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Abstract—This paper proposes two real-time control 
mechanisms, Distributed Real-time Control with Regulating 
Buffer Threshold (DRC-RBT) and Adaptive Distributed Real-
time Control (ADRC), for minimizing the packet jitter.  To 
obtain the reliable results we also construct two platforms of 
testbeds, wireless and wired, to evaluate the proposed 
mechanisms.  The implemented wireless testbed has been suitably 
applied in the case of small networks, composed of four mobile 
nodes, for manageability.  In contrast, by using an emulator 
gateway to model ad-hoc environments, the wired testbed has 
been applied in case of larger networks possibly with 
consideration of node mobility.  Experimental results reveal that 
each of the proposed methods performs well in different 
situations.  In static network that packet delay is not significant, 
DRC-RBT is a preferable method; however, this method can 
serve only the incoming traffic of constant bit rate nature.  On 
the other hand, by appropriately adjusting the assigned weight 
value of average delay in ADRC, the obtained numerical tests 
suggest that ADRC can operate efficiently in both static and 
dynamic network scenarios.   

Keywords—Jitter control; mobile ad hoc networks; multimedia 
transmissions; protocol evaluation; testbed 

I.  INTRODUCTION  
In recent times, various technologies of wireless 

communications have been developed, including MANET 
(Mobile Ad-Hoc Networks) [1].  MANET is a distributed, 
mobile, wireless, multi-hop network that can operate without a 
priori given network infrastructure.  Naturally, a node can only 
communicate directly with its neighbor nodes that are within its 
transmission range.  If a node wants to send a packet to another 
node outside its transmission range, then that packet must be 
forwarded by intermediate nodes.  As a result, each MANET 
node must be equipped with a distributed routing capability.  
Current MANET applications are mainly for emergency and 
military communications.  However, MANET is expected to 
integrate with wireless sensor networks in a full-scale 
deployment, as a part of Intelligent Transportation Systems 
(ITS) in the future [2], [3].  As a result, there have been many 
research works on developing various MANET protocols in the 
past few years.  Those protocols are often evaluated by 
computer simulation software [4]–[6].  Computer simulation is 
an excellent choice for an initial phase of realizing a protocol, 
thanks to its manageability and ability to achieve any level of 
emulation complexity as desired.  However, despite abundance 

of wireless channel models, computer programs cannot be 
trusted to realistically simulate the uncertain dynamics of the 
physical layer.  Neither can simulations catch detailed bugs that 
may be experienced in the subtle interactions of operating 
system software, system hardware, and wireless environments.  
For these reasons, testbed experiments become not only a 
necessity for a final-stage evaluation platform [7]–[10], but 
also an incentive of testing real-time control protocols in this 
paper.  Two variations of MANET testbeds have been 
considered: wired and wireless [7]–[9].  While experiments 
involving large amount of nodes can be handled with ease in a 
wired testbed, owing to its controllability, scalability, and 
repeatability [11], a wireless testbed that uses true air interface 
is indispensable, since it can capture a real nature of MANETs 
that a wired testbed cannot.  We choose to develop both of 
them in order to evaluate our proposed mechanisms in a variety 
of scenarios.   

In ITS applications, MANETs are expected to carry real-
time multimedia services such as on-demand audio/video 
retrieval and streaming.  To enable effective communications 
for these services, quality of service (QoS) guarantees are often 
needed, especially packet delay and delay variance, or jitter.  In 
the past, there were many researchers tackling these QoS 
problems but most of them focused on wired network 
environments [12], [13].  QoS controls are much more difficult 
to design in MANETs because of unreliable characteristics of 
wireless channels, random node-placements, and dynamic 
topology changes caused by user movements.  These factors 
can greatly deteriorate the QoS, unless the network has been 
planned wisely.  In this paper, we report our experiences in 
constructing both wired and wireless ad-hoc network testbeds 
for the investigation of multimedia transmissions.  The focus is 
also on mean delay and jitter control mechanisms.  There were 
studies of delay and jitter controls performed by the route 
selection process [7], but we believe that the problem of timing 
variation should be addressed by the timing regulations of 
forwarding processes.  In this respect, two distributed real-time 
control mechanisms have been proposed and tested 
comparatively with a standard benchmark algorithm.   

The rest of the paper is organized as follows.  In Section II 
we give an overview of our testbeds.  In Section III we 
introduce our proposed mechanisms.  The experimental results 
of the mechanisms on the testbeds are discussed in Section IV.  
The paper is concluded in Section V.   
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II. TESTBED ARCHITECTURE 
Two platforms of testbeds, wireless and wired, are 

considered in this work.  A wired testbed that can emulate 
behaviors of an ad-hoc network is constructed for its 
controllability, scalability, and repeatability.  On the other 
hand, we realize that transmission algorithms should be 
verified in the real wireless channel.  Thus, a static-topology 
wireless ad-hoc network testbed is also assembled.   

A. Wireless Testbed 
The wireless testbed is composed of four laptops acted as 

mobile nodes.  The laptops used in this testbed are IBM 
ThinkPad R40s, equipped with IntelPro 2100 wireless chipsets.  
All nodes in this testbed run Linux operating system, 
communicate to each other via UDP socket, and get connected 
wirelessly by radio based on the IEEE 802.11b standard in ad-
hoc mode.  Fig. 1 depicts the architecture of end-to-end process 
in the testbed. The sender program transmits traffic stream to 
the receiver program, where delay and jitter are measured.  
Intermediate programs are employed in intermediate nodes to 
perform our proposed mechanisms.  The tested network 
consists of four nodes that are placed in four cars.  These cars 
are driven in the form of Car-Following [14] along a street at 
urban speed to perform dynamic node experiments, and are 
parked to perform static node experiments, always forming a 
network topology that each node can only communicate with 
the spatially adjacent nodes, as depicted in Fig. 2.  Node 1 and 
Node 4 act as the source and destination node, respectively.   

B. Wired Testbed 
Several characteristics of the wireless LAN channel are 

emulated in the wired testbed by a script called Emulator 
Gateway (EmuGw).  Fig. 3 illustrates the architecture of the 
wired testbed.  The figure shows that each process is connected 
via a socket defined by an IP address of that host and a port 
number.  As a result, an ad-hoc network, with a large number 
of nodes, is effectively emulated in a single computer.   

Since the purpose of EmuGw is to emulate the IEEE 
802.11b wireless channel characteristics, all packets from all 
nodes are not directly transmitted to each other, but they must 
be preprocessed by EmuGw.  When EmuGw receives a packet 
from any node, it will compute a status of the packet, including 
connectivity, link capacity and packet loss probability.  Firstly, 
connectivity is calculated from a simulated distance between 
each node pair.  Secondly, link capacity is mapped to the 
amount of transmission delay of each packet, using parameters 
from the real wireless transmission experiments.  Lastly, packet 
loss probability is set as a constant during each experiment.  
Fig. 4 depicts functional processes of the EmuGw.   

III. DISTRIBUTED REAL-TIME CONTROL MECHANISMS 
In this work, two real-time control mechanisms are 

proposed and compared with the uncontrolled transmissions, as 
a benchmark.  Both mechanisms are applied to each 
intermediate node for minimizing end-to-end jitter.  One of 
them is only applicable in the case of CBR traffic, while the 
other one can operate with VBR traffic as well.   

Figure 1.  Wireless testbed architecture 

Figure 2.  Wireless testbed topology, where arrows indicate direction of 
traffic flow 

Figure 3.  Wired testbed architecture 

Figure 4.  Functional processes of EmuGw 



A. Distributed Real-time Control with Regulating Buffer 
Threshold (DRC-RBT) 
In this mechanism, each intermediate node accommodates 

incoming packets in proper buffers, which are assigned on a 
per-flow basis.  Upon receiving the first packet of a flow, the 
node will calculate the appropriate time duration for holding 
packets in the buffer before forwarding it to the next node.  
This duration is computed from a predefined buffer threshold 
and a transmission interval of each packet.  When the first 
packet of a flow is due, the node starts forwarding packets of 
that flow according to the sequence of their arrivals and the 
transmission interval of the flow.  To take into account of lost 
packets, the mechanism can calculate a due time of each of the 
following packets from their sequence numbers and the 
transmission interval.  Inherently, only CBR traffic is 
applicable for this mechanism.   

Fig. 5 illustrates an example of DRC-RBT process when a 
buffer threshold is set to 2 frames, i.e., the intermediate node 
starts forwarding the first packet after it reaches two time slots 
and transmits the following packets at their due time according 
to their sequences.  Similar to the concept of playout delay, this 
mechanism is supposed to decrease end-to-end jitter 
significantly with the price of increased end-to-end delay.  
However, given the right choice of the regulating buffer 
threshold, the packet delay should still be made tolerable.   

B. Adaptive Distributed Real-time Control (ADRC) 
As the number of hops increases, DRC-RBT needs a larger 

buffer threshold to absorb all the increased packet timing 
uncertainties.  This may lead to unacceptable end-to-end delay.  
To overcome this foreseen problem, ADRC is here proposed.  
Similar to DRC-RBT, the mechanism of ADRC is distributed 
and every node is designed to help regulating the packet delays.  
However, instead of using a buffer threshold as a criterion and 
always delaying outgoing packets, now each packet may be 
forwarded immediately, or may be held in a buffer for a 
moment before being transmitted.  ADRC will classify each 
incoming packet as early, in time, or late, based on each 
packet’s arrival time, and adaptively determine a suitable due 
time for each packet individually.  Whether packet i is early, in 
time, or late depends on its relative delay, or relative_delayi, 
that could be calculated as in (1).  When a node receives packet 
i, ADRC mechanism will update the average delay, or 
average_delayi, by using exponentially weighted moving 
average (EWMA) as shown in (2), where w denotes the weight, 
and average_delay1 = delay1.  Delay time is computed 
according to (3), where Ri and Si denote the receiving time and 
sending time of packet i respectively.  Here, Si is assigned as a 
tag to every incoming packet, based on a timestamp from the 
preceding node.  Without time-synchronization among nodes, 
the apparent time may differ, but assuming that all nodes have 
the same clock speed, the offset is a constant.   

 relative_delayi = delayi − ave_delayi (1) 

 ave_delayi + 1 = (1 − w) × ave_delayi + w × delayi (2) 

 delayi = Ri − Si (3) 

Fig. 6 gives a summary on how ADRC make a decision.  In 
the diagram, c is defined as the lower-bound of relative delay 
that a node will not add more delay to a packet and d is upper-
bound that node will not drop the packet.  ADRC does not only 
greatly reduce delay time compared to DRC-RBT but it can 
also be applied for CBR and VBR traffic since it does not rely 
on the assumption of constant transmission interval.   

Figure 5.  Example of DRC-RBT process 

Figure 6.  ADRC decision flowchart 



IV. EXPERIMENTAL RESULTS 
The proposed mechanisms, along with the standard 

algorithm, are implemented in our testbeds and experiments are 
carried out in various conditions to observe the effect on end-
to-end jitter and delay.  Specifically, two conditions are of 
interest and shown here; node mobility and network size.  All 
tests used source file encoded as MPEG-4 standard.  Two types 
of traffics, CBR and VBR, have been considered in the 
experiments.  For VBR traffic, the bit rate depends on the 
content of each frame.  Frame interval has been set to 66.7 ms 
(calculated from 15 frames/second frame rate).  In CBR case, 
every packet is transmitted as Constant Bit Rate with 61.9 ms 
sending interval (average bit rate of VBR traffic).  While 
packet size in both cases is fixed as 1024 bytes.  Definitions of 
the parameters in all experiments are as followed; 

th = buffer threshold of DRC-RBT = 10 frames 
w = weight of ADRC = 0.02 
d = dropping threshold of ADRC = 500 ms 
c = delaying threshold of ADRC = 2 ms 
l = packet loss probability per hop in the wired testbed 

A. Effect of Node Mobility 
To observe the effect of node mobility, two testing 

scenarios are performed.  Initially, the wireless testbed is used 
to observe the effect of environmental changes while 
maintaining distances among nodes.  Alternatively, the wired 
testbed is used to study the effect of route changes.   

1) Environmental Changes: The testing scenario as 
described in section II–A is performed, where traffic from 
Node i is imposed to go only to Node i + 1, 1 ≤ i ≤ 3, without 
route alteration.  In the test, we compared jitter and delay in 
both moving and non-moving node scenarios.  Figs. 7 and 8 
show the jitter and delay, respectively, of the CBR case with 
uncontrolled transmissions, DRC-RBT, and ADRC.  For the 
VBR case with uncontrolled transmissions and ADRC, as 
DRC-RBT is not applicable to VBR traffic, the jitter and delay 
are shown in Figs. 9 and 10, respectively.   

Testing in wireless scenario cannot be performed for a long 
period of time because of several limitations.  Therefore, we 
would not directly compare their values.  In this experiment, 
we focus on the aspect of how well each mechanism can 
perform in various situations.  From the results, it is clear that 
environmental changes can cause unpredictable delay, which 
simply causes high jitter in the uncontrolled transmissions.  
DRC-RBT copes with this problem by increasing the end-to-
end delay, while ADRC solves this by its weighing technique.  
In ADRC, delay gradually decreases upon weighing value after 
it abruptly increases, which implies that jitter can be reduced.   

2) Route Changes: This scenario is tested on the wired 
testbed to allow us to control node’s mobility pattern, using the 
Car Following Model.  The theory of this model rests on the 
assumption that all vehicles travel in one lane with no 
overtaking.  The speed and acceleration of each vehicle may 
change over time, according to the speed and acceleration of 
the vehicles in front.  However, there is no restriction on the 
distance between each car.  Thus, for j ≥ 1 and k ≥ 2, a route 
change may occur whenever a distance between Node j and 

Node j + k is small enough that Node j and Node j + k can 
communicate directly.  This experiment uses a 30-node 
network, with the traffic originated from Node 1 and destined 
to Node 30, and the packet loss probability per hop l = 0.005.  
The jitter and delay of uncontrolled transmissions, DRC-RBT 
and ADRC are shown in Figs. 11 and 12, respectively.   

From the results, we can see that when route changes occur, 
DRC-RBT no longer works, because this mechanism relies on 
each intermediate node to perform distributed timing 
compensation.  Thus, whenever a node is skipped, the proper 
timing offset is lost.  Consequently, DRC-RBT should only be 
used in static networks with invariable hop counts.  On the 
other hand, ADRC has no such problem, and it always 
outperforms the uncontrolled transmissions, especially in the 
dynamic scenario, although it has higher jitter than DRC-RBT 
in the static scenario.   

B. Effect of Network Size 
The wired testbed is a more appropriate choice in this 

scenario for the reason of tractability, since the number of 
mobile nodes has to be varied.  In this experiment, all nodes are 
static, while the network size is varied from 10 hops to 50 
hops, with l = 0.  Fig. 13 displays the average jitter and delay of 
uncontrolled transmissions compared with DRC-RBT and 
ADRC.   

Intuitively, end-to-end delay is proportional to the number 
of hops in either case.  Nevertheless, jitter has no such 
relationship, especially in DRC-RBT and ADRC.  For a larger 
network, there is a higher possibility that delay variation can be 
compensated.  Moreover, the jitter becomes almost 
independent to the number of hops when all intermediate nodes 
perform the proposed jitter control mechanisms.  This is a 
desirable property in multimedia transmissions which can help 
minimize the amount of buffer allocated at receivers.   

V. CONCLUSION 
The works presented in this paper are two-fold; proposing 

distributed real-time control mechanisms for minimizing end-
to-end jitter in MANETs, and creating testbeds for evaluating 
them.  The results have shown that not only new techniques are 
needed for MANETs, but they must also be tested in the real 
environments.  Obtained results from the testbed experiments 
suggest that these mechanisms, while increasing the packet 
delay, can decrease the end-to-end jitter significantly.  DRC-
RBT mechanism is suitable for transmitting CBR traffic in 
static networks, especially when the end-to-end delay is not 
crucial.  On the contrary, ADRC is appropriate not only for 
both types of traffic, but also for static and dynamic networks.  
We also discover that packet delays in MANETs using IEEE 
802.11b air interface in the dynamic node scenario are highly 
unpredictable, as it is not designed to support mobility.  This 
observation truly emphasizes the necessity of testbed in 
protocol designing.  We are looking forward to performing 
experiments in more scenarios in the future; including when 
there are competing traffic streams.  Ultimately, we firmly 
believe that the proposed mechanisms are going to greatly 
improve the QoS in term of jitter for multimedia transmissions 
in MANETs that employ different MAC protocols as well.   



 

Figure 7.  Jitter of CBR traffic in wireless static and dynamic node scenarios 

 

Figure 8.  Delay of CBR traffic in wireless static and dynamic node scenarios 

 

Figure 9.  Jitter of VBR traffic in wireless static and dynamic node scenarios 

 

Figure 10.  Delay of VBR traffic in wireless static and dynamic node scenarios 



 

 

Figure 11.  Jitter of CBR and VBR traffic in route change scenarios 

 

Figure 12.  Delay of CBR and VBR traffic in route change scenarios 

 

Figure 13.  Average jitter and average delay of CBR and VBR traffic vs. 
number of hops 
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