
A Scalable Technique for Large Scale, Real-Time
Range Monitoring of Heterogeneous Clients

Erin J. Hastings, Jaruwan Mesit, Ratan K. Guha
School of Electrical Engineering and Computer Science

University of Central Florida, Orlando, FL 32816
(hastings, jmesit, guha)@cs.ucf.edu

Abstract - Range monitoring is the continuous query on location
data of mobile, real-world objects in real-time. Such real world
objects are typically wireless, low capability clients. Therefore,
tracking techniques must limit client computation and memory
overhead, allow for client/server heterogeneity, and most
importantly, minimize wireless transmissions. This paper
presents a technique for range monitoring based on multi-level
spatial hashing. The technique addresses: (1) real-time queries
on mobile object locations, (2) real-time query on the proximity
of mobile objects in relation to each other, (3) user defined special
query areas, and (4) allows for variable levels of mobile client
capability (heterogeneity). The spatial hashing-based method
presented here provides a level of scalability similar to the best
existing methods for client processing requirements, transmission
size, and transmission frequency. Additionally, it provides the
flexibility of multiple tracking modes, proximity queries, and
support for multiple server base stations which other methods
may not. The results of a simulation that computes total
transmission overhead and data server requirements based on
mobile object characteristics are presented.

Keywords-range monitoring; multi-level spatial hashing; mobile
object database; continuous query

I. Introduction

Range monitoring is the continuous query on real-world
mobile object position data. Typically, mobile objects will
report their locations via wireless medium to a central server,
which can be queried as desired by users interested in mobile
object location data. Examples of some settings where range-
monitoring is used include: fleet vehicle tracking, military
battlefield personnel or vehicle tracking, automated tour
guides and vehicles at theme parks, wild animal location
tracking, and others. When designing an efficient range
monitoring scheme, three major issues must be considered: (1)
limited mobile device capability, (2) minimization of
transmissions, (3) heterogeneous client capability [1] [2].

First there is the problem of limited mobile device
resources. Since they are necessarily small and have a limited
battery life, constraints on mobile devices usually include
limited processing power, limited persistent storage, and
limited memory [3] [4] [5]. Therefore storage requirements
and processing complexity for these limited clients must be
minimized. Second, due to the inherent nature of a wireless
environment connection issues must be considered such as
drain on battery power by transmission, and bandwidth
constraints [6] [2]. Since transmission is expensive with
regard to battery power it must be done as infrequently as

possible and the transferred data must be small in size.
Limiting transmission frequency/size also reduces collisions
between client messages, which usually results in re-
transmissions. Finally, heterogeneity among clients is
possible, where not all clients have the same hardware or
capabilities. Since not all clients are necessarily minimal
devices, a system should allow more capable, or smart clients
[6] [2].

Fast, real-time tracking of mobile objects happens to be a
common requirement for simulations and games as well.
Thus, the basis the range-monitoring system presented here is
T-Collide [7], a technique for optimizing collision detection
between mobile objects in graphics, simulations, and games.
The T-Collide algorithm is based mainly on spatial hashing
where the world is divided into evenly spaced grid cells
(uniform spatial subdivision). Based upon their positions in
the world, objects are then hashed to grid cells using a hash
function. A modified version of this hashing-based method
can be applied to range-monitoring in order to: (1) reduce
mobile transmissions, (2) quickly determine which mobile
objects are in special query areas, and (3) allow fast detection
of object proximity in relation to each other. The technique
presented here has similar or better scalability, transmission
overhead, and memory requirements compared to existing
range-monitoring methods. In addition, this hashing-based
method provides the flexibility of different tracking modes,
proximity queries, and multiple base station support which
other published methods may not. The remainder of the paper
will first discuss the details of spatial hashing, then outline the
range monitoring technique, and finally memory and trans-
mission requirements will be examined in detail.

II. Related Work

The range-monitoring technique presented is a conglom-
eration of methods from several areas of computing including:
databases (queries, hashing, indexing), wireless networks
(range-monitoring), and graphics, simulation, and
visualization (collision detection and spatial subdivision).
Excellent sources on general mobile computing databases and
transaction processing can be found in [3] [4] [5] and [8]. A
system designed specifically to conserve power in mobile
devices is outlined in [6]. The real-time collision system (T-
Collide) upon which this range-monitoring technique is based,
is outlined in [7]. T-Collide is, in turn, based heavily upon
another collision system utilizing spatial hashing presented in
[9].

Figure 1 – Query areas and Safe Regions in the Q-Index method.

Figure 2 – Domain and query decomposition in the MQM method.

Q-index is a range monitoring system presented in [11] and
[12]. In Q-index, queries are defined as explicit rectangular or
circular regions of space. Every mobile client must store
query regions on board. Safe regions are defined as areas that
do not overlap any existing query area (see Figure 1).
Reduction of transmission occurs where objects only transmit
their position if they leave their current safe region. The main
drawback of this system is – whenever a new query is added,
safe regions must be recomputed by the server and
subsequently transmitted to clients. This becomes a
bottleneck, likely preventing scalability to a system of many
thousands of mobile objects [2].

Monitoring Query Management (MQM) [2] addresses
some of the deficiencies of Q-Index. Again queries are
defined as rectangular areas of space. The domain space is
separated into sub-domains (see figure 2). A monitoring
region (designated Rx in the figure) is where a query overlaps
a sub-domain. Every mobile object is associated with a
resident domain – a rectangular space surrounding it. A
resident domain can be one or more sub-domains, along with
related queries. The number of sub-domains within an
object’s resident domain is dictated by the object’s capability
(i.e. memory, cpu, bandwidth, etc…). Under MQM, each
mobile object is aware of the monitoring regions (queries)
within its resident domain (they are transmitted by the server
when the object is assigned a resident domain). As in Q-Index
a mobile object only transmits location data when it enters or
leaves a query area (reduction of transmissions). When an
object leaves its resident domain, it informs the server, and
then the server computes a new resident domain along with
accompanying query areas and transmits the data to the mobile
object. MQM’s superior scalability is a result of this
mechanic – since resident domain size (along with associated
monitoring regions) can be scaled to mobile object capability.

The hash-based technique presented in this paper provides
the scalability of MQM with similar memory and processing
requirements and similar transmission size, but with the
addiction of proximity queries and an optional tracking modes
which neither Q-index nor MQM provide. The improvements
come with the trade off of possible reduction of query area
precision. As with MQM, motion estimation or dead
reckoning techniques are avoided, since they inhibit
scalability. Additionally, in many situations accurate client
motion estimation is impossible [2].

III. Spatial Hashing

Spatial hashing is a process by which a 3D or 2D domain
space is projected into a 1D hash table [7]. To implement
spatial hashing at least three things are required, (1) a 2D or
3D grid, (2) a hash function, and (3) a hash table.

First, the entire domain space is subdivided by a grid (uniform
spatial subdivision) which in our case is 2D. This naturally
lends itself to a system where real-world objects are tracked by
GPS latitude and longitude data. The grid can be defined by
three variables. Cell size, that defines the size of each cell, and
min and max, two points that anchor the grid in domain space.
The hash function takes any given 2D or 3D positional data
and returns a unique grid cell that corresponds to a 1D bucket
in the hash table. Objects are hashed periodically and their
locations can then be quickly queried in the hash table.

IV. Range Monitoring Process Overview

Briefly, range monitoring with this hashing-based method
proceeds in the following manner. Mobile clients wander the
world, going about their designated routines. Periodically the
processors on board the mobile clients will hash their current
position in the grid based on GPS location data (or some
similar method). The hash function maybe loaded onto clients
before deployment or at anytime updated by a message from
the central server. Only when a client changes grid cell does it
transmit information to the server. Servers listen for location
data transmissions from the clients and users may interactively
query the servers. Some example queries may include: “Who
is in grid cell (x,y)?”, “Which grid cell is object A in?”,
“Which objects are within X distance of object A?”, “What
objects are in user-defined query area J?”, or “What course has
object B followed over the past X hours?”.

The detailed aspects of the range-monitoring process will
be presented in this order: (1) clients, or the mobile objects
being tracked, (2) servers, or the server(s) collecting location
data, (3) hash functions, simple functions periodically
calculated by all clients that determines what unique grid cell
the client occupies, (4) queries, which are performed by users
on the server location data, (5) modes, or different modes of
tracking which provide increased detail at the expense of
greater transmission bandwidth or client memory requirement,
and finally (6) smart clients, or extra capable clients that are
location aware of all other clients.

V. Mobile Clients

Each mobile client has a unique CLIENT_ID. While
roaming, clients will periodically hash their location using the
hash function. Minimally the hash function is based on GPS
location and CELL_SIZE. Conceivably, clients could transmit
their hash data every time it is computed. Clearly this would
result in: (1) a non-scalable system due to transmission
collisions, and (2) clients quickly draining battery power.
Therefore, clients will only transmit location data when it
changes. For example when the previous hash resulted in cell
3 and the new hash results in cell 4, the client informs the
server that it has moved to a new cell. In this way
transmissions are greatly reduced while still retaining a good
estimate of where the client is.

If we are interested in constantly tracking all clients the
above method is sufficient. However, suppose we are only
interested in tracking clients in key locations or query areas. In
this case, the server transmits local query cells to the client.
Clients then only transmit location data to the server if they
enter or leave a query area. This mechanic results in a much
more scalable system due to location awareness as described
by MQM above. In this hash-based method, however,
management of queries and distribution to clients differs
considerably. Clients may run in two “tracking modes”. In
Constant-Tracking mode, clients broadcast their position on
every cell change. In query-tracking mode, clients only
transmit their location if they enter or leave a query area.

A summary of the basic client routine is as follows. On
startup, (1) broadcast new client message to server, (2) receive
hash data from server, (3) hash initial position and send to
serve. Then, loop continuously, (1) hash position, (2) if hashed
cell has changed, send new cell data to server.

VI. Servers

A server constantly listens for incoming client messages,
and maintains a client list and a hash table with location data
for all clients that may be queried by users. When the server
comes online, it must broadcast the relevant hash data to all
clients. The details of hashing in a range-monitoring setting
are covered in the next section. A brief summary of the basic
server routine is as follows. On startup, (1) broadcast hash
data to all clients, then (2) continuously listen for incoming
messages. On receipt of new client message, (1) add new client
to the client list. On receipt of location data, (1) find client’s
old data in client and remove it from the hash table, (2) add the
new data to the hash table.

VII. Hash Functions

Given a mobile object’s location data, the hash function
returns the unique grid cell that the object occupies. The grid
and hash function are the key to scalability of the range-
monitoring system. Mobile objects only transmit their location
data when changing grid cells. In this manner transmissions

are greatly reduced, and the server is always aware of the
approximate location of the object.

The hash function translates the object location into a single
integer representing a grid cell. An object periodically hashes
its position and only sends this information to the server if it
has changed grid cells. If grid cell size is fixed, the hash
function may be loaded onto the mobile objects. If the cell size
is not fixed, the mobile objects may have to obtain cell size, or
other hash function data, from the server.

VIII. Queries

Queries are performed on the server. The following types
of queries are supported: Cell Query, or “which objects are in
cell X”, Object Query, or “in which cell is mobile object A
located”, Proximity Query, or “which objects are near object
A”, Special Query, or “which objects are in a range of cells
selected by the user”, and finally a History Query, or “what
cells has object A traversed over the past N units of time?”.

For a Cell Query, simply return the contents of hash bucket
X. An Object Query returns the object’s cell reference in the
object index. A Special Query is a range of cells selected by a
user. A Cell Query on each of the selected cells is performed.
For Proximity Queries, an Object Query is first performed on
object A – returning cell X. Then a range of cells surrounding
object A is selected. All objects within cell X and the
surrounding cells are safely assumed to be “near” object A.
Figure 3 shows an example Proximity Query. Suppose the
CELL_SIZE is 10, object A hashes to cell (x,y) in the grid, and
all objects within approximately 20 units of object A are
desired. All objects in the range of cells (x-2,y-2) to (x+2,y+2)
are within approximately 20 units of cell (x,y) since the
CELL_SIZE is 20. Therefore, all objects within the shaded
area are returned by the query. A History Query can only be
made when in a certain range-monitoring mode (modes are
covered in the next section). A History Query returns the cells
an object has traversed over a certain amount of time. To
implement such queries, a finite list of the last X cells traversed
by each object (along with a time stamp of each cell transition)
is kept on the server.

Figure 3 – A Proximity Query for all objects within 2 grid cells of a client.

IX. Modes

Different modes provide varying levels of tracking detail at
the expense of transmission bandwidth, processing, or
memory requirements. The proposed modes are: (1) Single-
grid Constant-Tracking mode, (2) Single-grid Query-Area
mode, (3) Multi-grid Constant-Tracking mode, (4) Multi-grid
Query-Area mode.

Single-grid denotes that the entire domain space is covered
by a single grid, whereas multi-grid denotes that more than
one grid overlays the domain space. Single-Grid mode
assumes a single wireless base station server supporting all
mobile clients, whereas, multi-grid mode assumes multiple
wireless base station servers for different sections of the grid.
Constant-Tracking means that mobile objects report every cell
change to the server; whereas Query-Area means that objects
only transmit location data on data on entering or leaving a
query area (mobile clients must be aware of query areas).
Note that Constant-Tracking is required for proximity queries.
In general, the following apply. Single-Grid is less scalable,
and single server. Multi-grid is more scalable, and supports
multiple servers or base stations. Constant-Tracking is
required for proximity queries, but results in more location
transmissions and is therefore less scalable. Query-Area
results in fewer location transmissions, is more scalable, and
supports location aware clients.

In Single-Grid, Constant-Tracking mode the entire domain
space is covered by a single grid and all clients are served by a
single wireless base station. Clients hash their position at
some specified interval. Whenever a cell change is detected,
the change is transmitted to the server. This mode has a high
number of transmissions but the lowest client-side memory
requirements (the client need only know the hash function).

Single-Grid, Query-Area mode proceeds in the following
manner. Again a single grid divides the entire domain-space;
however clients are made “location aware” of grid query areas.
When clients come on line, they inform the server they are
active. The server then transmits a list of specific grid cells
that are query areas (essentially a list of integers). Clients then
periodically hash their locations. Whenever a mobile client
enters or leaves a query cell, it transmits location data to the
server. In this manner transmissions are greatly minimized.
This mode has few transmissions but higher client-side
memory requirements – each client must be aware of all query
cells in the domain space.

Multi-grid, Constant-Tracking mode is for applications
that require proximity detection and more than one server or
wireless base station. The domain space may be divided by
multiple grids which overlay each other (same MAX and MIN
but different CELL_SIZE) or lay side by side (same

CELL_SIZE but different min and max). Generally each cell
of the largest grid will be served by a different wireless server.
Mobile clients will do a separate hash for each grid (since
CELL_SIZE, MIN, and MAX differ). Clients will transmit
location data for any grid cell change. When clients change
cell in the for the larger grid they are handed off between
wireless base stations.

Multi-Grid, Query-Area mode is the most scalable mode,
requires the fewest transmissions, and supports the largest
number clients. First, the domain space is divided by at least 2
overlaying grids. One grid will divide the domain space at a
coarse-level and another at a fine-level (see figure 4). As
usual, mobile objects will have a different hash function for
each grid and periodically hash their locations. Since this is
“Query-Area” mode objects are made aware of query cells, but
only those in the local area. Thus when a client comes online,
the local server informs it of only those queries within the
coarse-level grid cell it occupies. Queries are composed of
fine level grid cells (a list of integers). When a mobile enters
or exits a query area it transmits location data to the server.
When a mobile object enters a new coarse-level grid cell, it
gets a new list of queries from the server – those queries with
the client’s local coarse-level cell. The scalability of this
mode lies in the fact that course level cells can be scaled to
insure clients only see a certain number of queries and need
not be aware of every query within the entire domain space.
Thus transmissions are greatly reduced.

As an example of multi-grid hashing consider Figure 6.
The inner grid (gray) finely divides the domain space into 16
cells. The outer grid (black) coarsely divides the domain
space into 4 cells. The mobile object in the figure lies in cell
10 of the inner grid, and cell 3 of the outer grid. There is no
significant client-side overhead associated with multiple grids
since the client simply hashes twice using a different
CELL_SIZE. Each cell of the coarse grid may be served by a
dedicated wireless base station.

Figure 4 – Multi-grid hashing provides maximum scalability. Each area of
the coarse grid (outer numbers) is served by a different wireless base station

and special queries are defined by areas of the fine grid (inner numbers).

X. Smart Clients

Some applications may require smart clients, or those
clients that are aware of their surroundings. In this case, every
client will listen as a server to broadcast transmissions from
other clients. Essentially smart clients will function almost as
servers, storing data about other clients and query areas with
the same data structures as a server. For applications that
require it, smart clients could do proximity queries on their
data to very quickly determine queries such as: “who is near
me?” or “who is in the nearby critical monitoring areas?”

XI. Client Path History

History-mode may be applied to any Constant-Tracking
mode. A list of previous cells for each object is maintained on
the server along with a time stamp. Thus the path over time
for any object maybe queried as outlined previously in the
query section.

XII. Performance Analysis

First, server-side query performance is analyzed. Cell
Queries are O(1) by direct access of hash bucket X. Object
Queries are O(1) by direct access of the object-index.
Proximity Queries have the range of buckets is computed, then
an O(1) cell query performed on each bucket. Special Queries
are an O(1) cell query on each selected cell. History Queries,
if stored as an index of lists, are O(N) where the correct list
from N objects lists is found, then searched back to time T.
Next server memory requirements are considered. The
proposed method requires at a minimum requires (1) a hash
table with an integer per mobile object, and (2) an object index
with one integer object-ID, and one integer to index the
object’s current cell.

Mobile clients need only perform integer and floating point
multiplication, division, addition, and subtraction. Client-side
memory requirements depend upon the range-monitoring
mode but overall are quite low. In Single-Grid Constant-
Tracking mode clients only store the hash function. In Single-
Grid Query-Area mode, clients store the hash function and 1
integer for every query cell in the domain space. In Multi-grid
Constant-Tracking mode, clients the hash function and
different values of MIN, MAX, and CELL_SIZE. And in
Multi-grid Query-Area mode, clients store the hash function,
different values of MIN, MAX, and cell size for each grid, and
1 integer for every query cell in the local area (coarse grid
cell).

Most importantly, with regard to number of transmissions
Single-Grid, Query-Area mode performs exactly as MQM
since each object only transmits when it enters or leaves a grid
cell. Multi-Grid ,Query-Area mode performs exactly as MQM
as well, but in separate cells of the coarse grid. Constant-
Tracking modes however will result in significantly more
transmissions since objects transmit every cell change.

XIII. Simulation and Results

A simulation/visualization for the presented technique was
implemented using C++ and OpenGL, which is shown in
Figure 5. Evaluation of a range monitoring technique boils
down to one main question: “how many transmissions per
second can we expect given X number of clients in a given
space?” The number of transmissions per second in a range
monitoring environment is a function of several variables: (1)
number of clients – more clients result in more transmissions,
(2) size of the domain space – client domain space will affect
the size of grid cells and how quickly clients change cells, (3)
client average velocity – fast clients will change grid cells
more often, resulting in more frequent transmissions, (4) grid
and cell size – smaller cells mean more frequent cell changes,
(5) percentage of the domain space queried – as the number of
queries rises the number of transmissions will increase.

The above attributes will vary widely between systems,
since there is no standard range monitoring environment.
Considering these issues, for experimental analysis a
theoretical worst case scenario is tested where: (1) a large
number of mobile clients, (2) the clients constantly move at
high velocity, and (3) the domain space is a fairly contained
area. Objects in the simulation have a random distribution
over the domain space and all clients have a constant velocity
which traverses any given cell in approximately 10 seconds.
This worst case scenario is simply designed to test the limits
of the algorithm.

Figure 6 shows the results in average number of location
data transmissions per second for a number of mobile clients
and a given query area. As shown in the data, number of
transmissions for a substantial number of clients is scaled
down to almost trivial levels in many cases. For example,
suppose a single server handles 1000 clients and on average
75% of the domain space is under query. In that case we can
expect only around 108 location data transmissions per second
on average.

Figure 5 – Range Monitoring simulation used to estimate bandwidth
requirements based on number of objects, domain size, and average object
velocity. The shaded cells represent query areas and the circles represent

client transmissions.

Q
ue

ry
 A

re
a

Number of Mobile Clients
100 1000 2000 4000 8000 16000

10% 2 23 45 88 164 388
25% 6 37 81 180 365 742
50% 7 84 158 272 590 1268
75% 11 108 218 447 893 1750
100% 12 125 243 465 958 1873

Figure 6 – Results of experimentation in average number of transmissions of
location data per second. The number of clients denotes the number of mobile
clients in the domain space. Query area denotes the percentage of the domain
space covered by queries. 100% query area denotes constant tracking where

clients transmit on every cell change.

0

500

1000

1500

2000

100 1000 2000 4000 8000 16000

Number of Mobile Clients

Tr
an

sm
is

si
on

 P
er

S

ec
on

d

10% Query Area 25% Query Area
50% Query Area 75% Query Area
100% Query Area

Figure 7 – A graphical trend of the data presented in figure 8. As number of
clients and query area grows, the number of transmissions increases. Mobile

clients and transmissions per second are for the entire system.

XIV. Conclusions and Future Work

As with MQM, clients under this hash-based scheme only
transmit when entering or leaving a query cell. Essentially,
there cannot be fewer transmissions while range monitoring in
real time. The area where improvement may be made is that
of scalability. This hash-based scheme offers the performance
of MQM and the support for a heterogeneous client base, but
in addition adds: (1) option of constant tracking modes,
proximity queries, and history mode, (2) capability to tune
network performance on the fly by adjusting grid sizes, (3) the
grid-based scheme naturally lends itself to a multiple base
station setup.

Since number of transmissions cannot be reduced further
the only true obstacle to scalability in range monitoring
schemes is the limits on server hardware and the network
protocols themselves. Specifically, as the number of
transmissions increases, there comes a point where the
medium is flooded and there is constant collision. As an

example, again refer figure 8. Suppose a range monitoring
system is expected to serve about 2000 clients per wireless
base station with around 75% or the domain space queried. In
that case we must select hardware and protocol that will
gracefully handle around 218 transmissions per second on
average and the slight additional overhead from bookkeeping
transmissions and the protocol itself.

There are at least two promising possibilities for future
work. The first is an algorithm for automated monitoring and
adjustment of the grids for optimal network performance.
Some work has been done on dynamically adjusting grids in
other areas of computing that could certainly be incorporated
into range monitoring. The second is the exploration of multi-
channel schemes and multiplexing.

References
[1] Y. Cai and K. Hua. “Processing Range-Monitoring Queries on

Heterogeneous Mobile Objects”. 2002.
[2] Y. Cai and K. Hua. “An Adaptive Management Technique for Real-

Time Monitoring of Spatial Regions in Mobile Database Systems”.
IEEE Performance, Computing, and Communications Conference
2002.

[3] S. Avancha, F. Perich, A. Joshi, Y. Yesha Y. and K. Joshi. “Query
Routing and Processing in Mobile Ad-Hoc Environments”. Tech
Report, University of Maryland. 2001.

[4] S. Balakrishnan, M. Dunham, and A. Helal. “A Mobile Transaction
Model that Captures Both Movement and Behavior”. Mobile
Networks and Applications. Volume 2. Number 2. 1997.

[5] B. Bhargava and S. Madria. “A Transaction Model for Mobile
Computing”. International Database Engineering and Applications
Symposium. 1998.

[6] S. Banik and L. Gruenwald. “A Power Aware Technique to Manage
Real-Time Database Transactions in Mobile Ad-Hoc Networks”. 12th

International Workshop on Database and Expert System Applications.
2001.

[7] J. Mesit, E. Hastings, and R. Guha. “Optimized Collision Detection
for Flexible Objects in a Large Environment”. Computer Games:
Artificial Intelligence, Design, and Education. 2004.

[8] D. Chakraborty, O. Ratsimor, S. Tolia, D. Khushraj, A.
Kunjithapatham, A. Joshi, T. Finin, and Y. Yesha. “Allia: Alliance
Based Service Discovery for Ad-Hoc Environments”. ACM Mobile
Commerce Workshop. 2002.

[9] M. Gross, M. Teschner, B. Heidelberger, M. Mueller, and D.
Pomeranets. “Optimized Spatial Hashing for Collision Detection of
Deformable Models”. Vision, Modeling, and Visualization. 2003.

[10] E. Hastings, J. Mesit, and R. Guha. “T-Collide: Temporal, Real-
Time Collision Detection for Mobile Objects”. Computer
Games:Artificial Intelligence, Design, and Education. 2004.

[11] S. Prabhakar, Y. Xia, D. Kalashnikov, W. Aref, and S. Hambrusch.
“Queries as Data and Expanding Indexes: Techniques for Continuous
Queries on Moving Objects”. Purdue University. 2000.

[12] S. Prabhakar, Y. Xia, D. Kalashnikov, W. Aref, and S. Hambrusch.
“Query Indexing and Velocity Constrained Indexing: Scalable
Techniques for Continuous Queries on Moving Objects”. IEEE
Transactions on Computers. 2002.

[13] K. Lam, L. Ulusoy, T. Lee, E. Chan, and G. Li. “An Efficient Method
for Generating Location Updates for Processing of Location-
Dependent Continuous Queries”, 7th International Conference on
Database Systems for Advanced Applications. 2001.

http://ebiquity.umbc.edu/person/html/Dipanjan/Chakraborty/
http://ebiquity.umbc.edu/person/html/Yelena/Yesha/
http://ebiquity.umbc.edu/person/html/Tim/Finin/
http://ebiquity.umbc.edu/person/html/Anupam/Joshi/
http://ebiquity.umbc.edu/person/html/Anugeetha/Kunjithapatham/
http://ebiquity.umbc.edu/person/html/Anugeetha/Kunjithapatham/
http://ebiquity.umbc.edu/person/html/Deepali/Khushraj/
http://ebiquity.umbc.edu/person/html/Sovrin/Tolia/
http://ebiquity.umbc.edu/person/html/Olga/Vladi/Ratsimor/

	I. Introduction
	II. Related Work
	III. Spatial Hashing
	IV. Range Monitoring Process Overview
	V. Mobile Clients
	VI. Servers
	VII. Hash Functions
	VIII. Queries
	IX. Modes
	X. Smart Clients
	XI. Client Path History
	XII. Performance Analysis
	XIII. Simulation and Results
	XIV. Conclusions and Future Work
	References

