
An Architecture for Experimenting with Traffic
Engineering and QoS Routing Algorithms

Stefano Avallone, Simon Pietro Romano and Giorgio Ventre
COMICS Lab, Dip. Informatica e Sistemistica

Università di Napoli Federico II
Via Claudio 21, 80125 Napoli, Italy

Email: {stavallo, spromano, giorgio}@unina.it

Abstract—The Internet research community is making a great
effort in order to define efficient network management and
control functions. The goal is to make the best use of the
network infrastructure, while meeting the users’ requirements
at the same time. One of the keys to achieve such a goal is
the routing algorithm. A wide variety of traffic engineering
and QoS routing algorithms have been proposed aiming to
optimize resources and provide QoS to the users. However,
the performace of such algorithms have usually been evaluated
through simulations. In this paper, we present an architecture
which enables to experiment with different routing algorithms
in a real network. The performance of the routing algorithms
can then be evaluated in terms of number of admitted flow
requests, average delay, packet loss and jitter. We describe how
we implemented all the components of the proposed architecture
and how we setup a testbed consisting of Linux PCs. Finally,
we illustrate an experiment we conducted to demonstrate the
operation of our architecture.

I. INTRODUCTION

Recently, a great deal of research efforts have been devoted
to optimizing network management and control. In this con-
text, a major challenge is to define a routing algorithm which
meets the users’ requirements, at the same time optimizing
network resources utilization. A wide variety of intra-domain
routing algorithms have been proposed for this purpose (e.g.,
[1][2][3][4][5][6]). They are mainly centralized algorithms
which assume the complete knowledge of the topology is
available and individually route each flow request. Such
routing algorithms can be roughly divided into QoS routing
and traffic engineering algorithms. The former represent QoS
requirements as constraints and address the problem of finding
a multi-constrained optimal path. The latter target resource
optimization and consider the bandwidth (or the effective
bandwidth) as the sole QoS requirement.

The performance of the routing algorithms discussed above
has been typically evaluated through simulations. Indeed,
setting up a testbed for experimenting with such algorithms
presents many challenging issues. Firstly, such QoS rout-
ing and traffic engineering algorithms are not suitable for
a distributed hop-by-hop implementation, where each router
autonomously determines the next hop for a packet based on
the knowledge of the network topology and the destination of
the packet. Indeed, such algorithms also require the knowledge
of the QoS requirements of the flow the packet belongs to.
Furthermore, in case multiple additive QoS constraints are

considered, the shortest path from an intermediate node to
the destination node may not be a sub-path of the shortest
path from the source node to the destination node. Indeed, it
has been shown [7] that subsections of shortest paths are not
shortest paths in multiple dimensions. As a consequence, an
intermediate node should also be aware of the source node of
the packet inside the domain, i.e., the ingress node through
which the packet entered the domain, to forward the packet
along the shortest path from the source node to the destination
node.

A centralized approach combined with explicit routing is
instead more efficient. The explicit path for each flow is
computed just once by a single entity (e.g., the ingress node
or a centralized manager) and established using a signaling
protocol. MPLS (Multi-Protocol Label Switching) [8], e.g., is
a network infrastructure which enables to setup virtual circuits
(denoted as LSPs – Label Switched Paths) along explicit paths.
A packet filter installed on the ingress node classifies the
packets and forwards them along the appropriate LSP.

In the centralized approach, however, we need to provide
the single entity computing the explicit paths with the network
topology and the vector of link weights associated with every
link. Traffic engineering algorithms usually require just one
link weight (the available bandwidth), while QoS routing
algorithms typically require multiple additive link weights
(e.g., delay and jitter). The network topology may be built by
exploiting the operation of link state routing protocols (e.g.,
OSPF – Open Shortest Path First [9]), which provide that each
router stores the messages exchanged with its peers in a link
state database. As far as the vector of link weights, we may
extend a link state routing protocol to have it carry information
about the link weights. Such an approach is certainly required
in case the link weights are dynamic and reflect the current
QoS values experienced by packets crossing the link. However,
in [10] we show that while an accurate knowledge of the
current available bandwidth is needed, using dynamic additive
link weights requires complex routing strategies to assure that
the QoS granted to admitted flows is still preserved after new
flows are routed. Instead, static link weights based on upper
bounds to the QoS values that can be experienced across a link
require the routing algorithm to perform no other operation
than computing the explicit paths.

In the implementation of our testbed, we opted for the

strategy to set the additive QoS link weights defined in [10].
Since they are static, there is no need to extend a link state
protocol in order to propagate them among routers. As far
as the available bandwidth, if we assume that all the flows
entering the network are managed by the ingress nodes or the
centralized manager, then we do not need to propagate either
the information about the available bandwidth. Indeed, on
every link the available bandwidth initially equals the physical
capacity and is then decremented each time a flow is routed
on the link by an amount equal to the bandwidth requirement
of the flow. Such a strategy implies that, in case the explicit
paths for the flows entering the network through an ingress
node are computed by the same ingress router, the ingress
nodes need to exchange the information about the explicit
paths they have computed and the bandwidth requirement of
the flows in order to have a consistent view of the bandwidth
availability on the network links. In case of a centralized
manager which computes the path for all the flows, instead,
there is clearly no need for such exchange of information.
However, the centralized manager has to communicate the
computed explicit paths to the ingress nodes, so they can
establish the corresponding LSPs.

Our architecture comprises a centralized manager, denoted
as Network Controller, which manages all the flows entering
the network. The Network Controller may be configured to use
one of the routing algorithms we have implemented to find
an explicit path for each flow request. Another component
(the Service Manager) produces the requests for the arrival
and termination of flows. If there are not enough resources
to guarantee the QoS requirements of a flow (i.e., the routing
algorithm does not return any feasible path), our architecture
does not admit the flow. Otherwise, the computed explicit path
is established and the traffic corresponding to the request being
served is generated. We underline that all the processing of the
flows is done automatically. For this reason, we refer to our
architecture as the automated manager.

To demonstrate the operation of the automated manager
we implemented all of its constituent modules in a real
experimental testbed made of Linux PCs. Each component
communicates with the others by means of standard protocols
(e.g. LDAP, SNMP, etc.). This property allows for modularity,
i.e. it is possible, for example, to replace a Linux router with
a commercial router, provided that the latter implements the
required functionality.

The paper is structured as follows. Section II describes
the component of the automated manager in detail. Section
III summarizes the operation of the routing algorithms we
have implemented. Section IV illustrates the operation of
our automated manager through an experiment we conducted.
Finally, Section V concludes the paper.

II. DESCRIPTION OF THE OVERALL ARCHITECTURE

The overall architecture of our automated manager is il-
lustrated in Fig. 1. This section presents an overview of its
constituent components and their inter-relations, while the fol-
lowing subsections dig into the details of the implementation

LDAP
Directory

PDP

Network
Controller

Topology
Discovery

LER

SNMP
agent

COPS

DITG
snd/rcv

SNMP

OSPF
(zebra)

Service
Manager

PEP

Device Controller

COPS API

PIB

Traffic
Mapping

RSVPTE
daemon

RSVP-TE
API

Routing
API

XML

LER

SNMP
agent

OSPF
(zebra)

PEP

Device Controller

COPS API

PIB

Traffic
Mapping

RSVPTE
daemon

RSVP-TE
API

Routing
API

HOST

COPS

Fig. 1. Architecture of the automated manager

of the single blocks.
The Service Manager informs the Network Controller about

the arrival and departure of flow requests. For each request, the
Network Controller performs admission control and computes
an explicit path using the selected routing algorithm. The
routing algorithm requires the knowledge of the network
topology, which is provided by the Topology Discovery com-
ponent. We set up an LDAP (Lightweight Directory Access
Protocol) [11] server to permanently store information to be
accessed by multiple components at different stages (e.g. the
network topology). If the user request is admitted, the selected
path must be established (if not existent yet) by its ingress
node. Also, a traffic filter has to be installed on the ingress
node in order to make the specified traffic flow across the
corresponding path. We chose COPS (Common Open Policy
Service) [12] as the protocol to communicate the selected path
(as a list of IP addresses of its constituent nodes) and the traffic
specification to the ingress node. The ingress node is in charge
of establishing the corresponding explicit LSP through the
MPLS network. The signaling protocol used to accomplish this
task is RSVP-TE [13], i.e. the Resource reSerVation Protocol
with the extensions for Traffic Engineering. If the LSP is
correctly setup, an acknowledgment is propagated back to the
Service Manager, which informs the traffic generator on how
to transmit the requested traffic. By collecting statistics about
the generated flows, it is possible to retrieve information on
the experimented throughput, delay, jitter and packet loss.

A. Topology Discovery

The task of the Topology Discovery module is to de-
termine the network topology. This information is vital to
the operations of the automated manager. There are several
methods proposed in literature to accomplish such task. Some
of them assume no knowledge about the network whose
topology has to be discovered. Thus, they necessarily come
out with an approximated topology of the network. This work
assumes a different viewpoint, since we have the control of
the experimental testbed. We have implemented [14] a module

that discovers the topology of an OSPF network through
SNMP (Simple Network Management Protocol) queries. The
Topology Discovery accesses the OSPF MIB (Management
Information Base) [15] of a randomly chosen router to retrieve
a copy of the LSAs (Link State Advertisements) stored and
some other information such as the area(s) which the router
belongs to, the area border routers (i.e. routers belonging to
multiple areas) identifiers, etc. In case the contacted router
does not belong to the backbone area (area 0), the Topology
Discovery determines the area border router belonging to area
0 and accesses its OSPF MIB through SNMP. Then, all the
area border routers of the backbone area are contacted. Each of
them provides information on a single area of the network. By
collecting such information, the Topology Discovery is able to
reconstruct the overall topology of the network. After that, the
Topology Discovery queries (using SNMP) all the routers of
the network in order to retrieve information on the IP addresses
of all the interfaces, the capacity of each interface, etc.

The result of all these inquiries is an XML (eXtensible
Mark-up Language) file constituted by two parts: a list of
router identifiers (including IP address and capacity of each
interface) and a list of links.

Such implementation of the Topology Discovery requires
an SNMP agent and an OSPF process running on each
router. As stated before, all the architecture blocks have been
implemented in a Linux environment. Linux PCs act as routers
and zebra, a free routing software, provides an implementation
of the OSPF (and other) routing protocol.

B. Service Manager

The Service Manager is in charge of managing flow re-
quests. It forwards them one-by-one to the Network Controller,
so they can be served and assigned a path if admitted.

The Service Manager needs to know the IP addresses of
the hosts connected to the network and acting as sources and
destinations. For this purpose, it retrieves the network topology
from the LDAP server. The nodes having at least an interface
which is not connected to another node of the network are
considered to be edge nodes. Such interfaces are supposed to
be connected to source/destination nodes. To determine the
IP addresses of the hosts, we also suppose that the network
which the host and the edge node belong to is subnetted
in order to allow just two hosts (i.e. the network mask is
255.255.255.252). The Service Manager uses the obtained IP
addresses to fill the source and destination address fields of
the flow requests sent to the Network Controller.

The value of the other fields of a flow request (e.g. flow du-
ration, bandwidth requirement, QoS constraints) are described
by random variables with constant, uniform or exponential
distribution. The parameters of such random variables can be
specified in a configuration file.

The Network Controller serves each request and replies
to the Service Manager informing it about the result of
processing the request. In case the request is accepted and the
network correctly configured, the Service Manager requests

Parse XML file and store
topology in the LDAP server

Wait for a
flow request

calculate/retrieve
the explicit path

store/delete information
in the LDAP server

send information to the PDP

Wait for an ack
from the PDP

Send the result to the
Service Manager

ACK/NACK

Wait for XML file from
Topology Discovery

Send the Service Manager
the host addresses list

Fig. 2. Network Controller flow chart

the generation of the flow. For this purpose, we used D-
ITG (Distributed Internet Traffic Generator) [16], our platform
for traffic generation, which enables to launch the sender
component in server mode. This means that the sender stays
idle waiting for messages that instructs it on the flows to be
generated. The sender component has to be launched in server
mode on every host, together with the receiver component. The
Service Manager uses the C++ API (Application Programming
Interface) included in the D-ITG package to request the
generation of a flow corresponding to the user request. The
D-ITG sender notifies the Service Manager about both the
reception of the message and the end of the flow generation.
When the Service Manager is notified about the end of the
flow generation, it informs the Network Controller, which can
release the resources allocated to the flow.

C. Network Controller

The Network Controller is the brain of the whole automated
manager. Based on resource availability and the selected
routing algorithm, it admits or rejects flow requests and selects
an explicit path for those admitted. The routing algorithms
described in Sect. III have been implemented and are available
for use. A scheme of the operation of the Network Controller
is illustrated by the flow chart in Fig.2.

The Network Controller cannot operate without the knowl-
edge of the underlying network. In the initialization phase, the
Network Controller stays idle until it receives this information
from the Topology Discovery module as a set of XML tags.
An XML parser is used to extract the network topology and
the description of each node (IP addresses of the interfaces,

capacity of the links, etc.). The extracted information is stored
in two directories (Topology and Network) of the LDAP server.
The introduction of a permanent storage component like the
LDAP server is justified by a couple of reasons. First, some
information needs to be accessed by multiple components at
different stages. Second, a single component (the Network
Controller) in charge of managing the network topology and
the established LSPs may not scale.

Besides storing the network information in the LDAP server
as described, the Network Controller creates a data structure
of its own to contain network topology. Such data structure is
used by the routing algorithm routines and has been defined for
this purpose. Also, it provides for the information (not stored
in the LDAP server) on the available bandwidth of the links at
any time. When a flow is admitted (terminates), the available
bandwidth is decreased (increased) accordingly. We underline
that our automated manager currently does not make any
bandwidth reservation, i.e. there is no traffic differentiation and
all the traffic is treated in a best-effort fashion. The Network
Controller is also arranged for supporting QoS constraints like
delay, jitter and packet loss. For each link, the value of those
QoS measures is considered as a function of the available
bandwidth. Some routing algorithms that explicitly consider
QoS constraints have been already implemented. It is therefore
possible to manage requests having a bandwidth requirement
and some QoS constraints by selecting one of such routing
algorithms. The definition of the relationships between QoS
measures and available bandwidth will be further investigated
in the future.

After the initialization phase, the Network Controller is
ready to serve flow requests sent by the Service Manager.
There are two kinds of such requests: flow arrival and flow
departure requests. In case of a flow arrival request, the
Network Controller uses the selected routing algorithm to
determine whether the flow can be admitted and, in the positive
case, the path it has to follow. The LspTable directory of the
LDAP server is used to keep track of all the established LSPs.
Such directory is made of as many sub-trees as the number of
edge nodes, each sub-tree representing the LSPs originating
in an edge node. The leaves are entries with two attributes,
the LSP identifier and the number of flows mapped on the
LSP. When a new flow is admitted, the LspTable directory
is scanned to determine whether an LSP along the computed
path has already been established. If so, the number of flows
mapped on the LSP is increased by one and there is no need
to ask the PDP (Policy Decision Point) to establish a new
LSP. Otherwise, the identifiers of the nodes constituting the
selected path are stored in the LspTable directory (with a
new LSP identifier) and the PDP (Policy Decision Point) is
asked to establish the new LSP. The PDP receives just the LSP
identifier and returns the result of the operation. In any case,
the new flow needs to be mapped on the selected LSP. First,
an entry with the flow specification (source and destination
addresses and ports, protocol, requested bandwidth) is stored
in the FilterTable directory of the LDAP server. Such an entry
has two additional attributes, a filter identifier and the identifier

of the LSP the flow is mapped on. Then, the identifier of the
filter to be installed is communicated to the PDP, which takes
the appropriate actions and replies with a positive or negative
acknowledgment. The Network Controller thus inform the
Resource Manager about the result of the operation.

When the Network Controller receives a flow departure
request, it has to find the path along which the flow has been
routed, in order to deallocate resources. For this purpose, the
Network Controller scans the FilterTable directory searching
for the entry corresponding to the flow to be removed. Such
entry contains the identifier of the LSP assigned to the flow,
which can be used to access the LspTable directory and obtain
the sequence of hops constituting the LSP and the number
of flows mapped on it. The information on the sequence of
hops of the LSP enables to properly deallocate resources. If no
other flow is mapped on the same LSP, the Network Controller
deletes the corresponding entries in the LspTable directory and
asks the PDP to remove the LSP. Then, the Network Controller
deletes the flow specification entry in the FilterTable directory
and asks the PDP to uninstall the filter.

D. PDP (Policy Decision Point)

The decisions taken by the Network Controller must be
communicated to the nodes concerned in order to be enforced.
We use the COPS protocol to rule such communication. The
COPS protocol provides for a unique Policy Decision Point
(PDP) and a Policy Enforcement Point (PEP) for each node
to be configured. The task of the PDP is to code the action
to be undertaken into a set of rules called policies and send
them to the PEP on the selected node. The Network Controller
requires the PDP to perform four kinds of operations: to
establish/remove an LSP and to install/uninstall a traffic filter.
When the Network Controller determines that an LSP must
be established or removed, it informs the PDP about the type
of operation to be performed and the LSP identifier. Using
such identifier, the PDP accesses the LDAP server to retrieve
the sequence of nodes constituting the LSP. Then, it prepares
the corresponding policies following the structure defined for
the MPLS traffic engineering policies [17]. In case a traffic
filter must be installed/uninstalled, the Network Controller
communicates the type of operation to be performed and the
filter identifier. Such identifier is used to retrieve the flow
specification, which is the basis of the policies created by the
PDP. Such policies are compliant with the structure defined
for framework policies [18].

The PEP that receives the policies performs the required
actions and sends the result of such actions to the PDP. The
PDP, in its turn, propagates such result back to the Network
Controller.

E. PEP (Policy Enforcement Point)

Two components of our automated manager run on each
ingress/egress node: the Policy Enforcement Point (PEP) and
the Device Controller. The PEP listens for policies sent by the
PDP and passes them to the Device Controller, whose task is to
enforce the required actions. The reason behind the separation

Fig. 3. DC RAPI subsystem

Fig. 4. DC MAP subsystem

of receipt and enforcement functions is the portability to
other systems. The PEP is a simple C program and can
be easily ported to other systems. The Device Controller,
instead, is highly dependent on the system being used. We
have implemented the Device Controller for Linux operating
system. Porting the automated manager to another system will
only require to implement another Device Controller, while the
PEP will require at most minor changes.

A PEP receives policies from the PDP, filters (if necessary)
and passes them to the Device Controller. Then, it awaits
for the Device Controller to communicate the result of the
operation and propagates such result back to the PDP.

F. Device Controller

The Device Controller is the component in charge of con-
figuring network devices. It is therefore strictly dependent on
the system where it is running. We describe here our imple-
mentation for Linux operating system. The Device Controller

TABLE I
EVENTS LOGGED BY THE SERVICE MANAGER

Name Description
SM2NC OKSENDREQ The Service Manager sent a flow arrival request to the

Network Controller
NC2SM ACCEPTED The Network Controller admitted a flow
SM2ITG SENTREQ The Service Manager sent a request to a D-ITG sender
ITG2SM STARTFL A D-ITG sender acknowledged the start of traffic gener-

ation
ITG2SM ENDFLOW A D-ITG sender communicated the end of a flow gener-

ation
SM2NC OKSENDSTOP The Service Manager sent a flow departure request to the

Network Controller

Listing 1. Network Controller output: network topology
- FINDING EDGE NODES
DevId 192.168.1.34 IfId 192.168.1.14
DevId 192.168.1.6 IfId 192.168.1.22
DevId 192.168.2.2 IfId 192.168.2.6

- CREATING DevId_map
0 192.168.1.1
1 192.168.1.10
2 192.168.1.18
3 192.168.1.2
4 192.168.1.34
5 192.168.1.6
6 192.168.2.2

- Printing topology...
Edge nodes: 4 5 6
Link (0,3): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmtr:[415.00]
Link (0,6): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmtr:[415.00]
Link (1,2): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmtr:[415.00]
Link (1,5): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmtr:[415.00]
Link (2,1): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmtr:[415.00]
Link (2,4): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmtr:[415.00]
Link (2,6): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmtr:[415.00]
Link (3,0): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmtr:[415.00]
Link (3,4): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmtr:[415.00]
Link (3,5): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmtr:[415.00]
Link (4,2): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmtr:[415.00]
Link (4,3): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmtr:[415.00]
Link (5,1): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmtr:[415.00]
Link (5,3): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmtr:[415.00]
Link (6,0): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmtr:[415.00]
Link (6,2): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmtr:[415.00]

- CONNECTING TO THE PDP
Successfully connected to the PDP

- WAITING FOR THE SM
Sending information to the SM...

- WAITING FOR FLOW REQUESTS FROM THE SERVICE MANAGER

can be logically divided into three subsystems:
interface PEP/Device Controller: It is the subsystem in

charge of communicating with the PEP. It listens for policies
and replies with the result of the operation.

DC RAPI: It is responsible for establishment/removal of
LSPs (Fig.3). For this purpose, it uses the RSVP-TE API
(RAPI-TE) to communicate with the RSVP-TE daemon [19]
running on the same node. In case of LSP establishment,
the sequence of hops extracted from the policies received is
passed as parameter of the rapi sender function. This causes
the RSVP-TE daemon to include an Explicit Route Object in
the PATH message sent to the egress node. To remove an LSP,
the rapi release function is invoked with the LSP identifier as
parameter.

DC MAP: It provides the mapping of flows onto LSPs
(Fig.4). It exploits the netfilter infrastructure and the policy
routing capability of the Linux kernel. The netfilter infrastruc-
ture allows to define how packets matching some specified
conditions are manipulated. The policy routing enables to
define multiple routing tables. For each packet, one of the
routing table will be consulted based on the fwmark value of
the packet. Netfilter enables to mark a packet with a specified
value. DC MAP uses the API available to configure both the
netfilter infrastructure and the policy routing. First, when an
LSP is established, a new routing table is added to route
packets having an fwmark value equal to the LSP identifier.
Such routing table contains just one rule, that causes all

Aphrodite
(PDP+LDAP)

Gaia
(PEP+DC)

Zeus
(TD) Poseidon

Cronus
(PEP+DC)

Calvin
(PEP+DC)

Helios
(SM+NC)

Net 192.168.1.64/30

Net 192.168.1.32/30

Net 192.168.1.4/30

Net 192.168.1.8/30 Net 192.168.1.16/30

Net 192.168.2.8/30

Net 192.168.2.0/30

Net 192.168.1.4/30

 5

 2

 6 9 10 17 18
33

10

34

14
6665

22

 1 1 2 9

 6

13

21

 5

Fig. 5. Experimental testbed

packets to be sent across the LSP. This is done by specifying
the virtual interface associated to the LSP as the outgoing
interface. When a flow has to be mapped onto the LSP, a rule is
added to the netfilter infrastructure so as the packets matching
the flow specification are marked with the LSP identifier. The
result is that the packets of the flow are routed on the selected
LSP.

III. ROUTING ALGORITHMS

The Network Controller can be launched by specifying the
routing algorithm to be used. The following algorithms have
been implemented and can be evaluated:

Shortest-inverse: Each link is assigned a cost equal to
the inverse of the available bandwidth. The selected path is
the least cost one (where the cost of a path is the sum of the
costs of its constituent links) among those having sufficient
available bandwidth

Widest-shortest path [1]: It selects the path with the
minimum hop count among all paths having sufficient residual
bandwidth. If there are several such paths, the one with the
maximum residual bandwidth is selected.

MIRA [2]: The idea is that a new request must follow
a path that does not “interfere excessively” with a route that
may be critical to satisfy a future demand. The amount of
interference on a particular source-destination pair (s, d) due
to routing a flow between some other source-destination pair is
defined as the decrease in the maxflow between s and d. The
maxflow [20] value is an upper bound on the total amount
of bandwidth that can be routed between two edge nodes.
The minimum interference path between a particular source-
destination pair is the path which maximizes the minimum
maxflow between all other source-destination pairs.

SAMCRA [3]: It finds the shortest path subject to m
additive QoS constraints. It is based on three fundamental
concepts: (a) a non-linear path length function, (b) the k-
shortest path approach and (c) the principle of non-dominated

paths. The path length is a function of QoS constraints and
link weights.

Q-BATE [6]: It attempts to provide QoS guarantees while
still optimizing network resources. It is based on the link
weights setting strategy defined in [10]. The basic concepts
of Q-BATE are look-ahead, depth-first approach and a path
length definition as a function of both the available bandwidth
and other additive QoS measures.

TE-DB [4]: It considers a delay constraint and intro-
duces three objectives for traffic engineering: (a) reducing
the blocking of flows, (b) minimizing network cost and (c)
distributing network load. Objective functions (a) and (b) are
transformed into constraints. TE-DB make use of TAMCRA
[21], the predecessor of SAMCRA [3], to find a candidate set
of k paths satisfying the set of constraints and then select the
one with the shortest length according to objective (c).

SMIRA [5]: SMIRA stands for simple minimum-
interference routing algorithms. These algorithms evaluate the
interference on an source-destination pair by means of a k-
shortest-path-like computation instead of a maxflow computa-
tion.

IV. EXPERIMENTAL RESULTS

We describe an experiment we conducted to illustrate the
operation of our management system. The testbed is depicted
in Fig.5. Three PCs (Gaia, Cronus and Calvin) act as in-
gress/egress nodes, which are connected to three laptops acting
as source/destination of traffic. The other four PCs (Helios,
Aphrodite, Zeus and Poseidon) act as core nodes. Aphrodite
also hosts the PDP and the LDAP server, while the Service
Manager and the Network Controller run on Calvin. Both the
sender and receiver components of our traffic generator D-ITG
run on each laptop. The clocks of the laptops are synchronized
with the clock of Helios by means of the Network Time
Protocol (NTP) [22]. This ensures to evaluate the packet one-
way-delay with a good approximation.

Listing 2. Service Manager output
SM2NC_OKSENDREQ A 192.168.1.21 192.168.1.13 275230 17 30000 20000 2239.69

2 NC2SM_ACCEPTED A 192.168.1.21 192.168.1.13 275230 17 30000 20000 2239.69
SM2ITG_SENTREQ Sender 192.168.1.21 Command -a 192.168.1.13 -C 34.40 -c 1000 -T UDP -sp 30000 -rp 20000 -t 96000

4 ITG2SM_STARTFL Sender 192.168.1.21 Command -a 192.168.1.13 -C 34.40 -c 1000 -T UDP -sp 30000 -rp 20000 -t 96000
SM2NC_OKSENDREQ A 192.168.1.21 192.168.2.5 358258 17 30001 20000 2569.22

6 NC2SM_ACCEPTED A 192.168.1.21 192.168.2.5 358258 17 30001 20000 2569.22
SM2ITG_SENTREQ Sender 192.168.1.21 Command -a 192.168.2.5 -C 44.78 -c 1000 -T UDP -sp 30001 -rp 20000 -t 63000

8 ITG2SM_STARTFL Sender 192.168.1.21 Command -a 192.168.2.5 -C 44.78 -c 1000 -T UDP -sp 30001 -rp 20000 -t 63000
SM2NC_OKSENDREQ A 192.168.2.5 192.168.1.13 341069 17 30000 20001 2756.59

10 NC2SM_ACCEPTED A 192.168.2.5 192.168.1.13 341069 17 30000 20001 2756.59
SM2ITG_SENTREQ Sender 192.168.2.5 Command -a 192.168.1.13 -C 42.63 -c 1000 -T UDP -sp 30000 -rp 20001 -t 90000

12 ITG2SM_STARTFL Sender 192.168.2.5 Command -a 192.168.1.13 -C 42.63 -c 1000 -T UDP -sp 30000 -rp 20001 -t 90000
SM2NC_OKSENDREQ A 192.168.2.5 192.168.1.21 366839 17 30001 20000 2753.21

14 NC2SM_ACCEPTED A 192.168.2.5 192.168.1.21 366839 17 30001 20000 2753.21
SM2ITG_SENTREQ Sender 192.168.2.5 Command -a 192.168.1.21 -C 45.85 -c 1000 -T UDP -sp 30001 -rp 20000 -t 67000

16 ITG2SM_STARTFL Sender 192.168.2.5 Command -a 192.168.1.21 -C 45.85 -c 1000 -T UDP -sp 30001 -rp 20000 -t 67000
SM2NC_OKSENDREQ A 192.168.2.5 192.168.1.21 301573 17 30002 20001 2051.71

18 NC2SM_ACCEPTED A 192.168.2.5 192.168.1.21 301573 17 30002 20001 2051.71
SM2ITG_SENTREQ Sender 192.168.2.5 Command -a 192.168.1.21 -C 37.70 -c 1000 -T UDP -sp 30002 -rp 20001 -t 97000

20 ITG2SM_STARTFL Sender 192.168.2.5 Command -a 192.168.1.21 -C 37.70 -c 1000 -T UDP -sp 30002 -rp 20001 -t 97000
SM2NC_OKSENDREQ A 192.168.2.5 192.168.1.21 310192 17 30003 20002 2628.30

22 NC2SM_ACCEPTED A 192.168.2.5 192.168.1.21 310192 17 30003 20002 2628.30
SM2ITG_SENTREQ Sender 192.168.2.5 Command -a 192.168.1.21 -C 38.77 -c 1000 -T UDP -sp 30003 -rp 20002 -t 58000

24 ITG2SM_STARTFL Sender 192.168.2.5 Command -a 192.168.1.21 -C 38.77 -c 1000 -T UDP -sp 30003 -rp 20002 -t 58000
SM2NC_OKSENDREQ A 192.168.2.5 192.168.1.13 418162 17 30004 20002 2577.21

26 NC2SM_REJECTED A 192.168.2.5 192.168.1.13 418162 17 30004 20002 2577.21
SM2NC_OKSENDREQ A 192.168.1.13 192.168.2.5 297720 17 30000 20001 2988.55

28 NC2SM_ACCEPTED A 192.168.1.13 192.168.2.5 297720 17 30000 20001 2988.55
SM2ITG_SENTREQ Sender 192.168.1.13 Command -a 192.168.2.5 -C 37.22 -c 1000 -T UDP -sp 30000 -rp 20001 -t 85000

30 ITG2SM_STARTFL Sender 192.168.1.13 Command -a 192.168.2.5 -C 37.22 -c 1000 -T UDP -sp 30000 -rp 20001 -t 85000
SM2NC_OKSENDREQ A 192.168.2.5 192.168.1.13 340137 17 30005 20003 2030.39

32 NC2SM_ACCEPTED A 192.168.2.5 192.168.1.13 340137 17 30005 20003 2030.39
SM2ITG_SENTREQ Sender 192.168.2.5 Command -a 192.168.1.13 -C 42.52 -c 1000 -T UDP -sp 30005 -rp 20003 -t 83000

34 ITG2SM_STARTFL Sender 192.168.2.5 Command -a 192.168.1.13 -C 42.52 -c 1000 -T UDP -sp 30005 -rp 20003 -t 83000
SM2NC_OKSENDREQ A 192.168.1.21 192.168.2.5 264725 17 30002 20002 2149.91

36 NC2SM_ACCEPTED A 192.168.1.21 192.168.2.5 264725 17 30002 20002 2149.91
SM2ITG_SENTREQ Sender 192.168.1.21 Command -a 192.168.2.5 -C 33.09 -c 1000 -T UDP -sp 30002 -rp 20002 -t 85000

38 ITG2SM_STARTFL Sender 192.168.1.21 Command -a 192.168.2.5 -C 33.09 -c 1000 -T UDP -sp 30002 -rp 20002 -t 85000
ITG2SM_ENDFLOW Sender 192.168.1.21 Command -a 192.168.2.5 -C 44.78 -c 1000 -T UDP -sp 30001 -rp 20000 -t 63000

40 SM2NC_OKSENDSTOP R 192.168.1.21 192.168.2.5 358258 17 30001 20000 2569.22
SM2NC_OKSENDREQ A 192.168.1.21 192.168.2.5 429574 17 30003 20003 2935.44

42 NC2SM_ACCEPTED A 192.168.1.21 192.168.2.5 429574 17 30003 20003 2935.44
SM2ITG_SENTREQ Sender 192.168.1.21 Command -a 192.168.2.5 -C 53.70 -c 1000 -T UDP -sp 30003 -rp 20003 -t 50000

44 ITG2SM_STARTFL Sender 192.168.1.21 Command -a 192.168.2.5 -C 53.70 -c 1000 -T UDP -sp 30003 -rp 20003 -t 50000
ITG2SM_ENDFLOW Sender 192.168.2.5 Command -a 192.168.1.21 -C 45.85 -c 1000 -T UDP -sp 30001 -rp 20000 -t 67000

46 SM2NC_OKSENDSTOP R 192.168.2.5 192.168.1.21 366839 17 30001 20000 2753.21
ITG2SM_ENDFLOW Sender 192.168.2.5 Command -a 192.168.1.21 -C 38.77 -c 1000 -T UDP -sp 30003 -rp 20002 -t 58000

48 SM2NC_OKSENDSTOP R 192.168.2.5 192.168.1.21 310192 17 30003 20002 2628.30
ITG2SM_ENDFLOW Sender 192.168.1.21 Command -a 192.168.1.13 -C 34.40 -c 1000 -T UDP -sp 30000 -rp 20000 -t 96000

50 SM2NC_OKSENDSTOP R 192.168.1.21 192.168.1.13 275230 17 30000 20000 2239.69

The Topology Discovery (installed on Zeus) collects in-
formation about the topology and the configuration of the
interfaces and organizes it in an XML file. This file is sent
to the Network Controller, which parses it and stores the
relevant information into the appropriate directories of the
LDAP server.

Then, the Network Controller analyses the network topology
to determine the edge nodes. Listing 1 witnesses that it
succeeds in recognizing all the edge nodes. Their interfaces
which are not connected to other network nodes are reported.
The IP addresses of such interfaces are used to calculate the
host IP addresses (assuming 255.255.255.252 as netmask) to
be sent to the Service Manager. Each node is then assigned an
integer identifier, as shown in Listing 1. We recall that links
are unidirectional, i.e. there are a couple of links (one for each
way) between each pair of connected nodes.

This demonstrative experiment illustrates the possibility to
account for additive QoS constraints. Here, we consider just
one QoS measure, namely delay. As shown in listing 1,
the Network Controller assigns each link a QoS link weight

equal to 415 milliseconds. This value has been obtained by
generating a constant bit rate traffic between two directly
connected nodes and measuring the maximum one-way-delay.
Clearly, this is an unpretentious attempt to estimate an upper
bound to the experienced delay through a link.

Once connected to the PDP, the Network Controller is ready
to serve flow requests. Therefore, it sends the host addresses
list to the Service Manager, which starts sending requests. For
this experiment, the Network Controller makes use of Q-BATE
to route flows. The Service Manager has been configured to
generate 30 UDP flow requests, having a bandwidth require-
ment uniformly distributed between 250kbps and 450kbps.
The inter-arrival time between flow requests is exponentially
distributed with a mean of 5 seconds, while the flow duration is
uniformly distributed between 50 and 100 seconds. The delay
constraint is uniformly distributed between 2s and 3s.

During the execution, the Service Manager logs all the
occurring events. Some of them are explained in Table I. The
output of the Service Manager related to the first dozen of
flows is reported in listing 2. The syntax of the messages

Listing 3. First request served by the Network Controller
********************************* REQUEST RECEIVED *********************************

New flow request: S=192.168.1.21 D=192.168.1.13 B=275230 Proto=17 SrcPort=30000 DstPort=20000 TypeOp=A QoS[1]=2239.69

Selected path from Ingress LSR to Egress LSR:
6 5 DevId=192.168.1.6

3 DevId=192.168.1.2
8 4 DevId=192.168.1.34

10 ***** Adding LSP *****
Searching for device, dn: DevId=192.168.1.6, dc=LSPTable ...NOT FOUND

12 Adding LSP...
Adding LSPEntry...

14 dn: LSPId=1, DevId=192.168.1.34, DevId=192.168.1.2, DevId=192.168.1.6, dc=LSPTable
Result: success

--- New LSP with LSPId=1 has been added ---

***** Transmitting request to create new LSP to PDP (1) *****
20 Operation type <Install LSP> sent to PDP

LSPId <1> sent to PDP

Waiting for Acknowledgement from PDP...
24 Received ACK: LSP created correctly

26 Searching for Filter, dn: dc=FilterTable ...
No Filter found

***** Adding Filter *****
30 Result: success

32 --- New Filter with FilterId=1 for LSP with LSPId=1 has been added ---

34 ***** Transmitting request to create new IP Filter to PDP (1) *****
Operation type <Install Filter> sent to PDP

36 FilterId <1> sent to PDP

38 Waiting for Acknowledgement from PDP...
Received ACK: Flow mapped on LSP correctly

Sending message <A 192.168.1.21 192.168.1.13 275230 17 30000 20000 2239.69*ACCEPTED> to the Service Manager...

Link status
44 Edge nodes: 4 5 6

Link (0,3): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmetr:[415.00]
46 Link (0,6): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmetr:[415.00]

Link (1,2): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmetr:[415.00]
48 Link (1,5): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmetr:[415.00]

Link (2,1): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmetr:[415.00]
50 Link (2,4): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmetr:[415.00]

Link (2,6): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmetr:[415.00]
52 Link (3,0): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmetr:[415.00]

Link (3,4): Cap:1000000.00bps BwdAvail:724770.00bps QoSmetr:[415.00]
54 Link (3,5): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmetr:[415.00]

Link (4,2): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmetr:[415.00]
56 Link (4,3): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmetr:[415.00]

Link (5,1): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmetr:[415.00]
58 Link (5,3): Cap:1000000.00bps BwdAvail:724770.00bps QoSmetr:[415.00]

Link (6,0): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmetr:[415.00]
60 Link (6,2): Cap:1000000.00bps BwdAvail:1000000.00bps QoSmetr:[415.00]

62 - WAITING FOR FLOW REQUESTS FROM THE SERVICE MANAGER

displayed depends on whether the message is exchanged with
the Network Controller or ITGSend. In case of a message
sent to (received by) the Network Controller, the first letter
indicates whether it refers to a flow arrival request (‘A’)
or a flow departure request (‘R’). Then, these fields follow:
source host IP address, destination host IP address, bandwidth
requirement (bps), protocol number, source port, destination
port and delay constraint (ms). In case of a message sent
to (received by) ITGSend, the IP address of the host where
ITGSend is running is first reported. Then, the string used
to instruct the sender about the flow to be generated follows.
We note that the Service Manager is programmed to request
the generation of a constant bit rate traffic with equally sized

packets (1000 bytes). The ‘-C’ option is used to specify the
requested rate (packets per second), while the ‘-t’ option
enables to specify the flow duration.

We now illustrate how the Network Controller handles the
first flow arrival request (listing 3). The Network Controller
selects a path (lines 5–8) and searches the LSPTable directory
of the LDAP server to determine whether an LSP along
that path already exists. In this case, the result is obviously
negative and the entries related to the new LSP are stored
in the LSPTable directory (lines 10–17). Then, the Network
Controller requires the PDP to create such a new LSP. The
PDP acknowledges the success of the operation (lines 19–
24) and therefore the Network Controller moves on with the

Fig. 6. Snapshot of packets captured by Ethereal

installation of the traffic filter. Again, the corresponding entries
are stored in the LDAP server (FilterTable directory, lines
26–32) and then a request is sent to the PDP. The positive
acknowledgement from the PDP confirms the success of the
network configuration phase (34–39). The Network Controller
can thus inform the Service Manager that the request has been
accepted.

The Service Manager receives the message of the Network
Controller announcing the admission of the first request and
the successful network configuration (listing 2, line 2). Then,
it instructs ITGSend to generate the corresponding flow (line
3). ITGSend acknowledges the request (line 4) and, later, the
end of the transmission (line 49). The Service Manager then
informs the Network Controller (line 50), which deallocates
the resources reserved to the flow.

Clearly, in case there is no path satisfying the bandwidth
requirement and the delay constraint of a flow, the flow
is rejected. In our experiments, not all the flows could be
admitted, as the output of the Service Manager (listing 2)
witnesses (e.g., line 26).

For each flow, the corresponding traffic generated by IT-
GSend travels across the selected LSP. Each packet is therefore
labeled at the ingress node and then subject to the label
swapping mechanism at each intermediate node up to the
egress. In order to verify that packets actually cross the
selected LSP, we used a packet analyser (Ethereal) to sniff the
traffic crossing the different network nodes. As an example,
Figure 6 shows some labeled packets captured on Poseidon,
generated by the host connected to Calvin and destined to the
host connected to Cronus.

At the end of the experiment, the ITGDec utility can be
used to analyse the log files stored by D-ITG senders and
receivers. Bit rate, dropped packets, min/max/average delay
of each generated/received flow can be evaluated. Listing 4
reports the results displayed by ITGDec when processing the
log file stored by ITGRecv on Gaia. It comes out that Gaia has
received three flows, for each of which detailed information
are provided.

ITGDec also evaluates the average bitrate (delay, jitter and
packet loss) over time intervals of the desired duration and
stores the values in a text file that can be easily read by

Listing 4. Sample ITGDec output
--
Flow number: 2 from 192.168.2.2:30001 ---> To 192.168.1.21:20000
--
Total time = 66.976796 s
Total packets = 3072
Minimum delay = 0.000169 s
Maximum delay = 0.106901 s
Average delay = 0.001427 s
Delay standard deviation = 0.006231 s
Average jitter = 0.001086 s
Bytes received = 3072000
Average bitrate = 366.933049 Kbit/s
Average packet rate = 45.866631 pkt/s
Packets dropped = 0
--
Flow number: 3 from 192.168.2.2:30002 ---> To 192.168.1.21:20001
--
Total time = 96.977636 s
Total packets = 3657
Minimum delay = 0.000183 s
Maximum delay = 0.116835 s
Average delay = 0.007324 s
Delay standard deviation = 0.009277 s
Average jitter = 0.004019 s
Bytes received = 3657000
Average bitrate = 301.677801 Kbit/s
Average packet rate = 37.709725 pkt/s
Packets dropped = 0
--
Flow number: 4 from 192.168.2.2:30003 ---> To 192.168.1.21:20002
--
Total time = 57.988307 s
Total packets = 2249
Minimum delay = 0.000144 s
Maximum delay = 0.096688 s
Average delay = 0.001384 s
Delay standard deviation = 0.006034 s
Average jitter = 0.001145 s
Bytes received = 2249000
Average bitrate = 310.269448 Kbit/s
Average packet rate = 38.783681 pkt/s
Packets dropped = 0
__
**************** TOTAL RESULTS ******************
__
Number of flows = 3
Total time = 102.345971 s
Total packets = 8978
Minimum delay = 0.000144 s
Maximum delay = 0.116835 s
Average delay = 0.003818 s
Delay standard deviation = 0.090103 s
Average jitter = 0.002353 s
Bytes received = 8978000
Average bitrate = 701.776526 Kbit/s
Average packet rate = 87.722066 pkt/s
Packets dropped = 0

programs like octave, matlab and gnuplot. By using octave,
we produced the plot shown in Figure 7. Such plot represents
the bit rate of each flow generated by Calvin during the
experiment.

The demonstrative experiment described in this section has
illustrated the capabilities of our automated manager. We have
shown that limited manual configuration is needed, as most
of the work is automatically done. Also, we have provided
instruments to easily analyse the results of the experiments. We
believe that interesting results can be drawn from a thourogh
performance evaluation of routing algorithms.

V. CONCLUSION AND FUTURE WORK

We presented an automated manager for experimenting
with traffic engineering and QoS routing algorithms. We
implemented all of its component in a Linux testbed and

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140

B
it

ra
te

(k
bp

s)

Time (s)

192.168.2.5:30000→192.168.1.13:20001
192.168.2.5:30001→192.168.1.21:20000
192.168.2.5:30002→192.168.1.21:20001
192.168.2.5:30003→192.168.1.21:20002
192.168.2.5:30005→192.168.1.13:20003

Fig. 7. Traffic generated by Calvin

used standard protocols for their interactions. This paper is
mainly devoted to the description of the components of our
automated manager. An experiment carried out in our testbed
has been also illustrated to demonstrate the operation of
our architecture. A detailed performance comparison of the
implemented routing algorithms will follow. Such analysis will
enable to compare them from different viewpoints: the ratio
of admitted requests, the network throughput and the QoS
delivered to the flows.

ACKNOWLEDGMENT

Research outlined in this paper has been supported by the
European Union under the NETQOS Project FP6-033516 and
the CONTENT Network of Excellence FP6-0384239.

REFERENCES

[1] R. Guerin, D. Williams, and A. Orda, “QoS routing mechanisms and
OSPF extensions,” in Proc. Globecom, 1997.

[2] K. Kar, M. Kodialam, and T. Lakshman, “Minimum Interference Routing
of Bandwidth Guaranteed Tunnels with MPLS Traffic Engineering
Applications,” IEEE Journal on Selected Areas in Communications,
vol. 18, no. 12, pp. 2566–2579, December 2000.

[3] P. Van Mieghem and F. Kuipers, “Concepts of Exact QoS Routing
Algorithms,” IEEE/ACM Transactions on Networking, vol. 12, no. 5,
pp. 851–864, October 2004.

[4] G. Banerjee and D. Sidhu, “Comparative analysis of path computation
techniques for MPLS traffic engineer,” Computer Networks, vol. 40, pp.
149–165, 2002.

[5] I. Iliadis and D. Bauer, “A New Class of Online Minimum-Interference
Routing Algorithms,” in Proc. of NETWORKING 2002, ser. LNCS 2345,
2002, pp. 959–971.

[6] S. Avallone and G. Ventre, “Q-BATE: A QoS Constraint-based Traffic
Engineering Routing Algorithm,” in Proceedings of NGI 2006. Valencia
(Spain): IEEE, April 2006, pp. 94–101.

[7] P. Van Mieghem, H. De Neve, and F. Kuipers, “Hop-by-Hop Quality of
Service Routing,” Computer Networks, vol. 37, pp. 407–423, October
2001.

[8] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switch-
ing Architecture,” IETF, RFC 3031, January 2001.

[9] J. Moy, “OSPF Version 2,” IETF, RFC 2328, April 1998.
[10] S. Avallone and G. Ventre, “A simple framework for QoS provisioning

in traffic engineered networks,” in Proceedings of IEEE IWQoS 2006.
New Haven, CT, USA: IEEE, June 2006, pp. 279–280.

[11] J. Hodges and R. Morgan, “Lightweight Directory Access Protocol (v3):
Technical Specification,” IETF, RFC 3377, September 2002.

[12] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry,
“The COPS (Common Open Policy Service) Protocol,” IETF, RFC 2748,
January 2000.

[13] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,
“RSVP-TE: Extensions to RSVP for LSP Tunnels,” IETF, RFC 3209,
December 2001.

[14] S. Avallone, S. D’Antonio, M. Esposito, A. Pescapè, and S. Romano,
“A Topology Discovery Module based on a Hybrid Methodology,” in
Proceedings of IPS 2004, Budapest, March 2004, pp. 25–32.

[15] F. Baker and R. Coltun, “OSPF Version 2 Management Information
Base,” IETF, RFC 1850, November 1995.

[16] S. Avallone, D. Emma, A. Pescapè, and G. Ventre, “Performance
evaluation of an open distributed platform for realistic traffic generation,”
Performance Evaluation: An International Journal, vol. 60, no. 1–4,
pp. 359–392, March 2005, special Issue on Performance Modeling and
Evaluation of High-Performance Parallel and Distributed Systems.

[17] M. Li, “MPLS Traffic Engineering Policy Information Base,” Internet
draft, February 2003.

[18] R. Sahita, S. Hahn, K. Chan, and K. McCloghrie, “Framework Policy
Information Base,” IETF, RFC 3318, March 2003.

[19] INTEC, Gent University, “RSVP-TE daemon for Diffserv over MPLS
under Linux,” http://dsmpls.atlantis.ugent.be/.

[20] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms
and Applications. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[21] H. De Neve and P. Van Mieghem, “TAMCRA: A Tunable Accuracy
Multiple Constraints Routing Algorithm,” Computer Communications,
vol. 23, pp. 667–679, 2000.

[22] D. Mills, “Network Time Protocol (Version 3) Specification, Implemen-
tation,” IETF, RFC 1305, March 1992.

