
Measurement of IP Packet Flow and Evaluation with
VINS

Nanjun Li
Hasso Plattner Institute at University of Potsdam

Potsdam, 14482, Germany
Nanjun.Li@hpi.uni-potsdam.de

Abstract—Due to enormous complexity of Internet topology and
diversity of nodes’ behavior, some important attributes of IP
packet flows are not measurable in real world with existing
technologies. However, by adequately simulating network nodes’
behavior and evaluating their performance, new insights into IP
packet flows can be gained. With a brief review on today’s
Internet architecture and recent development of the Visualized
IP-based Network Simulator (VINS), this paper applies VINS to
measure IP packet flows in a simulated network. We investigate
the causes of packet loop and find the Time-To-Live (TTL)
control may not work as expected in some circumstances. A
slight modification of TTL control is proposed and tested with
VINS, which may strengthen the capability of loop detection in a
domain of nodes.

Keywords- VINS IP Simulation Measurement

I. INTRODUCTION
Each individual node in IP-based networks must be able to

handle packets arrive at non-deterministic time, whose source
and destination addresses can also be random. A router node’s
functionalities include packet queuing, Time-to-Live (TTL)
control, ICMP error control, routing table lookup and relaying.
These nodes shall be organized properly. As a number of IETF
RFCs required, the Classful Networks [1] and Classless Inter-
Domain Routing (CIDR, [2]) schemes coexist as the
architecture of today’s Internet. Mis-addressed or mis-
subnetted nodes and domains may not be functional as a part of
the entire IP network.

However, these important addressing and subnetting
schemes are not properly considered in many existing network
simulation tools, e.g., NS-2 [3] and OPNET [4]. The
Visualized IP-based Network Simulator (VINS) is proposed [5]
aimed at validated IP-based network simulation, protocol stack
behavioral analysis and performance evaluation. This paper
briefly introduces the new progress made in VINS development
and applies it in investigating some issues in IP packet flows in
a simulated network.

Section 2 introduces packet loop analysis and measurement
made in real systems as related work. Section 3 presents a
review on Internet architecture required by RFCs. Section 4
introduces the flow level evaluation techniques employed in
VINS. Verification is made in section 5 by comparing VINS’
simulation results with mathematical expectations in a simple
scenario. In section 6 we apply VINS to measure IP packet

flows and discuss the causes of loop. In section 7 a new TTL
control is proposed and tested with VINS, which may improve
the loop detection. We conclude in section 8 and list a plan of
future work.

II. BACKGROUND AND CONTRIBUTION
In today’s Internet, inter-domain routing widely relies on

the Border Gateway Protocol (BGP, [6]). Routers exchange
BGP route announcements that consist of a network prefix and
a list of nodes with its neighbors to update the new routing
states. R. Dube [7] and J. Scudder [8] analyzed the probability
of persistent loop that may be caused by a number of routers
share the same network mask and prefix. U. Hengartner et al.
made an analysis on transient routing loops caused by
inconsistencies in routing state among a set of routers [9]. R.
Mahajan et al. studied the persistent loops in real ISPs and the
influences [10], and found that the “BGP misconfiguration”
errors are pervasive in Internet and may cause connectivity
disruption.

In this paper VINS is applied to measure some attributes of
packet flow that have not been well-measured in real systems
or other simulators. We discuss the causes of loop and propose
an optimization of TTL control to improve the capability of
loop detection in an autonomous domain.

III. MODELING AND ENCODING
Based on 4.4BSD’s architecture [11] that the entire TCP/IP

stack uses a single queue to enqueue all incoming packets’
headers (ipintrq, with default capacity to 50), each node can
be abstracted as a single-queue system with a routing table and
a number of service routines. In VINS, a node is simulated
with a software object [5], which is assigned with a class value
{HOST, CLASS_A, CLASS_B, CLASS_C} as forwarding
prefix length. Complying with the Classful Networking
scheme, VINS enables inter-domain network simulation with
complex topology.

Let a router node be named as ‘5’ with class B, IP address
12.34.75.23, and its routing table records the neighboring nodes
by name: {4, 6, 7}. This node owns a FIFO (First-In-First-Out)
queue with capacity as 55, and the service time to each
incoming packet has a mean value 25 ms, in Gaussian
distributed with deviation 21.100, as shown in Figure 1:

Figure 1. Single Queue Model of Node

This node can be encoded with XML syntax as presented in
Figure 2:

<Node>
<Name>5</Name><Address>12.34.75.23</Address><
Type>CLASS_B</Type><Pos>433,452</Pos><Capacit
y>55</Capacity><Mean>25</Mean><Dev>21.100</De
v><PDF>GAUSSIAN</PDF>
<RtTab>4,6,7</RtTab>
</Node>

Figure 2. Node Encoding Sample

Currently a packet’s travel time on a link between two
nodes is 0 by default. For long distant links that latencies
become considerable, it is recommended to use the following
expression to encode the time to different directions
(millisecond as unit):

<RtTab>4|10,6|15,7|20</RtTab>

This expression tells that the link latency from node 5 to
node 4 takes 10 ms, to 6 takes 15 ms and to 7 takes 20 ms.
When an IP packet goes through Node 5, its TTL is
decremented by 1 on the node, and the latency of the link it
traverses will be added to its “one trip time” (from its source to
destination nodes).

VINS application objects can be mounted over host nodes
using UDP or TCP to exchange data. An IP packet flow can be
generated either with a pair of applications, or with two
fictional nodes: SUPPLIER and CONSUMER. A
CONSUMER only receives arrival IP packets without relaying;
a SUPPLIER generates IP packets destined to its CONSUMER
specified in the scenario file [5]. The interval between two
successively generated packets is a stochastic number,
distributed following SUPPLIER’s PDF (Probability Density
Function) option, deviation and mean value. VINS presently
support four PDF options:

1) Uniform
2) Gaussian
3) Exponential
4) Deterministic

A router performs Longest Prefix Match (LPM, [12])
lookups to find the best matched neighbor. For a Classful
network node, it firstly searches leaf-nodes (hosts) in the
routing table for an exact match; if failed, it searches its sub-
class nodes, then peer-class and super-class ones, till an
adequate node is found to relay, or this packet shall be
discarded due to un-deliverable. This routing behavior can be
presented with a Petri-net diagram [13] as shown in Figure 3:

Figure 3. VINS Routing Engine

Figure 4 is a sample of a Classful network:

Figure 4. A Classful Network

IV. FLOW LEVEL STATISTICS
The transportation of an IP packet flow is a contribution by

the nodes in the route. Packet flows can be isolated from each
other if they dwell in exclusive routes, or meet at some nodes
and engage in a competition for the services where they meet.
As the crossed traffic may increase the queue length on the
crossing node, there are two possible aftermaths: 1) the
possibility of packet loss is increased; 2) the Mean One Trip
Time (MOTT) of a packet is prolonged. To measure the
properties of each flow in a network with arbitrary topology,
VINS employs a number of counters for flow level statistics:

SENT counts the number of packets of a flow that have
been injected into the network.

RCVD counts the number of packets of a flow that have
arrived at the destination.

FS stands for Flow Size, counting the number of packets of
a flow currently being relayed in the network instantly.

SFS stands for Smoothed Flow Size. As FS changes from
observations, user can hardly estimate the average number of
packets of this flow being relayed in the network. Instead, SFS
might be a useful measurement, calculated as:

E

t
SFS

N

i
i∑

−

=

Δ
=

1

0 (1)

where
itΔ is the lifetime of packet i counted since its

creation to vanish (being received, dropped or discarded); E is
the Elapsed time of simulation; N is the number of packets of
this flow that have been injected into the network.

MOTT is the Mean One-Trip-Time, the average time that a
successfully delivered packet takes (unit: ms), calculated as:

N

t
MOTT

N

i
i∑

−

==

1

0

δ
 (2)

where
itδ is the one trip time of an arrived packet i, N is the

number of arrived packets of this flow. MOTT is not
applicable to unreachable flows.

V. MATHEMATICAL VERIFICATION
In this section a sample scenario is built to study three

elementary processes: M/D/1/K, M/M/1/K and M/G/1/K [14].
Mean values are calculated with Little’s Law [15] and
compared with VINS’ simulative result, as a mathematical
verification to VINS. The scenario can be found in [16] with
name MD1K-MM1K-MG1K.xml. A screenshot is shown in
Figure 5:

Figure 5. MD1K, MM1K and MG1K

Scenario description: SUPPLIER A1, A2 and A3 generate
IP packets destined to B1, B2 and B3. The interval between
two successive packets takes Exponential distribution with
Mean values as 60 ms. CONSUMER B1 has deterministic
service time as 50ms. CONSUMER B2 has Exponential
distributed service time with Mean value as 50 ms.
CONSUMER B3 takes Gaussian distributed service time with
Mean value as 50ms and Deviation as 20.000. Thus, the
processes on node C1 is M/D/1/K, on C2 is M/M/1/K and on
C3 is M/G/1/K (“G” stands for General, which is set to
Gaussian in this sample). Table 1 is partial VINS’ system
report:

TABLE I. SYSTEM REPORT OF MD1K-MM1K-MG1K.XML (PARTIAL)

Node
Name PDF Cap. X Dev A B D U

A1 EXP 25 60 0.000 16.012 16.667 16.012 96.00%

B1 UNI 50 50 0.000 16.012 20.000 16.012 80.00%

A2 EXP 25 60 0.000 16.036 16.667 16.036 96.20%

B2 EXP 50 50 0.000 16.036 20.000 16.036 80.10%

A3 EXP 25 60 0.000 15.970 16.667 15.970 95.80%

B3 GAU 50 50 20.000 15.969 20.000 15.969 79.80%

Flow
Route SENT RCVD FS SFS Reach-ability MOTT

A1->B1 289925 289925 3 2.69 True 167

A2->B2 290368 290366 2 4.87 True 303

A3->B3 289163 289157 7 2.82 True 176

Little’s Law [15] tells that in a queuing system, the mean
queue length N equals to system’s mean response time R times
its arrival rate A:

N = R · A (3)

Apply Little’s Law in this sample: each flow’s SFS equals
to its CONSUMER’s mean queue length N; flow’s MOTT
equals to its CONSUMER’s response time R; each node’s
arrival rate A is printed in the column A. The LL’s
expectations of N on B1, B2 and B2 are:

NB1 = RB1 · AB1 = 0.167 * 16.012 ≈ 2.67 (pkts)
NB2 = RB2 · AB2 = 0.303 * 16.036 ≈ 4.86 (pkts)
NB3 = RB3 · AB3 = 0.176 * 15.969 ≈ 2.81 (pkts)

Comparing LL’s expectations on N with the values in
column SFS {2.69, 4.87, 2.82}, the deviation has been
controlled within 1%.

VI. MEASUREMENT OF FLOWS
In this section a scenario (flyingdutchman.xml at [16]) is

built as an example to study some properties of IP packet
flows. We focus on the unreachable flows, especially the loop
ones. A discussion is made on the so-called
“misconfiguration”, which shall be accounted for routers’
limited knowledge (routing table) about the entire network’s
topology.

This scenario consists of 3 top-class (CLASS_B) routers G,
M and T with same forwarding prefix 128.34.xx.xx. Their
routing tables are:

G: [C,H,D,T,M]
M: [G,N,T,L]
T: [M,G,H,C]

SUPPLIER nodes (K, S, A and B) initialize TTL of packets
as 64 by default. The two isolated node R and Q are
deliberately designed to let two flows be unreachable: B->Q
and S->R. Figure 6 is a screenshot, in which the loop one is
highlighted with moving bullets:

Figure 6. Scenario of Flyingdutchman.xml

 A significant difference between two unreachable flows is

that packets in B->Q are detected to be unreachable and thus
discarded on node N; while S->R is trapped in a closed virtual
circuit made up by G, M and T, and no one of them is aware of
looping. Packets in S->R keep consuming network’s service,
slow down its performance and increase packet loss. From the
screenshot we can find they are flooded out instead of being
discarded as TTL expires. Table 2 is scenario’s system report:

TABLE II. SYSTEM REPORT, TTL=64

Route SENT RCVD FS SFS Reach-
ability MOTT

A->C->T->H->I 23057 16184 30 31.95 True 3478
B->C->T->M->N 14023 0 48 20.96 False --

K->L->M->G->D->F 24498 12166 57 38.52 True 4758
S->L->M->G->T->M 39196 0 120 116.19 False --

The delivery percentage (RCVD/SENT) of two reachable

flows are:
A->I: 16184 / 23057 ≈ 70.20%
K->F: 12166 / 24498 ≈ 49.66%

A VINS Net-Pie illustrates the SFS of each packet flow and
the network resource they possess:

Figure 7. Net-Pie of Flyingdutchman.xml

In this sample the loop complies with the description in [6]:
a number of routers share the same network mask and prefix.
In advance, two conclusions can be made:

1. Packet loop can take chance in a domain if it consists of
more than one top-class routers. The unreachable packets

might be relayed among these routers without being detected
to be looping;

2. The long default TTL (64) may not work as expected in
congested networks, because a looping packet might be
flooded out before its TTL expires.

At the meantime, forwarding among peer-class nodes is
indispensable for providing shortcuts to the packets. To detect
the loop flows efficiently and reduce network’s burden, an
enhanced TTL control might be expected.

VII. NEW TTL CONTROL
Networks with multiple top-class routers are subject to an

attack when remote machine(s) deliberately sending packets
destined to a non-existing node, e.g., using UDP programs to
flood. An improvement of TTL control can be made on the
gateway nodes of a domain without changing current format of
IP header:

1. for a packet going out of the domain, stamp its TTL as 64 or
256 so that it can go enough long distance (number of
intermediate hops) before being discarded due to TTL
expires;

2. for a packet coming in the domain, stamp its TTL to a small
number (e.g., 4 or 8) according to longest non-loop route in
this domain, so that the loop one can be efficiently discarded.

Figure 8 illustrates this idea: let G1 and G2 be gateways of
a domain (an Autonomous System, AS). Outgoing packets’
TTL are set to 64 while incoming ones are set to 4:

Figure 8. New TTL Control

A test of this idea is made in the same scenario as figure 6.
Let K, S, A and B be gateways. TTL of incoming packets are
set to 6. Figure 9 is a screenshot, which shows node G is able
to discard the loop packets in flow S->R:

Figure 9. Scenario of Flyingdutchman.xml with New TTL Control

TABLE III. SYSTEM REPORT, NEW TTL CONTROL

Route SENT RCVD FS SFS Reach-
ability MOTT

A->C->T->H->I 21771 17109 43 30.75 True 3179
B->C->T->M->N 13316 0 55 15.82 False --

K->L->M->G->D->F 23290 12993 88 41.08 True 4834
S->L->M->G->T->M 36560 0 92 87.48 False --

System report shows the delivery percentage of two

reachable flows have been promoted:

A->I: 17109 / 21771 ≈ 78.59% (from 70.20%)
K->F: 12993 / 23290 ≈ 55.79% (from 49.66%)

Figure 10 is the Net-Pie under new TTL control, which
shows the SFS of unreachable flow S->R is reduced from
116.19 pkts (56% of used network resource) to 87.7 pkts
(49.9% of used network resource):

Figure 10. Net-Pie of Flyingdutchman.xml with New TTL

Control

VIII. CONCLUSION AND FUTURE WORK
In this paper we apply VINS to study and measure IP

packet flows. We investigate the causes of packet loop and
conclude that the loops shall be accounted for the limitation of
nodes’ knowledge of the entire network’s topology, instead of
“misconfiguration”. Packet loops may occur in a domain
where there are more than one top-level routers coexist.

A new TTL control mechanism is proposed to protect a
domain of nodes from being flooded by deliberately made or
unintentional loop flows. This mechanism requires the
recompilation of kernel (ip_input in 4.4BSD), and
knowledge of the depth of the domain to be protected. We test
this idea in a simulated network and it proves the network
performance can be improved.

VINS development focuses on the following tasks: 1) re-
implementation of the transport layer modules, especially to
support more TCP variants; 2) more queue scheduling
techniques, such as Random Early Detection (RED) [17]; 3)
encoding time-event to support dynamic network topology and
node status.

ACKNOWLEDGMENT
The author would like to thank Werner Zorn for his full

support in the development of VINS, and TridentCom 2007’s
anonymous reviewers for their helpful comments.

REFERENCES
[1] Jon Postel, “Internet Protocol (Classful Networks)”, RFC 791, 1981
[2] V. Fuller, “Classless Inter-Domain Routing, CIDR: an Address

Assignment and Aggregation Strategy”, RFC 1519, 1993
[3] Kevin Fall and Kannan Varadhan, “The ns Manual”, April 14, 2002. NS-

2 Home: http://www.isi.edu/nsnam/sn/
[4] OPNET home: http://www.opnet.com
[5] Nanjun Li, “Node-Oriented Modeling and Simulation of IP Networks”,

In proceedings of 14th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems, 2007

[6] Y. Rekhter and T. Li, “A Border Gateway Protocol 4 (BGP-4)”. RFC
1771

[7] Rohit Dube, “A Comparison of Scaling Techniques for BGP”, ACM
SIGCOMM Computer Communication Review Volume 29 , Issue 3,
July 1999

[8] John G. Scudder and Rohit Dube, “BGP Scaling Techniques Revisited”,
ACM SIGCOMM Computer Communication Review, 1999

[9] Urs Hengartner, Sue Moon, Richard Mortier, Christophe Diot,
“Detection and analysis of routing loops in packet traces”, 2nd ACM
SIGCOMM Workshop on Internet measurement, 2002

[10] R. Mahajan, D. Wetherall, and T. Anderson. “Understanding bgp
misconfiguration”, in Proceedings of SIGCOMM, Pittsburgh, PA,
August 2002.

[11] G. W. Wright and W. R. Stevens, “TCP/IP Illustrated Volume II - The
Implementation”, Addison Wesley, 1994

[12] A. S. Tanenbaum, “Computer Networks”, third edition, Prentice Hall
PTR, 1996

[13] Petri, C.A., “Kommunikation mit Automaten”, Bonn: Institut für
Instrumentelle Mathematik, Schriften des IIM Nr. 2, 1962, Second
Edition:, New York: Griffiss Air Force Base, Technical Report RADC-
TR-65--377, Vol.1, 1966, Pages: Suppl. 1, English translation

[14] D. A. Menascé, V. A. F. Almeida and L. W. Dowdy, “Performance by
Design: Computer Capacity Planning by Example”, Prentice Hall, 2004,
ISBN 0-13-090673-5

[15] Little, J. D. C, “A Proof of the Queuing Formula L = λ W”, Operations
Research, 9, 383-387, 1961

[16] VINS download package available: https://www-fgks.hpi.uni-
potsdam.de/fileadmin/user_upload/Nanjun/VINS.zip

[17] S. Floyd., and Jacobson, V., “Random Early Detection gateways for
Congestion Avoidance”, IEEE/ACM Transactions on Networking 1(4)
397-413, 1993

