
MANET Testbeds for Evaluation of Real-Time
Controls in Multimedia Transmissions

Panida Veeravuttiphol
Data and Supplementary Network

Total Access Communication, PLC.
Bangkok, 10900, Thailand

panida.v@dtac.co.th

Patrachart Komolkiti
Department of Computer and Network Engineering

Assumption University
Bangkok, 10240, Thailand

patrachart@eng.au.edu

Chaodit Aswakul
Department of Electrical Engineering

Chulalongkorn University
Bangkok, 10330, Thailand

chaodit.a@chula.ac.th

Abstract—This paper proposes two real-time control
mechanisms, Distributed Real-time Control with Regulating
Buffer Threshold (DRC-RBT) and Adaptive Distributed Real-
time Control (ADRC), for minimizing the packet jitter. To
obtain the reliable results we also construct two platforms of
testbeds, wireless and wired, to evaluate the proposed
mechanisms. The implemented wireless testbed has been suitably
applied in the case of small networks, composed of four mobile
nodes, for manageability. In contrast, by using an emulator
gateway to model ad-hoc environments, the wired testbed has
been applied in case of larger networks possibly with
consideration of node mobility. Experimental results reveal that
each of the proposed methods performs well in different
situations. In static network that packet delay is not significant,
DRC-RBT is a preferable method; however, this method can
serve only the incoming traffic of constant bit rate nature. On
the other hand, by appropriately adjusting the assigned weight
value of average delay in ADRC, the obtained numerical tests
suggest that ADRC can operate efficiently in both static and
dynamic network scenarios.

Keywords—Jitter control; mobile ad hoc networks; multimedia
transmissions; protocol evaluation; testbed

I. INTRODUCTION
In recent times, various technologies of wireless

communications have been developed, including MANET
(Mobile Ad-Hoc Networks) [1]. MANET is a distributed,
mobile, wireless, multi-hop network that can operate without a
priori given network infrastructure. Naturally, a node can only
communicate directly with its neighbor nodes that are within its
transmission range. If a node wants to send a packet to another
node outside its transmission range, then that packet must be
forwarded by intermediate nodes. As a result, each MANET
node must be equipped with a distributed routing capability.
Current MANET applications are mainly for emergency and
military communications. However, MANET is expected to
integrate with wireless sensor networks in a full-scale
deployment, as a part of Intelligent Transportation Systems
(ITS) in the future [2], [3]. As a result, there have been many
research works on developing various MANET protocols in the
past few years. Those protocols are often evaluated by
computer simulation software [4]–[6]. Computer simulation is
an excellent choice for an initial phase of realizing a protocol,
thanks to its manageability and ability to achieve any level of
emulation complexity as desired. However, despite abundance

of wireless channel models, computer programs cannot be
trusted to realistically simulate the uncertain dynamics of the
physical layer. Neither can simulations catch detailed bugs that
may be experienced in the subtle interactions of operating
system software, system hardware, and wireless environments.
For these reasons, testbed experiments become not only a
necessity for a final-stage evaluation platform [7]–[10], but
also an incentive of testing real-time control protocols in this
paper. Two variations of MANET testbeds have been
considered: wired and wireless [7]–[9]. While experiments
involving large amount of nodes can be handled with ease in a
wired testbed, owing to its controllability, scalability, and
repeatability [11], a wireless testbed that uses true air interface
is indispensable, since it can capture a real nature of MANETs
that a wired testbed cannot. We choose to develop both of
them in order to evaluate our proposed mechanisms in a variety
of scenarios.

In ITS applications, MANETs are expected to carry real-
time multimedia services such as on-demand audio/video
retrieval and streaming. To enable effective communications
for these services, quality of service (QoS) guarantees are often
needed, especially packet delay and delay variance, or jitter. In
the past, there were many researchers tackling these QoS
problems but most of them focused on wired network
environments [12], [13]. QoS controls are much more difficult
to design in MANETs because of unreliable characteristics of
wireless channels, random node-placements, and dynamic
topology changes caused by user movements. These factors
can greatly deteriorate the QoS, unless the network has been
planned wisely. In this paper, we report our experiences in
constructing both wired and wireless ad-hoc network testbeds
for the investigation of multimedia transmissions. The focus is
also on mean delay and jitter control mechanisms. There were
studies of delay and jitter controls performed by the route
selection process [7], but we believe that the problem of timing
variation should be addressed by the timing regulations of
forwarding processes. In this respect, two distributed real-time
control mechanisms have been proposed and tested
comparatively with a standard benchmark algorithm.

The rest of the paper is organized as follows. In Section II
we give an overview of our testbeds. In Section III we
introduce our proposed mechanisms. The experimental results
of the mechanisms on the testbeds are discussed in Section IV.
The paper is concluded in Section V.

This material is based upon research supported by the Cooperation
Project between the Department of Electrical Engineering and Private Sector
for Research and Development, Chulalongkorn University, Thailand.

II. TESTBED ARCHITECTURE
Two platforms of testbeds, wireless and wired, are

considered in this work. A wired testbed that can emulate
behaviors of an ad-hoc network is constructed for its
controllability, scalability, and repeatability. On the other
hand, we realize that transmission algorithms should be
verified in the real wireless channel. Thus, a static-topology
wireless ad-hoc network testbed is also assembled.

A. Wireless Testbed
The wireless testbed is composed of four laptops acted as

mobile nodes. The laptops used in this testbed are IBM
ThinkPad R40s, equipped with IntelPro 2100 wireless chipsets.
All nodes in this testbed run Linux operating system,
communicate to each other via UDP socket, and get connected
wirelessly by radio based on the IEEE 802.11b standard in ad-
hoc mode. Fig. 1 depicts the architecture of end-to-end process
in the testbed. The sender program transmits traffic stream to
the receiver program, where delay and jitter are measured.
Intermediate programs are employed in intermediate nodes to
perform our proposed mechanisms. The tested network
consists of four nodes that are placed in four cars. These cars
are driven in the form of Car-Following [14] along a street at
urban speed to perform dynamic node experiments, and are
parked to perform static node experiments, always forming a
network topology that each node can only communicate with
the spatially adjacent nodes, as depicted in Fig. 2. Node 1 and
Node 4 act as the source and destination node, respectively.

B. Wired Testbed
Several characteristics of the wireless LAN channel are

emulated in the wired testbed by a script called Emulator
Gateway (EmuGw). Fig. 3 illustrates the architecture of the
wired testbed. The figure shows that each process is connected
via a socket defined by an IP address of that host and a port
number. As a result, an ad-hoc network, with a large number
of nodes, is effectively emulated in a single computer.

Since the purpose of EmuGw is to emulate the IEEE
802.11b wireless channel characteristics, all packets from all
nodes are not directly transmitted to each other, but they must
be preprocessed by EmuGw. When EmuGw receives a packet
from any node, it will compute a status of the packet, including
connectivity, link capacity and packet loss probability. Firstly,
connectivity is calculated from a simulated distance between
each node pair. Secondly, link capacity is mapped to the
amount of transmission delay of each packet, using parameters
from the real wireless transmission experiments. Lastly, packet
loss probability is set as a constant during each experiment.
Fig. 4 depicts functional processes of the EmuGw.

III. DISTRIBUTED REAL-TIME CONTROL MECHANISMS
In this work, two real-time control mechanisms are

proposed and compared with the uncontrolled transmissions, as
a benchmark. Both mechanisms are applied to each
intermediate node for minimizing end-to-end jitter. One of
them is only applicable in the case of CBR traffic, while the
other one can operate with VBR traffic as well.

Figure 1. Wireless testbed architecture

Figure 2. Wireless testbed topology, where arrows indicate direction of
traffic flow

Figure 3. Wired testbed architecture

Figure 4. Functional processes of EmuGw

A. Distributed Real-time Control with Regulating Buffer
Threshold (DRC-RBT)
In this mechanism, each intermediate node accommodates

incoming packets in proper buffers, which are assigned on a
per-flow basis. Upon receiving the first packet of a flow, the
node will calculate the appropriate time duration for holding
packets in the buffer before forwarding it to the next node.
This duration is computed from a predefined buffer threshold
and a transmission interval of each packet. When the first
packet of a flow is due, the node starts forwarding packets of
that flow according to the sequence of their arrivals and the
transmission interval of the flow. To take into account of lost
packets, the mechanism can calculate a due time of each of the
following packets from their sequence numbers and the
transmission interval. Inherently, only CBR traffic is
applicable for this mechanism.

Fig. 5 illustrates an example of DRC-RBT process when a
buffer threshold is set to 2 frames, i.e., the intermediate node
starts forwarding the first packet after it reaches two time slots
and transmits the following packets at their due time according
to their sequences. Similar to the concept of playout delay, this
mechanism is supposed to decrease end-to-end jitter
significantly with the price of increased end-to-end delay.
However, given the right choice of the regulating buffer
threshold, the packet delay should still be made tolerable.

B. Adaptive Distributed Real-time Control (ADRC)
As the number of hops increases, DRC-RBT needs a larger

buffer threshold to absorb all the increased packet timing
uncertainties. This may lead to unacceptable end-to-end delay.
To overcome this foreseen problem, ADRC is here proposed.
Similar to DRC-RBT, the mechanism of ADRC is distributed
and every node is designed to help regulating the packet delays.
However, instead of using a buffer threshold as a criterion and
always delaying outgoing packets, now each packet may be
forwarded immediately, or may be held in a buffer for a
moment before being transmitted. ADRC will classify each
incoming packet as early, in time, or late, based on each
packet’s arrival time, and adaptively determine a suitable due
time for each packet individually. Whether packet i is early, in
time, or late depends on its relative delay, or relative_delayi,
that could be calculated as in (1). When a node receives packet
i, ADRC mechanism will update the average delay, or
average_delayi, by using exponentially weighted moving
average (EWMA) as shown in (2), where w denotes the weight,
and average_delay1 = delay1. Delay time is computed
according to (3), where Ri and Si denote the receiving time and
sending time of packet i respectively. Here, Si is assigned as a
tag to every incoming packet, based on a timestamp from the
preceding node. Without time-synchronization among nodes,
the apparent time may differ, but assuming that all nodes have
the same clock speed, the offset is a constant.

 relative_delayi = delayi − ave_delayi (1)

 ave_delayi + 1 = (1 − w) × ave_delayi + w × delayi (2)

 delayi = Ri − Si (3)

Fig. 6 gives a summary on how ADRC make a decision. In
the diagram, c is defined as the lower-bound of relative delay
that a node will not add more delay to a packet and d is upper-
bound that node will not drop the packet. ADRC does not only
greatly reduce delay time compared to DRC-RBT but it can
also be applied for CBR and VBR traffic since it does not rely
on the assumption of constant transmission interval.

Figure 5. Example of DRC-RBT process

Figure 6. ADRC decision flowchart

IV. EXPERIMENTAL RESULTS
The proposed mechanisms, along with the standard

algorithm, are implemented in our testbeds and experiments are
carried out in various conditions to observe the effect on end-
to-end jitter and delay. Specifically, two conditions are of
interest and shown here; node mobility and network size. All
tests used source file encoded as MPEG-4 standard. Two types
of traffics, CBR and VBR, have been considered in the
experiments. For VBR traffic, the bit rate depends on the
content of each frame. Frame interval has been set to 66.7 ms
(calculated from 15 frames/second frame rate). In CBR case,
every packet is transmitted as Constant Bit Rate with 61.9 ms
sending interval (average bit rate of VBR traffic). While
packet size in both cases is fixed as 1024 bytes. Definitions of
the parameters in all experiments are as followed;

th = buffer threshold of DRC-RBT = 10 frames
w = weight of ADRC = 0.02
d = dropping threshold of ADRC = 500 ms
c = delaying threshold of ADRC = 2 ms
l = packet loss probability per hop in the wired testbed

A. Effect of Node Mobility
To observe the effect of node mobility, two testing

scenarios are performed. Initially, the wireless testbed is used
to observe the effect of environmental changes while
maintaining distances among nodes. Alternatively, the wired
testbed is used to study the effect of route changes.

1) Environmental Changes: The testing scenario as
described in section II–A is performed, where traffic from
Node i is imposed to go only to Node i + 1, 1 ≤ i ≤ 3, without
route alteration. In the test, we compared jitter and delay in
both moving and non-moving node scenarios. Figs. 7 and 8
show the jitter and delay, respectively, of the CBR case with
uncontrolled transmissions, DRC-RBT, and ADRC. For the
VBR case with uncontrolled transmissions and ADRC, as
DRC-RBT is not applicable to VBR traffic, the jitter and delay
are shown in Figs. 9 and 10, respectively.

Testing in wireless scenario cannot be performed for a long
period of time because of several limitations. Therefore, we
would not directly compare their values. In this experiment,
we focus on the aspect of how well each mechanism can
perform in various situations. From the results, it is clear that
environmental changes can cause unpredictable delay, which
simply causes high jitter in the uncontrolled transmissions.
DRC-RBT copes with this problem by increasing the end-to-
end delay, while ADRC solves this by its weighing technique.
In ADRC, delay gradually decreases upon weighing value after
it abruptly increases, which implies that jitter can be reduced.

2) Route Changes: This scenario is tested on the wired
testbed to allow us to control node’s mobility pattern, using the
Car Following Model. The theory of this model rests on the
assumption that all vehicles travel in one lane with no
overtaking. The speed and acceleration of each vehicle may
change over time, according to the speed and acceleration of
the vehicles in front. However, there is no restriction on the
distance between each car. Thus, for j ≥ 1 and k ≥ 2, a route
change may occur whenever a distance between Node j and

Node j + k is small enough that Node j and Node j + k can
communicate directly. This experiment uses a 30-node
network, with the traffic originated from Node 1 and destined
to Node 30, and the packet loss probability per hop l = 0.005.
The jitter and delay of uncontrolled transmissions, DRC-RBT
and ADRC are shown in Figs. 11 and 12, respectively.

From the results, we can see that when route changes occur,
DRC-RBT no longer works, because this mechanism relies on
each intermediate node to perform distributed timing
compensation. Thus, whenever a node is skipped, the proper
timing offset is lost. Consequently, DRC-RBT should only be
used in static networks with invariable hop counts. On the
other hand, ADRC has no such problem, and it always
outperforms the uncontrolled transmissions, especially in the
dynamic scenario, although it has higher jitter than DRC-RBT
in the static scenario.

B. Effect of Network Size
The wired testbed is a more appropriate choice in this

scenario for the reason of tractability, since the number of
mobile nodes has to be varied. In this experiment, all nodes are
static, while the network size is varied from 10 hops to 50
hops, with l = 0. Fig. 13 displays the average jitter and delay of
uncontrolled transmissions compared with DRC-RBT and
ADRC.

Intuitively, end-to-end delay is proportional to the number
of hops in either case. Nevertheless, jitter has no such
relationship, especially in DRC-RBT and ADRC. For a larger
network, there is a higher possibility that delay variation can be
compensated. Moreover, the jitter becomes almost
independent to the number of hops when all intermediate nodes
perform the proposed jitter control mechanisms. This is a
desirable property in multimedia transmissions which can help
minimize the amount of buffer allocated at receivers.

V. CONCLUSION
The works presented in this paper are two-fold; proposing

distributed real-time control mechanisms for minimizing end-
to-end jitter in MANETs, and creating testbeds for evaluating
them. The results have shown that not only new techniques are
needed for MANETs, but they must also be tested in the real
environments. Obtained results from the testbed experiments
suggest that these mechanisms, while increasing the packet
delay, can decrease the end-to-end jitter significantly. DRC-
RBT mechanism is suitable for transmitting CBR traffic in
static networks, especially when the end-to-end delay is not
crucial. On the contrary, ADRC is appropriate not only for
both types of traffic, but also for static and dynamic networks.
We also discover that packet delays in MANETs using IEEE
802.11b air interface in the dynamic node scenario are highly
unpredictable, as it is not designed to support mobility. This
observation truly emphasizes the necessity of testbed in
protocol designing. We are looking forward to performing
experiments in more scenarios in the future; including when
there are competing traffic streams. Ultimately, we firmly
believe that the proposed mechanisms are going to greatly
improve the QoS in term of jitter for multimedia transmissions
in MANETs that employ different MAC protocols as well.

Figure 7. Jitter of CBR traffic in wireless static and dynamic node scenarios

Figure 8. Delay of CBR traffic in wireless static and dynamic node scenarios

Figure 9. Jitter of VBR traffic in wireless static and dynamic node scenarios

Figure 10. Delay of VBR traffic in wireless static and dynamic node scenarios

Figure 11. Jitter of CBR and VBR traffic in route change scenarios

Figure 12. Delay of CBR and VBR traffic in route change scenarios

Figure 13. Average jitter and average delay of CBR and VBR traffic vs.
number of hops

REFERENCES

[1] The Internet Engineering Task Force (IETF) Mobile Ad-hoc Networks
(MANET) Working Group. (April 2006). Available:
www.ietf.org/html.charters/manet-charter.html

[2] J P. Horrell. (September 2004). “Intelligence: Behold the all-seeing, self-
parking, safety-enforcing, networked automobile”, Popular Science,
special section: the future of the car. Available: www.popsci.com

[3] M. Rabel, A. Schmeiser and H. P. Grobmann, “Ad-hoc in-car
networking concept”, IEEE Trans. Intell Transp Syst, September 2005.

[4] ns-2. Available: www.isi.edu/nsnam/ns
[5] GloMoSim. Available: pcl.cs.ucla.edu/projects/glomosim
[6] OPNET Modeler. (September 2006). Available:

www.opnet.com/products/modeler/home-1.html
[7] D. A. Maltz and J. Broch, “Lessons from a full-scale multihop wireless

ad hoc network testbed”, IEEE Pers Commun, February 2001.
[8] H. Lundgren, D. Lundberg, J. Nielsen, E. Nordstrom and C. Tschudin,

“A large-scale testbed for reproducible ad hoc protocol evaluations”,
IEEE WCNC, 2002.

[9] Y. Zhang and W. Li, “An integrated environment for testing mobile ad-
hoc networks”, ACM MOBIHOC, 2002.

[10] R. Ramanathan and R. Hain, “An ad hoc wireless testbed for scalable,
adaptive QoS support”, IEEE WCNC, 2000.

[11] S. Sanghani, T. Brown, S. Bhandare and S. Doshi, “EWANT: The
Emulated Wireless Ad hoc Network Testbed”, IEEE WCNC, 2003.

[12] D. Verma, H. Zhang, and D. Ferrari, “Delay jitter control for real-time
communication in a packet switching network”, IEEE TriCom, 1991.

[13] S. F. Bush, A. Kulkarni, S. Evans and L. Galup, “Active jitter control”,
7th International IS&N Conference, Intelligence in Services and
Networks (ISN), February 23–25, 2000.

[14] R. W. Rothery, “Car following models”, Traffic flow theory,
Transportation Research Board, Special Report. Chap. 4, 1992.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

