
Experimenting with Dynamic Test Component
Deployment in TTCN-3

Máté J. Csorba
Department of Telematics

Norwegian University of Science and Technology
N-7491 Trondheim, O.S. Bragstads plass 2B, Norway

Email: csorba@item.ntnu.no

Dániel Eöttevényi and Sándor Palugyai
Department of Telecommunications and Media Informatics

Budapest University of Technology and Economics
H-1117 Budapest, Magyar tudósok körútja 2, Hungary

Email: {eottevenyi, palugyai}@tmit.bme.hu

Abstract—In our work, we investigate efficient usage of TTCN-
3 based test components in the emerging field of distributed
performance testing of communicating systems. TTCN-3 is a
high level formal specification language used for the specification
of Abstract Test Suites (ATSs) suitable for various testing
purposes mainly in telecommunication systems testing. A TTCN-
3 based test system may consist of several distributed Parallel
Test Components (PTCs) and can be executed utilizing diverse
hardware platforms. Our aim is to aid development of load tests
by establishing a framework, while collecting best practices at
the same time, that can be used to execute tests over mixed
hardware resources efficiently. We, mainly focus on automated
and dynamic deployment of load test components implemented
purely in TTCN-3. Also, the deployment method takes test system
load into account by monitoring the participating workstations’
behavior on-line. A potential test method is shown that can be
used for testing server applications using low-cost or even legacy
hardware as the platform for distributed test components. A basic
scenario involving SMTP (Simple Mail Transfer Protocol) service
testing is presented as an example.

I. INTRODUCTION

There are many fields in telecommunications in which
development of new protocols and systems is accompanied
by extensive testing efforts. Testing and debugging the new
mechanisms after implementation is necessary to verify
functionalities of the newly created telecommunications
system or sub-system. Various test methodologies are adopted
in the field of network element design or in the complete
domain of communication systems development. Accordingly,
a wide variety of testing tools is available in the market that
can be used to satisfy testing needs more or less adequately.
Lately, telecommunications applications are moving from a
hardware intensive approach towards mainly software-based
implementations. This fact brings along that testing of
communication systems employs software testing methods
and more interestingly, common software applications can be
utilized to a large extent by the test systems developed. We,
in this paper introduce new ideas and guidelines towards a
framework for load testing a telecommunications system that
uses arbitrary protocols based on a dynamically distributed
test environment.

Conventionally, distributed software can be divided to
components that implement the actual behavior to satisfy the
requirements and a separate part that supports execution of

these components. Namely creation, shutdown of components
and communication among them, for example. This implies,
in most cases, inclusion of an architecture in which a
middleware is responsible for component handling operations.
A homogeneous component structure on the other hand
allows elimination of an additional middleware of different
type by implementing the actual distribution and component
operation functionalities using the same platform. However,
component management functionalities are indispensable
in a distributed test system. Useful modules can be added
supporting distribution mechanisms if an appropriate interface
for the complementary modules exists. Using additional
modules the same functionalities can be supported as by
the middleware approach only two aspects have to be dealt
with. One is the component distribution logic, whether it is
static or dynamic it has to be implemented using the same
platform, either in a centralized manner or spread across the
participating workstations. The other aspect is the on-line
measurement and monitoring of system resources, while the
test system is executing.

Keeping these fundamental aspects in mind we build a
framework based on the Testing and Test Control Notation
version 3 (TTCN-3 [1]). Although, the traditional application
of the notation was protocol conformance testing that aims
to discover deviations in the communication of software or
hardware entities compared to protocol standards, with the
ongoing development of the notation the focus has widened
to allow users to conduct interoperability, robustness and
regression testing and more recently load and stress tests also.
Similarly to Unified Modeling Language (UML) profiles,
extensions have been introduced to TTCN-3 to extend its
capabilities such as TimedTTCN-3 [2] for the specification
of real time tests. Traditionally, most commercially available
protocol testing solutions are either strictly hardware based or
they are implemented in a low level development environment.
However, there have been case studies and benchmarking
approaches published investigating the applicability of
TTCN-3 for load testing [3], [4], [5], [6] some of them
dealing with efficient test component distribution bringing us
closer to our topic. G. Din et al. in [7] define Work Load
Units (WLUs) as the elementary descriptors of user load of a
service that is tested. According to different patterns WLUs



can be assigned to TTCN-3 components depending on the
test requirements. In this paper, various parameters of test
component distribution strategies are drawn up by the authors
classifying the strategies as static or dynamic and centralized
or distributed. Also, the mechanisms can be based on diverse
runtime parameters, such as memory or CPU consumption,
which are to be monitored by the test environment. This
again leads to two strategy classes, the ones based on pre-test
execution and on resource consumption predictions and the
others monitoring resources on-the-fly. It is also identified
that there is a need in a TTCN-3 test environment for a load
control unit that contains the appropriate logic, belonging to
one of the classes defined above, to support test component
distribution.

In our approach, in a TTCN-3 based test system two
different behaviors are implemented. On one hand, a
protocol-specific part is used that communicates with the
Implementation Under Test (IUT), on the other hand, test
system behavior is implemented in another part of the test
environment, each part comprising of several PTCs. Both
functionalities are written in TTCN-3, which means that in
contrast to ordinary distributed test software emphasis is set
on homogeneous component structure, in other words pure
TTCN-3 code and implementation.

Combining a distributed component architecture with the
flexibility of TTCN-3 allows testing the IUT from several
Points of Control and Observation (PCOs) often spread across
multiple workstations this way achieving a more realistic test
environment. Also, while developing performance critical
applications, such as in the case of load testing, with the
appropriate component distribution proper load-sharing can
be achieved on the participating workstations, sometimes
even exploiting different hardware and software platforms
hosting the test suite. In addition, further advantages related
to TTCN-3 apply to our framework including the platform
independent applicability and flexibility of tests. Similarly,
high scalability of the test system arises from the careful
design of test components and the standard interface among
them, which allows easy multiplication of PTCs participating
in test. Scalability of this kind also enables test designers to
use or reuse legacy hardware elements with relatively limited
resources in clusters to test state-of-the-art implementations
efficiently, which is one of the main achievements of our
paper. Moreover, usage of TTCN-3 PTCs allows inclusion of
behavior defined by real finite state machines, specified in
an arbitrary protocol specification, into the test components
interacting with the IUT, which is compared to script or
scenario based tests more accurate and realistic.

The remainder of this paper is organized as follows. In
Section II, we present the mechanisms in TTCN-3 that
support distributed testing and briefly describe the execution
environment that has been used. We detail the behavior of
parallel test components and the operation of PCOs. Next,
Section III presents generally the guidelines, best-practices
and the component structure we set up in our experimental
test-bed trying to satisfy the requirements above. In Section

IV, an SMTP load tester is presented and details of the
execution are shown. Finally, in Section V, concluding
remarks are given.

II. DISTRIBUTED LOAD TESTS IN TTCN-3

In this section we give a short introduction to testing with
TTCN-3 and with distributed test components in general.
Furthermore, the test execution environment we use is also
presented.

In most cases, the implementation we test is considered to
be a black-box, which means, we do not have information on
the internal behavior of the system, only certain responses of
it can be caught and interpreted for examination. Accordingly,
to test such a system it has to be stimulated externally
using protocol messages it is intended to interpret as part
of its normal behavior. In a load testing context this means
that the test system has to be able to produce the adequate
amount of protocol messages and to deliver the messages
towards the IUT. Delivery of the proper amount of messages
might be limited by the hardware platform underlying the
TTCN-3 test environment. Generally, limitations caused by
hardware bottlenecks can be solved by setting up even more
hardware elements to support a higher amount of running
threads. Thus, while testing any kinds of server systems
non-sequential behavior of multiple parallel users can be
reproduced efficiently by using several processes at the same
time.

Either we deal with a workstation having sufficient
hardware resources to reproduce multiple users at a time,
or in case of tests that utilize the available amount of
workstations efficiently, PTCs can be used to assess the
performance characteristics of multiple access IUTs. In both
cases, the question is what strategy to choose to divide
functionalities among the software test components and
how to distribute test components efficiently considering
the available hardware resources. The correct strategy that
we use for distributing test components needs to consider
certain important properties of the workstations used and the
different capabilities and execution times determined by the
inhomogeneity in available hardware. More importantly, the
number of virtual users assigned for each workstation must
not be left out of consideration either.

A single node might not possess sufficient resources to
simulate behavior of the required amount of test users. Also,
additional resources are needed to establish communication
between test components for registration, coordination,
logging or other control functionalities and purposes
depending on the implementation of the given test. Internal
communication among the components is an important issue
while investigating their behavior.

Examination of software components used in testing aims
to support their distribution on the available workstations.
Distribution mechanisms are either static or dynamic. They
are static if they can be run only before the actual test
execution, and dynamic if they can work while the tests are



executed. Different strategies observe different properties of
the hardware/software platform hosting the tests to support
decisions regarding distribution of components. Theses
properties include but are not limited to average CPU
load, memory consumption, frequency of I/O interrupts,
network interface parameters. Observation of the background
parameters mentioned above can be done statically to supply
information for the calculations before the distribution of
components, or a framework can be used that is capable of
monitoring the underlying platform continuously.

Specifically for TTCN-3, two kinds of approaches are under
development so far for static or dynamic distribution. The
mechanism can be implemented by providing a middleware
platform using another kind of language such as Java [8].
The other kind of approach we propose to use for load
tests implies that both the distribution of components and
the distribution of load among components is implemented
in TTCN-3 together with the test scenarios. By exploiting
the full capability of the language itself we can eliminate
the bottleneck imposed by an additional middleware. Also,
using the proper language elements and because of the
platform independent nature of TTCN-3 component handling
procedures can successfully be tailored to different hardware
environments.

Flexible component handling in TTCN-3 allows setting
the test system configuration dynamically. Arbitrary behavior
can easily be assigned to a test component, e.g. there can
be components communicating directly with the IUT, or
components communicating inside the test system only
with registration or statistical purposes. Generally, all test
components are equivalent, there is only one designated
Main Test Component (MTC) that is created in all cases
automatically by the executor environment. Thereafter, all
the actual PTCs are created run-time by the MTC this way
allowing test developers to maintain the component structure.

A test suite defined in TTCN-3 consists of a static
and a dynamic part. The static part contains type and
template descriptions consisting of component, variable
and test port definitions and definitions of incoming and
outgoing message structures. Whereas the dynamic part
contains behavioral descriptions, functions and test cases.
Communication between components, i.e. internally, and
communication between test components and the IUT,
externally, is completed via test ports implementing the actual
PCOs. Components communicate with messages that are
stored in queue assigned to each test port until a receive
operation is requested by the component. Queues assigned
to PCOs can simply be described as FIFOs virtually infinite
constrained only by the system memory on the corresponding
workstation. However, response times, considerably critical
in a load test scenario, depend heavily on queue lengths, this
means that the test system needs to achieve as short queue
lengths as possible.

Test ports are the protocol specific part of the test
environment. Test ports forming the communication channels
between the test system and the IUT are the only part of the

test system that are written in C++ instead of TTCN-3 and
need to be implemented in a relatively platform dependent
manner. However, an Application Programming Interface is
provided for the test developer to develop test ports rapidly.
Importantly, test ports are fairly tight coupled to TTCN-3
test components in contrast to the centralized API approach
of TRI [9]. This also bolsters applicability of the TTCN-3
based test system in performance tests [10]. Besides, existing
test ports can be re-used in new test configurations as well.
Whenever a new incoming protocol message arrives at the
test component, an event handler is triggered in the test port
and the message is appended to an input queue. Messages
enqueued can be extracted by the event handler using the
so-called snapshot mechanism [11].

The language supports a specific statement called the alt
structure that can be used to describe alternative execution
paths for behavior such as reception and handling of specified
types of protocol messages. This statement, although very
useful for easing rapid protocol test development, can be a
performance issue also if not applied carefully. Thus, there
are different approaches for performance prediction and
tuning of test components utilizing alt structures [12].

III. AUTOMATED TEST COMPONENT DISTRIBUTION

Towards a framework for the development of efficient
and scalable load test systems we formulate the following
guidelines and introduce the building-blocks we propose. The
heart of the system is the Load Control module containing the
logic handling the PTCs and orchestrating the test campaign.
The centralized Load Control logic is located in the MTC,
however, it is possible to place it in a separate PTC on
a designated workstation if this is necessary for efficient
utilization of hardware resources. Internal communication
channels, i.e. internal to the test system, are established
between the MTC and the PTCs and optionally between
the MTC and the IUT itself also (Figure 1). Stimulation of
the IUT is achieved via a standard network layer, whereas
the protocol of communication with the IUT is dependent
of whichever subsystem the test campaign addresses and is
incorporated into the test ports of the PTCs.

Beside the Load Control function workstations participating
in test might carry two different types of modules, PIPE
modules and Load Test Components (LTCs), each of which
stays connected with the MTC. LTCs and PIPEs can be
started, restarted once running and killed by Load Control
and their configuration can be changed run-time also via
internal communication. Most importantly, the appropriate
logic in MTC allows these operations to be done dynamically
after the test campaign was already started.

PTCs might be distributed across an unrestricted number of
workstations reasonably depending on the available hardware
resources. The allowed operating systems are ranging from
any Linux/Sun Solaris UNIX systems to MS Windows
environment. LTCs are the protocol dependent building-
blocks of the test system containing the actual business logic



Fig. 1. General structure of test components

to test a specific service of the IUT. LTCs connect via the
network layer to the IUT using protocol specific test ports.
Also, LTCs might contain finite state machines or basic
behavior scripts describing a user who is using the designated
service of the IUT.

PIPE components, on the other hand are not communicating
with the world outside the test system. PIPE components
are used for monitoring the test system internally and for
reporting to the Load Control module using so-called Pipe
test ports. Pipe test ports are basically connections to the
operating system’s user plane and providing functionality
similar to a user shell that can be exploited running run-time
queries or external programs in user space.

The easiest way to gather information on a workstation’s
resources using a PIPE component is to call external
monitoring programs available built in the underlying
operating system such as top, procinfo, ifconfig, ifstat, netstat
with the appropriate parameters. Using a PIPE component
information can be extracted at any host participating in test
and possibly running a load test component too. Monitored
information includes but is not limited to CPU idle time, CPU
and memory consumption monitoring for running processes,
number of interrupt requests for any connected device,
network interface statistics and errors, network connections
and opened ports, etc. Optionally, a PIPE component might
also be installed on the IUT itself (component PIPEx in
Figure 1) allowing a very accurate load shape to be produced
by monitoring the load directly on the IUT.

In contrast to PIPE components the number of running
Load Test Components on each workstation is usually more
than one and is regulated by Load Control dynamically. The
actual protocol dependent behavior is executed by LTCs this
way stressing the IUT. The most obvious setup is when every
LTC corresponds to a single test user using service provided

by the IUT or one of its subsystems. According to this
setup the number of simulated user entities can dynamically
be regulated to form the load shape required by the tester.
Otherwise, it is also possible to implement LTCs that do not
have to be recreated every time their operation ends, only a
restart is needed, and of course an LTC can run continuously
too with run-time changeable parameters.

Load Control running in MTC is responsible for processing
data collected by PIPE components, one for each workstation,
and managing the actual LTCs on the available hardware.
The number of components running at each time instance
is regulated based on the load, whichever aspect of it we
are interested in, of the workstations running the LTCs and
might also be influenced by the actual load of the IUT.
Components can be started and stopped in regular time
intervals or instantly depending on the requirements. In the
current Load Control logic testers can set the target load at
the IUT that has to be achieved. According to this value the
MTC creates an initial amount of LTCs and starts running the
load test. Thereafter, it checks periodically the test system’s
and IUT’s load and starts or kills LTCs accordingly. More
importantly, load balancing is done automatically among the
tester workstations, which is especially important in case of
legacy hardware with very diverse setup. Each time Load
Control decides a new LTC has to be created it checks first,
which workstation has the most idle time and deploys the
new component accordingly. Shutting down an LTC is done
similarly from the most loaded workstation first. This way
efficient resources utilization is achieved in the test system.

Beside the number of components, load can be influenced
with run-time parameters of LTCs as well. The configurable
and dynamically reconfigurable parameters include the
initial amount of test components, the number of running
components at each host, the time interval between two
component creation operations to achieve a uniform load
shape, the poll time interval the test system uses to monitor
the underlying hardware platform regularly. Last but not least,
there is a dynamically configurable parameter called dt that
represents the elementary time interval between each message
transmission an LTC executes. Thus, using this parameter
fine-grained performance tuning of load generation can be
achieved at each LTC.

IV. EXAMPLE TEST SCENARIO

Following the concept in Section III we designed a load
test system for SMTP service [13]. We have chosen to use
the server application sendmail to act as IUT [14]. The
configuration of the SMTP server was kept as simple as
possible with standard settings.

Although, there are simple SMTP stress test applica-
tions existing, such as MultiMail [15], their application is
constrained, e.g. only ten concurrent threads are supported.
Moreover, no real distributed applications are available, i.e. test
execution is limited to a single workstation. However, our aim
was not the development of an SMTP test system, i.e. the test



Fig. 2. Example SMTP test scenario

scenario was only used for demonstrating the idea behind our
load test experiment. Accordingly, the simple test scenario in
Figure 2 aims to demonstrate effectiveness of a TTCN-3 load
test system distributed dynamically using a centralized Load
Control logic this way stressing an IP service with significant
user load using cheap, legacy hardware and efficient resource
utilization.

Two servers were used running SMTP service, one of which
was the actual IUT and the other was used only as an endpoint
of messages erasing every e-mail immediately after reception.
Load Test Components running SMTP protocol simulated the
behavior of artificial e-mail clients residing on three different
workstations and Load Control within the MTC was running
separately on a fourth workstation.

The behavior of the Load Control logic inside the MTC
can be seen in Figure 3. After checking the run-time pa-
rameters an initial number of components are created and
their communication ports are mapped (external test ports) and
connected (internal test ports) to the corresponding endpoints.
After the components are started the main behavior part of
the MTC follows, until the predefined test run period is over
(tExecutionTimer timed out). Eventually, parallel test compo-
nents are stopped, their connections are either unmapped or
disconnected and test execution ends with a pass verdict if
everything went fine.

The main behavior of MTC contains seven branches (Figure
4), timer events and reception of messages mixed. Whenever
a response is received following the polling of a PIPE com-
ponent, the response message is evaluated and actions are
taken if needed. PIPE response messages carry measurement
information on the performance of the test components and the
IUT. LTCs can be shut down, started or simply their output
can be biased as needed. PIPE components are polled for
performance information regularly as set in timer tPollTimer.

Fig. 3. The behavior of MTC

Any unwanted messages are erased by Trash(). If a test
component quits unexpectedly the test execution’s verdict is
set to fail and the shutdown procedure starts. Similarly, when
the tester defined execution time is up, the MTC starts to shut
down, however in this case with a pass, which cannot override
the global verdict if it has been set to fail previously. After a
LTC has stopped, it sends the amount of e-mails it delivered
that is counted globally in GlobalMailCounter. The MTC can
quit the main alt loop gracefully after a quit period indicated
by tQuitTimer.

The behavior of a PIPE component is shown in Figure
5. The component waits for a poll message from the MTC,
which can contain a query command destined for execution
by the underlying operating system, alternatively a hardcoded
query can also be executed. The query will be answered by
the operating system of the workstation via the local Pipe test
port and the result will be sent to the MTC using the internal
test port. Additionally, for deadlock avoidance a timer is run
between each poll and response pair inside the component.

At the same time, in SMTP components, which are the
actual LTCs, SMTP communication is performed using a
Telnet test port [16], since SMTP protocol uses a simple char-
acter string based communication (Figure 6). After logging
in to the server, the component starts its main alt loop. The
SMTP test component evaluates every response received from
sendmail, checks the response for errors and sends e-mail
traffic with variable parameters. The amount of e-mails sent at



Fig. 4. The main alt{} in MTC

Fig. 5. Simplified state machine of a PIPE component

each call, the size of the payload and the inter-message time
can be specified within each individual component this way
regulating the test traffic. If the component detects an error in
the communication, it gracefully shuts itself down. Whether
quitting because of an error or quitting intentionally because
the MTC ordered to do so, the component first reports the
amount of e-mails delivered and closes the connection towards

Fig. 6. Simplified state machine of an SMTP test component

the SMTP server afterwards.
The workstations’ and IUT’s hardware was selected to

reflect the differences of the environment, performance and
resource-wise, the test system is intended to be used in. First
of all, IUT’s and the supplementary server’s hardware platform
was an Intel Pentium 4 server with a CPU running at 3.2 GHz
equipped with Intel’s Hyper-Threading technology [17], with
2 GBytes of RAM and with a Serial-ATA hard drive. The test
system on the other hand consisted of legacy PC workstations.
To reflect the diversity of hardware we intended to test with,
four different configurations were used with Intel Pentium II
and Pentium III CPUs ranging from 450 to 600 MHz with
memory sizes between 128 to 512 MBytes. The operating
system used was SUSE Linux 10 in all cases. Network
connectivity was established using 100 Mbps switched LAN,
each workstation and server utilizing two Ethernet cards for
separating the test system’s internal traffic and the SMTP test
traffic.

Adhering to the test configuration in Figure 2, using three
workstations as load testers and the additional one as MTC, we
tested the Intel Pentium 4 server first with Hyper-Threading
turned off. In Figure 7, the targeted load level, which is a test
configuration parameter, can be seen on the x-axis and the
amount of e-mails successfully sent during the test period is
depicted at the y-axis. The parameter Target Load represents
the load level Load Control in MTC aims to achieve at the
IUT by regulating the number of running test components
accordingly. Another parameter that influences output of the
test system is dt, which is the time interval between each
message transmission of a LTC. dt was chosen 1, 3 and 5
seconds and there was a test letting LTCs put out protocol



Fig. 7. Test traffic, Hyper-Threading off

messages back-to-back without a delay (dt=any).
In case of Hyper-Threading technology is turned off in the

server Load Control regulates the number of components in a
way that for a certain Target Load the amount of test traffic
is approximately equal for every dt.

After turning Hyper-Threading on, slightly higher through-
put can be achieved at IUT, because system processes can
run more effectively nearly as if the server was a real dual-
CPU system. Thus lower dt represents slightly higher load also
(Figure 8).

Test execution time was chosen approximately 25 minutes
to allow the IUT a suitable rise time in message transmission
rates. According to Figure 7 and Figure 8 in a 25-minute test
run approximately a 14-e-mail-per-second throughput could be
achieved on the available legacy hardware with the test system.
By comparison, an above average mailing list populated by
2,000 subscribers delivers around 400,000 messages per day,
i.e. 4.6 e-mails per second [18], [19].

A lower dt value means faster transmission of protocol
messages at each LTC that involves more resource consump-
tion at the test nodes. Accordingly, Load Control deploys
a lower number of components to each of the workstations
participating in test. However, this fact also means that in
case of a test method that simulates one client at each test
component a higher number of clients can be reproduced at
the cost of a lower dt (Figure 9).

V. CONCLUSIONS

In this paper, we presented a novel approach for designing
load tests using dynamically distributed TTCN-3 test
components supported by an experimental test setup
involving SMTP service testing. Consequently, usage of
TTCN-3 in load tests does not imply a bottleneck if tests are
designed carefully, but the language elements allow designing
an effective distributed load test framework.

The centralized test component distribution logic is easily
interchangeable allowing the development of more effective

Fig. 8. Test traffic, Hyper-Threading on

Fig. 9. Number of test components required for different load levels

algorithms supported by in-depth measurements or analysis
such as in [12] that can be used to predict delays, losses,
response times or throughput in PTCs.

The scope of the dynamically configured parameters
includes the number of PTCs running, timing of component
creation, i.e. the delay between the creation of two components
and the message output rate of each test component. Dynamic
parameters can be set and reset based on the on-line
measurement of memory consumption and of processing
speeds at each workstation participating the test campaign.
The number of PTCs is regulated by a central Load Control
module that aims to produce the load level set by the tester
as accurately as possible, this way allowing testing of the
IUT’s performance with a uniform load shape.

REFERENCES

[1] ETSI ES 201 873-1 (V3.1.1): ”Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-
3 Core Language”, 2005.

[2] Z. Ru Dai, J. Grabowski, H. Neukirchen. Timed TTCN-3 - A Real-time
Extension for TTCN-3. I. Schieferdecker and H. König and A. Wolisz
(Eds.) Proceedings of the IFIP 14th International Conference on Testing
Communicating Systems - TestCom 2002, pp. 407-424, 2002.



[3] S. Dibuz, T. Szabo, Zs. Torpis. BCMP Performance Test with TTCN-
3 Mobile Node Emulator. Proceedings of the IFIP 16th International
Conference on Testing Communicating Systems - TestCom 2004, pp.
50-59, 2004.

[4] R. Gecse, P. Kremer, J. Z. Szabo. HTTP Performance Evaluation with
TTCN. Proceedings of the IFIP 13th International Conference on Testing
Communicating Systems - TestCom 2000, pp. 177-192, 2000.

[5] Z. Wang, J. Wu, X. Yin, X. Shi, B. Tian. Using TimedTTCN-3 in Inter-
operability Testing for Real-Time Communication Systems. Proceedings
of the IFIP 18th International Conference on Testing Communicating
Systems - TestCom 2006, LNCS 3964, pp. 324-340, 2006.

[6] M. J. Csorba, S. Palugyai, J. Miskolczi, S. Dibuz. Performance Measure-
ment of Routers using Conformance Testing Methods. Proceedings of the
2nd International Workshop on Inter-Domain Performance and Simulation
- IPS2004, pp. 152-158, 2004.

[7] G. Din, S. Tolea, I. Schieferdecker. Distributed Load Tests with TTCN-
3. Proceedings of the IFIP 18th International Conference on Testing
Communicating Systems - TestCom 2006, LNCS 3964, pp. 177-196,
2006.

[8] I. Schieferdecker, T. Vassiliou-Gioles. Realizing Distributed TTCN-3 Test
Systems with TCI. Proceedings of the IFIP 15th International Conference
on Testing Communicating Systems - TestCom 2003, LNCS 2644, pp.
110-127, 2003.

[9] ETSI ES 201 873-5 (V3.1.1): ”Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-
3 Runtime Interface (TRI)”, 2005.

[10] J. Z. Szabo. Experiences of TTCN-3 Test Executor Development.
Proceedings of the IFIP 14th International Conference on Testing Com-
municating Systems - TestCom 2002, pp. 191-200, 2002.

[11] ETSI ES 201 873-4 (V3.1.1): ”Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; Part 4: TTCN-3
Operational Semantics”, 2005.

[12] M. J. Csorba, S. Palugyai, S. Dibuz, Gy. Csopaki. Performance Analysis
of Concurrent PCOs in TTCN-3. Proceedings of the IFIP 18th Interna-
tional Conference on Testing Communicating Systems - TestCom 2006,
LNCS 3964, pp. 149-160, 2006.

[13] J. Klensin, Ed.. Simple Mail Transfer Protocol, RFC 2821. 2001.
[14] R. Blum. sendmail for Linux. Sams. 2000.
[15] http://www.codeproject.com/tools/multimail.asp
[16] J. Postel, J.K. Reynolds. Telnet Protocol Specification. RFC 0854. 1983.
[17] E. Severinovskiy. Intel Hyper-Threading Technology Review

http://www.digit-life.com/articles/pentium4xeonhyperthreading/
[18] R. Kolstad. Tuning Sendmail for Large Mailing Lists. Proceedings of the

11th Systems Administration Conference - LISA’97, pp. 195-204, 1997.
[19] C. Assman. Sendmail X: Performance Test and Results http://www.

sendmail.org/∼ca/email/sm-X/design-2005-05-05/main/node6.html


