewed. In addition, we show cooperative techniques en-
hance all the aforementioned QoS metrics when compared
with a greedy caching technique.

1. INTRODUCTION
Wireless home networks have become pervasive and widely

deployed due to their low cost and ease of installation. To-
day, a typical home network consists of an access point, sev-
eral PCs, and one or more consumer electronic devices [23].
It is anticipated that future home networks provide multi-
media streaming. An example might be a household with
several PCs and TVs. Each TV might include a set-top
box, e.g., Apple TV, that synchronizes with a PC using its

∗This research was supported in part by NSF grant IIS-
0307908.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Ambi-sys ’08, February 11-14, 2008, Quebec, Canada
Copyright 2008 ACM ISBN 978-963-9799-16-5 ...$5.00.

wireless networking card to stream audio and video clips.
Devices might be configured with a mass storage device1

and set aside a fraction of their storage to cache content.
While different members of a household may exhibit dif-

ferent preferences for different clips, the system may build
a profile of those clips referenced frequently [2]. Ideally,
these clips should occupy the caches in order to minimize
the number of references to remote servers. A device may
observe two kinds of cache hits. First, a local cache hit
where a device finds its referenced clip in its local storage.
Second, a cooperative cache hit where a device locates its
referenced clip in the storage of another device in the house-
hold. Both minimize round-trip delays of messages to re-
mote servers. Moreover, they improve availability of clips
when the home network is disconnected from the infrastruc-
ture outside the home. In this study, we assume a base
station or a gateway [2] as intermediary between the wire-
less home network and the outside infrastructure. This is
denoted as B in topologies of Figure 1.

We assume the link bandwidth of wireless connections
between devices is asymmetric and devices exchange data
using ad hoc communication. This is based on a recent
study [23] that analyzed deployment of six wireless devices
in different homes in United States and England, demon-
strating asymmetric bandwidth of wireless connections. For
example, with the British household of Figure 1.d where
each device is configured with an 802.11a networking card,
the bandwidth from device 3 to device 7 is 9 Mbps while
the reverse bandwidth is 1 Mbps. Ad hoc communication
provides a higher bandwidth when compared with a deploy-
ment that employs an access point because it avoids the use
of low bandwidth connections [23]. For example, if node 7 is
the access point, all communications from other devices to
device 3 would observe a bandwidth of 1 Mbps2. With ad
hoc communication, a device may communicate with those
devices in its radio range directly. Moreover, a device may
send its data to a destination device by using other devices
as routers. In our example, this enables device 7 to stream a
clip to device 3 at bandwidths higher than 1 Mbps by using
device 6 (or 5) as an intermediary to route its data.

A key question in this environment is how to cache clips
across devices. In [14], we showed greedy caching techniques

1Apple TV is configured with 40 gigabytes (GB) of disk
storage.
2One may place the access point strategically so that it pro-
vides a high bandwidth to each device. Changes in the envi-
ronment, e.g., new furniture, may reduce the bandwidth of
a connection from the access point to one or more devices.
Ad hoc communication reacts to such changes dynamically.

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for profit or commercial advantage and thatcopies bear this notice and the full citation on the first page. To copyotherwise, to republish, to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.AMBI-SYS 2008, February 11-13, Quebec, CanadaCopyright © 2008 ICST 978-963-9799-16-5DOI 10.4108/ICST.AMBISYS2008.2861

0

1

2

3

4

5

B B3

0

1

2

5

4

1.a Kyte 1.b Dagger

0 1 2 3 B

B

2

4

5 6

3

7

1.c String 1.d Real deployment

Figure 1: Alternative topologies.

such as GreedyDual [5] and Dynamic Simple [12] provide a
higher cache hit rate than LRU because they consider the
size of clips. (See Table 1 for definition of cache hit rate.)
In this study, we consider cooperative caching techniques
where multiple (say N) devices form a group and synchro-
nize the state of their caches [19, 18, 2] to enhance a global
metric such as the average startup latency. Assuming the
middleware of [18] which enables a device to join and leave
a cooperative group, the alternative caching techniques can
be taxonomized along two dimensions. Each dimension cor-
responds to a design question that produces a hierarchy of
techniques. The two design questions are:

1. Does a technique control the identity of clips cached
across the participating devices based on the asymmet-
ric bandwidth of their wireless connections?

2. When a device displays a clip, does it cache the refer-
enced clip?

Below, we consider each question in turn.
In response to the first question, we present two alter-

native techniques: Random and Controlled, named Rand-
Coop and Cont-Coop, respectively. Rand-Coop does not
control the identity of clips occupying caches. Cont-Coop
controls the content of caches by choosing one device, named
the core node, to contain the frequently accessed clips. This
device is chosen strategically to minimize the possibility of
bottleneck links when multiple devices observe cache misses
and stream their referenced clips, enhancing startup latency.
The choice of a core node is not obvious. For example, as-
suming the same bandwidth for all links and considering the
Dagger and Kyte topologies of Figure 1, one may anticipate
device 2 to be the core node for each topology. In reality,
devices 1 and 0 should be the core node for the Dagger and
Kyte topologies, respectively. The algorithm to choose the
core node is one novel aspect of our study.

Cont-Coop may result in the mistreatment3 phenomena

3This phenomena may also occur with Rand-Coop. How-
ever, it is more likely with Cont-Coop.

Term Definition
Core node A node whose cache state is

independent of other nodes.
Startup latency (δ) Delay from when a user references

a clip to the onset of display.
Throughput Number of devices displaying their

referenced clips simultaneously.
Cache hit rate The percentage of clip requests

satisfied using the cache.
Byte hit rate The number of bytes satisfied from

the cache as a fraction of the total
bytes referenced by the client.

Table 1: Terms and their definitions

of [19]. With this phenomena, the core node may appear
to have ‘hijacked’ the cache of other devices participating in
a cooperative group by reducing their cache hit rate while
maximizing its own cache hit rate. At the same time Cont-
Coop chooses the core node strategically in order to enhance
the average startup latency of the entire cooperative group.

In response to the second design question, Rand-Coop and
Cont-Coop might be configured with one of the following
two policies when a device displays a clip: Either transient
copy (T-Copy) or one copy (1-Copy). With T-Copy, when a
device Ni streams a clip X from another device (or a remote
server outside of the home), Ni caches X in anticipation of
future correlated references for X. With 1-Copy, if a copy of
X resides in the cache of a device in the cooperative group,
Ni streams X and does not cache X. When compared with
one another, T-Copy provides a lower availability of data
while enhancing startup latency when a few clips are popular
and accessed frequently, see Section 4.

Contributions of this study are two folds. First, with
Cont-Coop, one device is elected as a core node to cache
the popular clips and minimize link bandwidth contention
caused by cache misses of other devices. This novel design
decision improves average startup latency of the coopera-
tive group significantly. Second, we compare cooperative
caching with greedy caching, demonstrating that it enhances
startup latency of a streaming environment with link band-
widths higher than the bandwidth required to display a clip.
Greedy caching is inferior even though it observes a higher
cache and byte hit rates (30% higher in some instances) be-
cause its cache misses observe a huge startup latency.

The rest of this paper is organized as follows. Section 2
surveys the related work. Section 3 presents two coopera-
tive caching techniques (Rand-Coop, Cont-Coop) and poli-
cies for managing the cache when a device references a clip
(1-Copy and T-Copy). Section 4 compares these techniques
with one another. Brief conclusions and future research di-
rections are presented in Section 5.

2. RELATED WORK
Cooperative caching in home networks is based on es-

tablished techniques used for improving the performance of
distributed networked systems. Our focus is on online al-
gorithms that assume no advance knowledge of future re-
quests. Such techniques have been shown to improve the
performance of: 1) home networks [18] and a neighborhood
of home gateways [2], 2) multiprocessor systems with uni-
form and non-uniform access to shared memory [20, 21], 3)
file and virtual memory systems in a high speed, local area

network [11], 4) proxy cache servers deployed across a few or-
ganizations [27], 5) Content Distribution Networks (CDNs)
for streaming media [24, 1, 6, 16], 6) peer-to-peer (P2P) net-
works of devices [7, 26], and 7) ad hoc networks of devices
that consider either mobility [17, 4], energy constraints [25],
or both [22]. Due to vastness of each topic and strict page
limits on this submission, listed references are samples and
not intended to be exhaustive. In a nut shell, Cont-Coop is
novel for two reasons. First, it is designed to enhance aver-
age startup latency of a wireless home network. Second, it
elects one device as a core node to minimize bandwidth con-
tention caused by cache misses of other devices, enhancing
average startup latency significantly. We refer the interested
reader to [13] for a detailed comparison.

Techniques similar to Rand-Coop configured with T-Copy
are presented in [18, 2]. While [18] presents cooperative
caching for home networks, [2] focuses on cooperative caching
for home gateways (termed base stations in Figure 1) in a
neighborhood. Both studies assumes LRU as the caching
technique employed by a node. The general purpose frame-
work of [18] presents general techniques for nodes to join and
leave a cooperative group, stream clips, and prefetch data.
In [2], Rand-Coop configured with T-Copy is compared with
Internet Cache Protocol (ICP) and the Cache Array Routing
Protocol (CARP) to show it provides a lower cost. Neither
study presents a caching technique that considers the asym-
metric bandwidth of network connections between devices.
Moreover, the QoS metrics considered by these earlier stud-
ies are simpler than those presented here.

3. COOPERATIVE CACHING
This section describes two techniques that employ mes-

sage passing to synchronize the state of N nodes that partic-
ipate in a cooperative group. Below, we describe how a node
synchronizes the state of its cache with N − 1 other nodes
while preserving its autonomy. Subsequently, we introduce
Rand-Coop, detail Cont-Coop and its design decisions, and
1-Copy and T-Copy policies.

With both Rand-Coop and Cont-Coop, different events
may cause a node to synchronize its cache state with those
of other nodes: upon caching a clip, when choosing a victim,
or both. In this paper, we focus on ‘choosing a victim clip’
as the event to synchronize a cache state. With this design,
when a node Ni references a clip X that does not reside in
the cooperative group, Ni may cache X. If Ni has insuffi-
cient space for X, Ni chooses a victim clip by performing
the following steps. First, it contacts other nodes in the
cooperative group for a list of clips occupying their caches.
Using these, it computes a list of those clips in its cache with
one or more replicas in the cooperative group. It sorts these
clips in descending order of their fi

Si
values (where Si and fi

are the size and frequency of access to clip i, respectively),
and swaps out as many clips as necessary to accommodate
incoming clip X. If there is still insufficient free space then
it invokes its greedy cache management technique to free its
cache space to accommodate X. A greedy cache manage-
ment technique might be either GreedyDual [5] or DYNSim-
ple [12] designed to support variable sized clips [14].

One may improve upon the above protocol in a variety
of ways. For example, Ni may cache the list of clips stored
at other nodes and refresh this list after some elapsed time
υ [2]. Another possible improvement is for Ni to request
only changes to the state of Nj ’s cache since the last time

Nj provided its list of cached clips. This minimizes the
amount of data exchanged to synchronize the cache state
of participating nodes. Similar techniques are studied in [2].
Key tradeoffs are between cache hit rates and the overhead
of exchanging metadata among the nodes. A future research
direction is to characterize the impact of this overhead on
the startup latency and throughput of a home network.

The above framework preserves autonomy of a node Ni

because, when no cooperating device is in Ni’s radio range,
Ni employs a greedy caching technique and its functional-
ity is not impaired. Ni may join and leave a cooperative
group using the middleware proposed in [18]. Note that we
assume nodes in a home network are cooperative. An adver-
sarial node would degrade the performance of both the home
network and itself because bandwidth contentions impact all
nodes.

3.1 Rand-Coop
The design of Rand-Coop is simple: Each node synchro-

nizes its cache with every other node, causing the N caches
to behave as if they are one. The placement of clips across
devices is controlled by how different devices issue requests
for different clips.

3.2 Cont-Coop
Cont-Coop selects one node as the core node. The core

node manages its cache state using a greedy strategy and
does not coordinate with the other nodes. Other nodes syn-
chronize the state of their caches with one another and the
core node. As detailed in Section 3.2.1, the core node is
chosen strategically to maximize utilization of all wireless
connections that constitute the home network. We assume
this will reduce likelihood of bottleneck links which in turn
enhances both the throughput and startup latency of the
system. This hypothesis is validated in Section 4.1.

Below, we describe how Cont-Coop chooses a core node.
Subsequently, Section 3.2.2 extends this algorithm to a dis-
tributed environment. Finally, Section 3.2.3 discusses evolv-
ing network topologies due to movement of devices. These
sections use topologies of Figure 1 for illustration purposes.
In this figure, vertices represent nodes. The vertex denoted
B represents the base defined as the interface between the
wireless home network and the infrastructure outside of the
home. An edge from Ni to node Nj represents two wireless
links. One link from Ni to Nj , (i,j), and a second link from
Nj to Ni, (j,i). Each link has a bandwidth which is not
shown in the figures.

3.2.1 Selection of core node
While the bandwidth of individual links in a network may

exceed the bandwidth required to stream and display a clip,
when all devices stream different clips, they may exhaust
the bandwidth of one or more links in the network. These
links are called bottleneck links. Cont-Coop chooses a core
node strategically to prevent formation of bottleneck links.

Figure 2 shows the pseudo-code to select a core node. It
minimizes the bandwidth contention caused by a cache miss
that must utilize the base. This is realized by choosing a
node Ni that minimizes the standard deviation in the weight
imposed on the different links of the network. Weight of a
link is the product of 1) the amount of traffic imposed on
that link, and 2) the ratio of the link bandwidth and the
maximum link bandwidth in the network. The first param-

Core node selection()
{
Let B denote the base;
CSL = Empty list;
LMax = Link with the highest bandwidth;
Pick a node Ni as the core node
{

Initialize the weight of all links in the network to zero;
For each remaining node Nj do
{

i) Enumerate all possible shortest paths from Nj to Ni that
does not involve the base station;

ii) Enumerate all possible shortest paths from Nj to B;
iii) Let P be the set of paths identified in Steps i and ii;
iv) For each link Li in the network do
{

Let Si denote the number of paths in P that include Li;

Increment link weight of Li by Si
P
× Lmax

Bandwidth of Li
;

}
}
Std = standard deviation in the link weight;
Insert (Ni, Std) in CSL;

}
NCore = Node corresponding to the CSL entry with
the minimum standard deviation value;
}

Figure 2: Pseudo-code to select a core node.

eter quantifies the number of possible paths to Ni and the
base. The second parameters captures networks where dif-
ferent links provide different bandwidths. Below, we elab-
orate on the pseudo-code and use the network topology of
Figure 1.a to illustrate its execution. We start by assuming
all network links have the same bandwidth. Subsequently,
we extend the discussion to consider scenarios where links
offer varying bandwidths.

The pseudo-code of Figure 2 considers the possibility of
each node as the core exhaustively. It consists of several key
components. First, for each node Ni as a candidate core, it
considers every other node Nj and enumerates the number
of shortest paths from Ni to Nj and Nj to the base. The
total number of such paths is denoted P . Second, it sums
the number of paths that utilize a link Li to compute Si.
Next, it assigns a weight of Si

P
to each link Li assuming

link bandwidth is the same for all nodes (below, we remove
this assumption). It chooses the node which minimizes the
standard deviation in link weights as the core node.

To illustrate, consider the Kyte topology of Figure 1.a.
The core selection starts by choosing N0 as the core. Next,
it picks N1 as a client and enumerates the possible paths
to N0. They include a direct path (0,1) and a multi-hop
path {(0,3), (3,2), (2,1)}. There is also one path from the
base station B to N1. The pseudo-code of Figure 2 chooses
the shortest path from N0, eliminating the multi-hop path.
With two paths (P=2), we increment the weight of each
participating link by 0.5. The impacted links are (5,2), (2,1),
and (0,1). We repeat this process with nodes N3, N2, N4,
and N5.

If one assumes the bandwidth from the base station to N5

is very high (fiber to the home) then N5 would be serviced
from the base station at all times, ignoring its paths to N0.
In this case the value of P is 1 for N5 and weight of link
(b,5) is also one.

Assuming identical bandwidth for different links, the pseudo-
code of Figure 2 selects N0 as the core node because it
minimizes the likelihood of bandwidth congestion (balanced
number of paths across links).

When the link bandwidths are asymmetric, we normal-
ize a link Li’s weight by the ratio of 1) the link with the
highest bandwidth (Lmax), and 2) Li’s bandwidth. This
enables Cont-Coop to utilize those links with the highest
bandwidth. This is realized by increasing the weight of links
with a lower bandwidth, resulting in a higher standard de-
viation across the link weights. This is desirable because it
prevents selection of a core node that increases the usage
of low bandwidth links. To illustrate, consider the String
topology of Figure 1.c. When the bandwidth for all links
is identical, Cont-Coop will choose N1 as the core node. If
the bandwidth from N2 to its neighbors is asymmetric then
Cont-Coop may select N2 as the core node. For example,
assume the bandwidth between all nodes except for N2 and
N1 is symmetric and set to 8 Mbps. When the bandwidth
from N1 to N2 is 1 Mbps and from N2 to N1 is 14 Mbps, it
is better to choose N2 as the core node. Intuitively N2 is a
better choice because its link bandwidth enables it to mini-
mize startup latency when servicing N0 and N1. If N1 was
the core node then its out-going link bandwidth (1 Mbps)
would stream a clip to node N2 by incurring a high startup
latency. With the pseudo-code of Figure 2, the standard
deviation when choosing N2 as the core node is 0.97. It is
2.73 with N1 as the core node. Thus, N2 is selected as the
core node.

3.2.2 Decentralized selection of core node
With a network consisting of a handful of devices, a decen-

tralized implementation of the core node selection technique
might be as follows. Periodically, a node exchanges informa-
tion about its link bandwidth with every other node in the
network. Each node builds a topology of the network and in-
vokes the pseudo-code of Figure 2 independently to select a
core node. Subsequently, each node casts a vote for its com-
puted core node by broadcasting a message to every other
node. The node that receives the most number of votes is
elected as the core node. In case of ties, Cont-Coop might
be configured with a variety of tie breaker techniques such
as choosing the node with either most neighbors, highest
amount of bandwidth, or highest networking card (MAC)
address.

There may exist two extreme transient states: 1) every
node elects itself as the core node, and 2) there exists no
core node. With the first, each node operates independent
of the other nodes using its local greedy caching technique.
With the second, Cont-Coop becomes Rand-Coop. Periodic
invocation of the decentralized technique by the different
nodes will resolve these transient states.

3.2.3 Evolving network topologies
Members of a household may physically move nodes of

the wireless network and change its topology. A node may
detect such changes by monitoring the identity of its neigh-
boring nodes and its wireless network bandwidth to these
nodes. Moreover, nodes may build a profile of how fre-
quently such changes occur and the average duration of a
stable network topology. Once a node detects a change in
network topology, it may initiate either the centralized or
distributed implementation of core node selection. This may

either re-affirm the existing core node or elect a new node
as the core node. If the network topology changes too fre-
quently, the network may not stabilize. In such cases, it is
best to not use Cont-Coop. A poor choice of node as the
core node impacts startup latency adversely and may cause
Cont-Coop to perform worse that Rand-Coop.

3.3 One copy, 1-Copy
With the 1-Copy cache state management policy, when

node Ni references clip X, it does not cache X if a copy of
it exists in the cooperative group. It only streams X and
frees sufficient space to maintain a portion of X in support
of a display free from disruptions and delays.

3.4 Transient copy, T-Copy
T-Copy requires a node Ni that references clip X to ma-

terialize X in its cache always. This enables Ni to service
future correlated references for clip X using its local copy.
When there exist a few popular clips that are referenced by
all nodes frequently then either most or all nodes may cache
these clips with T-Copy. These nodes observe cache hits for
these clips as long as they are cache resident. These clips
might be deleted when Ni decides to cache a new clip and
has insufficient free space. This is a rare event when the
distribution of access to clips is skewed. Thus, it does not
impact average startup latency. However, with a more uni-
form distribution of access, T-Copy may result in a higher
startup latency when compared with 1-Copy.

In general, T-Copy results in lower availability of clips
when compared with 1-Copy for skewed distribution of ac-
cess across clips. This is because T-Copy replicates popular
clips across multiple nodes, reducing the number of unique
clips cached in the cooperative group.

4. COMPARISON
We use a simulation study to a) evaluate Rand-Coop and

Cont-Coop when configured with 1-Copy and T-Copy, and
b) compare cooperative caching with a greedy caching strat-
egy. The simulator represents each device as a node. A node
is configured with a fixed amount of storage and sets aside a
portion of it as cache. While ST denotes the sum of the size
of caches contributed by N nodes in a cooperative group,
SDB is the size of the clip repository. A node may choose
amongst different replacement techniques to control which
clips occupy its cache. In this study, we use Dynamic Sim-
ple (DYNSimple) because it is superior [14] to alternatives
such as GreedyDual [5] and LRU. With DYNSimple, a node
chooses a victim by estimating the frequency of access to
each clip i (fi), and replacing the clip with the smallest

value for fi
Si

where Si is the size of clip i.

An edge from node Ni to node Nj means Nj is in the radio
range of Ni to receive data from it. There must exist an edge
from Nj to Ni in order for Ni to receive data from Nj . Each
edge is assigned a pre-specified bandwidth, providing the
asymmetric transmission rates between nodes as described
in [23].

Node Ni may have g edges with different bandwidths to
g different nodes in the system. We consider two different
transmission models. The first, termed kp-card, assumes the
bandwidths correspond to the transmission rates observed
by Ni’s k cards using their p channels to communicate with
the g nodes. In essence, Ni’s total out-going bandwidth is
the sum of the bandwidths specified on its out-going edges.

The second, termed Shared-BW, assumes the bandwidths
are shared and Ni may not transmit at the full rates spec-
ified on each of its out-going edges simultaneously. As an
example, assume Ni has two out-going edges to nodes Nj

and Nk with bandwidths of 10 and 12 Mbps, respectively.
With the kp-card model, Ni may transmit to Nj at a rate
of 10 Mbps while transmitting to Nk at a rate of 12 Mbps
simultaneously. With the Shared-BW model, if Ni trans-
mits data to Nj at a rate of 10 Mbps then it may transmit
data to Nk at a rate of 2 Mbps only. With both models,
Ni’s minimum data rate is 10 Mbps. However, Ni’s maxi-
mum data rate is 22 Mbps and 12 Mbps with kp-card and
Shared-BW, respectively. This study assumes Shared-BW
transmission model.

We assume a repository of video clips where each clip is
encoded using a constant bit rate encoding technique. The
display bandwidth requirement of each clip is 4 Mbps. We
assume the repository consists of 864 clips grouped into 3
categories with display times of 2 hours, 60 minutes, and 30
minutes. The size of these clips are 3.5 Gigabytes (GB), 1.8
GB, and 0.9 GB, respectively. SDB is 1.85 Terabytes.

We use a Zipf-like distribution [3] to generate requests
for different clips. To elaborate, Zipf’s law [28] defines the
relative popularity of a request for the i’th most popular
clip is proportional to χ

i
where χ is a normalizing constant.

Different studies provide different definitions for this law.
Assuming C clips are rank ordered based on their popularity
(1, 2, ..., C), a general definition named Zipf-like distribution
is as follows. The probability of access for clip i is: χ

iµ . The
exponent µ (0 ≤ µ ≤ 1) controls the mean of the distribution
and χ = 1∑C

i=1
1

iµ
. This law has been used to model the

distribution of web page requests [15, 3, 27], and sale of
movie tickets4 in the United States [9].

With a Zipf-like distribution, a larger value for exponent
µ makes the distribution more skewed by increasing the fre-
quency of access to a few popular clips. On the other hand,
a smaller value of µ makes the distribution more uniform.

One node in the system is designated to admit requests
in the network by reserving link bandwidth on behalf of a
stream. This node, denoted Nadmit, implements the Ford-
Fulkerson algorithm [8] to reserve link bandwidths. It is
configured with the policy to minimize startup latency.

The simulator conducts rounds that are repeated tens of
thousands of times. A round selects nodes one at a time.
The order in which nodes are selected is shifted by one in
each iteration, ensuring that every node has a chance to be
the first to stream a clip in the network. A node (say N1) ref-
erences a clip using a random number generator conditioned
by the assumed Zipf-like distribution. If this clip resides in
Ni’s local storage then its display incurs a zero startup la-
tency. Otherwise, Ni identifies those nodes containing its
referenced clips, termed candidate servers. Next, it contacts
Nadmit to reserve a path from one of the candidate servers.
Nadmit provides N1 with the amount of reserved bandwidth,
the paths it must utilize, and how long it must wait prior
to streaming the clip. This delay is the incurred startup
latency.

In each iteration, we measure the following parameters
for each node: incurred startup latency, cache hit rate, byte

4In [9], a Zipf-like distribution is defined as χ

i(1−ω) where ω is

0.27. In this paper, µ equals 1−ω. To be consistent with [9],
we analyze 0.73 as a possible value for µ in Section 4.

0 0.5 1 1.5 2
1

2

3

4

5

6

7

S
T
/S

DB

Factor of improvement with N
1
 as the core node

µ = 0.25

µ = 0.73

Figure 3: Factor of improvement in startup latency

(δ(N2)
δ(N1)

).

hit rate, average number of hops to stream the referenced
clip, and the amount of data transferred across the network.
Each experiment is based on ten thousand iteration of each
round. At the end of an experiment, we measure the fraction
of repository resident in the home network and its frequency
of access. These characterize availability of data in the home
network.

One may introduce an arbitrary delay (termed a think
time) between different iterations. However, the observed
values will not change because: 1) all devices are activated in
each round, and 2) we measure the average startup latency
incurred in each round.

We investigated alternative topologies shown in Figure 1
with link bandwidths ranging from 8 to 16 Mbps. Presented
observations hold true for all these settings. Unless stated
otherwise, we employ a Dagger topology with symmetric link
bandwidths of 12 Mbps in Sections 4.1 to 4.2. Section 4.3
considers a realistic network corresponding to a deployment
of six nodes employing 802.11a networking cards in a British
household [23]. The link bandwidths are asymmetric, see
Figure 1 for their bandwidths.

4.1 Impact of core node selection
This section shows the core node selection of Section 3.2.1

enhances startup latency when compared to choosing a dif-
ferent node as the core node. We focus on T-Copy state
management policy for two reasons. First, trends observed
with T-Copy and 1-Copy are identical. Second, Section 4.2
shows T-Copy enhances response time when compared with
1-Copy.

With the Dagger topology of Figure 1.b, a system designer
may choose either N1 or N2 as the core node. The pseudo-
code of Figure 2 chooses N1 because it balances the number
of paths referencing different links more evenly. Figure 3
shows the factor of improvement in startup latency when
core node is N1 relative to when core node is N2. The x-axis
of this figure denotes different ST

SDB
values. We compute the

0 0.5 1 1.5 2
0.5

1

1.5

2.5

3.5

4.5

5.5

6.5

7.5

8.5

9.5

i=2

i=3

i=4

i=6

i=7

Factor of improvement with N
5
 as the core node

S
T
/S

DB

Figure 4: Factor of improvement in startup latency

(δ(Ni)
δ(N5)

) with N5 as the core node when compared with

Ni (i 6= 5) as core node, µ=0.73.

y-axis value by dividing the average startup latency observed
when N2 is the core node by the startup latency observed
when N1 is the core node. When the y-axis value is 1, it
means the two configurations are providing identical startup
latencies. A y-axis value greater than 1 means choosing
N2 as the core node is a poor decision as it is degrading
startup latency. Figure 3 shows the factor of improvement
for two different distributions of access, skewed (µ=0.73)
and more uniform (µ=0.25). Generally speaking, with a
uniform access pattern, choosing the right core node is not
important. We elaborate on this observation in Section 4.3
when comparing Cont-Coop with Rand-Coop.

With a skewed distribution of access, it is better to choose
N1 as the core node because it prevents formation of bot-
tlenecks. To illustrate, assume nodes N0, N1, N3, and N4

reference the most popular clip. With N2 as the core, the
request for these four nodes will be directed to N2. N2 must
support a bandwidth of 16 Mbps to stream all requests si-
multaneously. With a bandwidth of 12 Mbps, one of the
requests must wait for the other three requests. By choos-
ing N1 as the core node, with this example, N1 will service
three nodes and N5 services the other node (either N2, N3,
or N4).

With the realistic topology of Figure 1.d, the selection
algorithm of Figure 2 chooses N5 as the core node. Figure 4
shows the factor of improvement in startup latency with N5

as the core node when compared with node i = {2, 3, 4, 6, 7}
as the core node. Generally speaking, choosing N5 enhances
startup latency. N2 is a very poor choice as the core node
because all references for those clips that do not exist in the
cooperative group (issued by N3 to N7) must be directed to
N2 and streamed from the base B. With a bandwidth of 11
Mbps from N2 to other nodes, at most 3 such streams can
be supported from B. Additional stream requests by other
nodes must wait, resulting in a higher startup latency.

In Figures 3 and 4, as we increase ST
SDB

from 0.1 to 0.75,

0 0.5 1 1.5 2
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

S
T
/S

DB

Factor of improvement in startup latency with T−Copy

µ = 0.25

µ = 0.73

µ = 0.973

Figure 5: 1-Copy versus T-Copy (δ(1−Copy)
δ(T−Copy)

), Dagger

topology, Cont-Coop with N1 as the core node.

the startup latency with all technique improves. However,
the rate of improvement with the configuration that employs
the correct core node is much higher. This explains why the
steep slope of the curve, peaking at ST

SDB
=0.75. Beyond this

ST
SDB

value, Cont-Coop with the correct core node starts

to plateau while other configurations (with the wrong core
node) continue to improve. This explains why the factor of
improvement decreases.

4.2 1-Copy versus T-Copy
T-Copy results in a lower startup latency when compared

with 1-Copy. This is particularly true with a skewed distri-
bution of access (µ values of 0.73 and 0.973), see Figure 5.
In this figure, the x-axis denotes different cache sizes, i.e,

ST
SDB

values. The y-axis is computed by dividing the av-

erage startup latency observed with 1-Copy by T-Copy’s

startup latency, δ(1−Copy)
δ(T−Copy)

. With y-axis values higher than

1, 1-Copy is worse than T-Copy because it is slower.
With a skewed distribution, T-Copy outperforms 1-Copy

because it replicates the frequently accessed clips on all the
nodes. While this results in lower availability of data, it does
increase the cache hit rate of each node. This is because with
T-Copy, once a node references a popular clip, it replicates
that clip and replaces it only when it encounters a cache
miss. In between cache misses, every time it references the
popular clip, it encounters a cache hit. When ST

SDB
=1 and

µ = 0.73, T-Copy observes a cache hit rate of 37% while
1-Copy observes a cache hit rate of 20%. A higher cache hit
rate translates into a higher byte hit rate. This reduces the
amount of data transferred using the network, minimizing
the the possibility of bottleneck links. This explains why
T-Copy outperforms 1-Copy.

4.3 Comparison of greedy and Rand-Coop with
Cont-Coop

In this section, we compare greedy and Rand-Coop with
Cont-Coop using the topology of Figure 1.d corresponding

ST
SDB

Greedy Rand-Coop Cont-Coop (N5)

0.1 585 353 320
0.5 225 51 40
0.75 148 21 15
1.0 102 10 7
1.5 53 5 4
2.0 29 3 2

Table 2: Average startup latency for the realistic
deployment of Figure 1.d using T-Copy, µ=0.73.

to a deployment of six nodes in a British household [23].
With this wireless home network, Cont-Coop elects node
N5 as the core node.

Table 2 shows the startup latency observed with greedy,
Rand-Coop and Cont-Coop for different ST

SDB
values. When

the total cache size is smaller than the repository size, ST
SDB

<

1.0, Cont-Coop outperforms both greedy and Rand-Coop
by a significant margin. With larger cache sizes, Rand-
Coop provides compatible startup latencies with Cont-Coop.
Both outperform greedy by a significant margin because
greedy replicates the same collection of clips on each of the
six nodes. When a large number of nodes observe a cache
miss, they are directed to the base station, exhausting the
bandwidth of wireless links from node 2 (11 Mbps), see Sec-
tion 4.1. With Rand-Coop and Cont-Coop, a larger selection
of clips is cached in the cooperative group, enabling different
nodes to stream clips from other nodes. This minimizes the
formation of bottleneck links, enhancing the average startup
latency.

With a more uniform distribution of access to clips (µ =
0.25), greedy starts to perform almost the same as Cont-
Coop. This is because most nodes observe a cache miss,
exhausting the bandwidth of the links from node 2.

5. CONCLUSION AND FUTURE RESEARCH
DIRECTIONS

Caching techniques for streaming media in wireless home
networks is an exciting area of research with many future
possible extensions. In addition to topologies reported in
this paper, we have applied our algorithms to topologies
consisting of 4, 6, and 10 nodes. Obtained results show
Cont-Coop enhances average startup latency and improves
availability of data when compared with a greedy caching
technique. With this key finding, a short-term research di-
rection is as follows: What thresholds for link bandwidths
should trigger nodes to form (depart from) a cooperative
group? This topic requires a host of policies that consider
both local and global metrics. They may construct multi-
ple cooperative sub-groups and isolated nodes that act in a
greedy manner. Obtained results apply to larger networks
consisting of tens of nodes deployed in an office setting [10].
With such networks, requiring all nodes to be members of
one cooperative group may degrade the overall system per-
formance. One may utilize wireless connectivity of devices
to construct multiple cooperative groups that behave inde-
pendent of one another. A research topic is whether nodes
at the boundary of multiple groups should be members of
core group or all groups.

We intend to explore cooperation modes that increase de-

pendencies between devices. One possible design is to break
a clip into chunks and assign different chunks to different
nodes. Such a technique is considered in [6, 18]. This study
constructs replicas of segments for the purposes of fault tol-
erance and load balancing. We plan to investigate extensions
of its proposed designs to a wireless home network by ex-
ploring its availability and startup latency characteristics.
A technique such as Cont-Coop which caches at the gran-
ularity of clips would serve as a yard stick to evaluate the
tradeoffs associated with this alternative design.

6. REFERENCES
[1] S. Acharya and B. Smith. MiddleMan: A Video

Caching Proxy Server. In Proceedings of NOSSDAV,
June 2000.

[2] H. Bahn. A Shared Cache Solution for the Home
Internet Gateway. IEEE Transactions on Consumer
Electronics, 50(1):168–172, February 2004.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web Caching and Zipf-like Distributions:
Evidence and Implications. In Proceedings of Infocom,
pages 126–134, 1999.

[4] G. Cao, L. Yin, and C. R. Das. Cooperative
cache-based data access in ad hoc networks. IEEE
Computer, 37(2):32–39, February 2004.

[5] P. Cao and S. Irani. Cost-Aware WWW Proxy
Caching Algorithms. In 1997 Usenix Symposium on
Internet Technologies and Systems, 1997.

[6] Y. Chae, K. Guo, M. Buddhikot, S. Suri, and
E. Zegora. Silo, Rainbow, and Caching Token:
Schemes for Scalable, Fault Tolerant Stream Caching.
IEEE Journal on Selected Areas in Communications
on Internet Proxy Services, Sept. 2002.

[7] E. Cohen and S. Shenker. Replication Strategies in
Unstructured Peer-to-Peer Networks. In Proceedings of
the ACM SIGCOMM, August 2002.

[8] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,
editors. Introduction to Algorithms, chapter 26.2. MIT
Press, 2001.

[9] A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling
Policies for an On-Demand Video Server with
Batching. In 2nd ACM Multimedia Conference,
October 1994.

[10] R. Draves, J. Padhye, and B. Zill. Routing in
Multi-Radio, Multi-Hop Wireless Mesh Networks. In
MobiCom, Sept 2004.

[11] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R.
Karlin, H. M. Levy, and C. A. Thekkath.
Implementing Global Memory Management in a
Workstation Cluster. In Proceedings of the 15th ACM
Symp. on Operating Systems Principles, December
1995.

[12] S. Ghandeharizadeh, T. Helmi, T. Jung, S. Kapadia,
and S. Shayandeh. An Evaluation of Two Policies for
Simple Placement of Continuous Media in Multi-hop
Wireless Networks. In Twelfth International
Conference on Distributed Multimedia Systems
(DMS), August 2006.

[13] S. Ghandeharizadeh and S. Shayandeh. Cooperative
Caching Techniques for Continuous Media in Wireless
Home Networks. Technical Report 2007-03, USC
Database Laboratory.

[14] S. Ghandeharizadeh and S. Shayandeh. Greedy Cache
Management Techniques for Mobile Devices. In First
International IEEE Workshop on Ambient
Intelligence, Media, and Sensing (AIMS), 2007.

[15] S. Glassman. A Caching Relay for the World Wide
Web. In First International Conference on the World
Wide Web, May 1994.

[16] Y. Guo, Z. Ge, B. Urgaonkar, P. J. Shenoy, and D. F.
Towsley. Dynamic Cache Reconfiguration Strategies
for A Cluster-Based Streaming Proxy. Computer
Communications, 29(10):1710–1721, 2006.

[17] T. Hara. Effective Replica Allocation in Ad Hoc
Networks for Improving Data Accessibility. In
INFOCOM, pages 1568–1576, 2001.

[18] W. J. Jeon and K. Nahrstedt. QoS-aware Middleware
Support for Collaborative Multimedia Streaming and
Caching Service. Microprocessors and Microsystems,
27(2):65–72, 2003.

[19] N. Laoutaris, G. Smaragdakis, A. Bestavros, and
I. Stavrakakis. Mistreatment in Distributed Caching
Groups: Causes and Implications. In IEEE Infocom,
April 2006.

[20] D. J. Lilja. Cache coherence in large-scale
shared-memory multiprocessors: issues and
comparisons. ACM Comput. Surv., 25(3):303–338,
1993.

[21] B. Nitzberg and V. Lo. Distributed Shared Memory:
A Survey of Issues and Algorithms. Computer,
24(8):52–60, 1991.

[22] M. Papadopouli and H. Schulzrinne. Effects of power
conservation, wireless coverage and cooperation on
data dissemination among mobile devices. In
MobiHoc, pages 117–127, 2001.

[23] K. Papagiannaki, M. Yarvis, and W. S. Conner.
Experimental Characterization of Home Wireless
Networks and Design Implications. In IEEE Infocom,
April 2006.

[24] R. Rejaie, H. Yu, M. Handley, and D. Estrin.
Multimedia Proxy Caching Mechanism for Quality
Adaptive Streaming Applications in the Internet. In
Proceedings of IEEE INFOCOM, 2000.

[25] M. Shinohara, T. hara, and S. Nishio. Data
Replication Considering Power Consumption in Ad
Hoc Networks. In Proceedings of the 8th International
Conference on Mobile Data Management (MDM),
May 2007.

[26] S. Tewari and L. Kleinrock. On Fairness, Optimal
Download Performance and Proportional Replication
in Peer-to-Peer Networks. In NETWORKING, pages
709–717, 2005.

[27] A. Wolman, M. Voelker, N. Sharma, N. Cardwell,
A. Karlin, and H. M. Levy. On the Scale and
Performance of Cooperative Web Proxy Caching.
SIGOPS Oper. Syst. Rev., 33(5):16–31, April 1999.

[28] G. K. Zipf. Relative Frequency as a Determinant of
Phonetic Change. Harvard Studies in Classified
Philiology, Volume XL, 1929, 1929.

