A File System Abstraction and Shell Interface for a
Wireless Sensor Network Testbed

Andrew R. Dalton, Jason O. Hallstrom
School of Computing
Clemson University
{adalton, jasonof@cs.clemson.edu

Abstract— Despite tremendous research interest and increased Despite recent success and future promise, large-scale sen-
adoption, deeply embedded sensor networks are difficult to sor systems remain difficult to design, debug, and deploy.

design, debug, and deploy; ultra-dependability remains an elusive thage gifficulties stem in large part from the inapplicabil-
goal. To address these difficulties, we have previously presentedit of existing analvtical frameworks and simulation tools
an interactive server-centrictestbed for wireless sensor networks Yy g Yy :

that targets systems constructed usingiesCand TinyOS — the The systems, when deployed at scale, are highly-distributed,
emerging standard in sensor system development. The testbedconcurrent, and reactive, resulting in a high degree of non-

infrastructure exposes an API suite that enables users to rapidly determinism in their execution behavior. They also tend to be
configure, instrument, compile, install, and profile their systems embedded in environments that are rife with system hostility;

on one or more remote network deployments. The prototype . . .
deployment consists of 80 mote Skydevices arranged in a regular network and node failure —both transient and persistent—

grid. The architecture is extensible in both the hardware and are the norm rather than the exception. Existing analytical

software dimensions to foster adoption and specialization. frameworks for reasoning about system correctness and per-
In this paper, we demonstrate the extensibility of the testbed formance offer limited suitability in this context. Simulation

software design, and present a novel file system abstraction andqols, while helpful, are also inadequate. Existing simulators

shell interface developed using the original API suite. The design _.]
of the new interface is informed by user feedback from client fail to accurately model wireless signal propagation and inter

institutions where the standard graphical interface is being used ference [14], [15], nor do they capture the behavioral subtleties
to support research and teaching activities. The new shell inter- of underlying mote hardware platforms [16]. As a result,
face complements the traditional graphical interface, reducing wireless sensor systems are constructed using cyclic develop-
itpltr?)ruacrt]iognI?r:?;rC):é?endd Secf:??i':]“gfg;ci’lgiltra”\}\r/:a“fegéﬁfrtmegﬁiiog ment processes that rely on repegpégisicalexperimentation.
and i%plementaﬁon of the r;1evsj testbgd intergace, and presergn a Hence, the community increasingly relies on sharestbed
small, but representative case-study that illustrates its utility. infrastructures. Indeed, numerous sensor network testbeds are
in use at research institutions across the globe [17], [18], [19],
[20], [21], [22], [23], [24].

While the design details vary from one testbed to another,

Wireless sensor networks are emerging as a linchpin in ttheese systems share a common architecture. Each is sup-
foundation of the ubiquitous computing vision — networkeg@orted by a static collection of network nodes, and provides
computing devices integrated transparently with the workl software infrastructure for interacting with these nodes.
around us. The devices that form the lowest tiers of the3@e supporting infrastructure generally provides services that
networks are referred to asnote$ [1], and are responsible enable remote users to upload program images, map the
for sensing, processing, and communicating environmentalages to physical devices, and collect message data for
phenomenong.g, light, motion, sound). Thenote moniker profiling purposes. The systems are typically batch-based,
reflects their increasingly small form-factors, which have prenabling multiple users to queue experiments for later exe-
gressed from the size of a matchbox [2], to the size of aution. In [16], we present the design and implementation of
quarter [3], to the size of a ballpoint pen tip [4]. Their smalthe NESTbed system, an alternative testbed architecture for
size, low-cost, and wire-free operation make it possible Bystems constructed usingsC[25] and TinyOS[26], [27] —
deploy mote networks in a range of contexts, both indootise emerging platform standard in sensor system development.
and outdoors, at scales that have already exceeded the 1,000 testbed design differs from existing architectures in two
node threshold. Thesesfhart dust [1] networks are enabling important ways: First, the system isal-time interactive it
an exciting class of applications, including ecological stugirovides users with real-time access to network- and source-
ies [5], [6], active volcano monitoring [7], structural damagéevel symbol data without a priori consideration of the symbols
detection [8], [9], wildfire prediction and tracking [10], [11],to be profiled. These features serve not only to achieve the
disaster response [12], and intruder detection and classifipasfiling goals of the system design, but also to enable the
tion [13]. Looking to the future, we expect an even richer classjection of network traffic and transient state faults (to, for
of applications to emerge as these networks become integraggedmple, assess the fault tolerance properties of a system under
into the international cyberinfrastructure. test). Second, the NESTbed architectursesver-centric all

I. INTRODUCTION

phases of the experimentation lifecycle are exposed through aepresentative use-case scenario in Section V. Finally, we
back-end server API, including pre-deployment activities, sudonclude with a summary of contributions, and propose future
as program image generation. Remote interfaces are developeitits of NESTbed extension.
as ‘thin-clients using this API. Deferringall aspects of
experimental control to the testbed server results in an archi-
tecture that supports features precluded by existing designsThe difficulty of achieving predictable performance in wire-
including customized source-level analysis, instrumentatidess sensor networks is well-recognized. Numerous experi-
and compilation. Programmer productivity is also improvethentation tools have been proposed to reduce this difficulty;
since recurring tasks are automated by the server. we summarize some of the most relevant here. Our focus is
The prototype installation includes 8Umote Sky[28] on tools that supporphysical experimentation, as opposed
motes arranged in a regular grid, and can be extendedtdosimulation-basedxperimentation. We note, however, that
support additional devices arranged in arbitrary topologiegeneral purpose wireless simulators [29], [30], [31], and sensor
Indeed, the NESTbed architecture is extensible in both thetwork specific simulators [32], [33], [34] have proven invalu-
hardwareand software dimensions. In this paper, we focus oable to the research community in establishing first measures
the extensibility of thesoftwaredesign — in particular, on of system performance. These tools are not, however, sufficient
the extensibility of theremote interfacedesign. The default by themselves; existing simulators are unable to faithfully
software configuration includes a graphical remote interfaceodel wireless signal propagation and interference [14], [15],
for interacting with the testbed. The interface was designedr do they accurately capture the subtleties of underlying
with ease-of-use as a primary goal, and has been usedh&wdware platforms [16]. Physical experimentation remains a
support both research and teaching activities at client instiecessity.
tutions. A complete description of the graphical user interface Closer to our work aréhybrid frameworks that combine
is presented in [16], and summarized briefly in Section llphysical experimentation and simulation. This approach is
Based on our experiences working with this interface, and tbéien applied in the context of ethernet networks [35], [36],
experiences of our colleagues, two key limitations have bef8Y], and has more recently gained application in the context
identified. First, for remote users outside of the server’s hostin§wireless sensor networks. One example isEh&Stardevel-
domain, the interaction latency introduced by the graphicapment platform [38]. Applications developed using EmStar
interface reduces the timeliness of profiling results, hindetan be executed usinBmCee a simulator capable of dis-
user interaction, and significantly reduces the overall usabilipatching radio instructions to physical devices. Combined with
of the tool. Second, and perhaps more important, the interfd€mTOJ39], an extension that enables mote-class applications
is not well-suited to performing a large number of taski® be executed within aBmStarapplication, designers can test
conveniently — especially repetitive tasks. Querying the valdkeir mote-class systems under a range of network realizations.
of a program symbol on each device at various points duriigill, this tool suite is unable to faithfully simulate mote
a system’s execution, for example, requires a high-degreehafrdware. The tools cannot, for instance, account for hard-
user interaction, and is both tedious and error-prone. ware interrupts or load-induced violations of synchronization
Contributions. We present two contributionsi) (First, we primitives. By contrast, our design relies solely on physical
describe the design and implementation of a complementaxperimentation, thus yielding high precision.
remote interface for the NESTbed system that addresses th&he NESTbed design is not, however, the first to support
limitations of the existing graphical interface. The nB\EST- pure physical experimentation. Testbeds of this type are com-
Shell interface provides a file system abstraction for remotaonly used in the context of 802.11 studies [40], [41], [42],
users, through which all of the NESTbed system features dd3], and are increasingly common in the sensor networks
be accessed. Further, to enable automation of complex andlomain [17], [18], [19], [20], [21], [22], [23], [24]. We
repetitive experimentation tasks, the interface provides aonsider two representative testbeds from the latter category.
interpreted scripting facility. The scripting language provides One of the first sensor network testbeds described in the
constructs for interacting with external (client-side) toolditerature is theMoteLabtestbed [22] deployed at Harvard. The
further enhancing the extensibility of the interface design. Weetwork includes 190 motes [44] attached to ethernet-based
demonstrate the utility of the new interface in the context @fateway devices, enabling network reprogramming through a
a small, but representative use-case scenarjoSécond, by centralized server. The system exposes a web interface that
virtue of developing an alternative interface without modifyingnables users to upload application images, and to map the
(or compromising the operation of) the original system, wienages to physical devices. Users may additionally upload cus-
demonstrate the extensibility of the NESTbed architecture.tom Javaclasses used to parse and store USB data (transmitted
Paper Organization. In the next section, we survey keyduring system execution) for later retrieval. MoteLalbatch-
elements of related work, and highlight the novelty of thbasedrather thaninteractive it uses a queuing system for
NESTbed system. In Section Ill, we summarize the originakperiment scheduling. It does not support real-time source-
system architecture, with a focus on the server API used network-level profiling, nor the injection of transient state
by the NESTShell interface. In Section IV, we present thaults. MoteLab users are also required to generate the required
design and implementation of the new interface. We presapplication images, as well as the corresponding Java logging

II. RELATED WORK

classes; the design @ient-centricrather thanserver-centric research device; it includes anSP430microcontroller oper-
Consequently, MoteLab does not support automated souraéng at 8Mhz, 48K of ROM, 10K of RAM, and a 2.4GHz
level analysis or instrumentation. Finally, the MoteLab servevireless transceiver. The transceiver is used for all in-network
does expose an API for programmatic control; the remot@mmunication; the USB connection is used a®anof-band
interface design is not extensible. link by the NESTbed server to manage and power the attached
The Kanseitestbed [17] deployed at Ohio State is a mordevice. The management services are realized as a suite of six
recent example designed to support multi-tiered network&Pls exposed to remote applications usilaya RMI[47]. We
The system includes over 400 motes arranged in stationasgiefly summarize these APIs in the paragraphs that follow.
portable, and mobile arrays. The overall architecture parallelsConfiguration API. The Configuration APlprovides ser-
the MotelLab design, but the software architecture includeigkes for managingprojects and deployment configurations
several novel features, including job coordination facilitiegmaintained by the server in persistent storage). A project
system health monitoring, event injection, and sensor streaonsists of source materials uploaded by an end-user, and an
scaling. While Kansei is designed fbatch-styleexperimen- associated collection of meta-dagg, program symbol and
tation, the NESTbed system is designedifderactiveexperi- message structure information). A deployment configuration
mentation. Kansei does not support real-time profiling or faudpecifies the application image to install on each device,
injection, and provides limited traffic logging support [45]runtime profiling options, and radio power settings. Multiple
It is also client-centric automated source-level analysis andeployment configurations may be specified for each project.
instrumentation are not supported. Developers are required, fotnstrumentation and Compilation API. The Instrumen-
example, to manually integrate specialized components as pation and Compilation APprovides services to instrument
of each application image. Finally, the granularity of contrand compile project source materials. The APl automates the
provided to external applications by the Kansei API is uncleantegration of NESTbed management components, and pro-
MoteLab and Kansei are representative of testbed projegtdes options to replace default system componentg (adio
under development around the world [18], [19], [20], [21]stack, sensor drivers) with alternative implementations chosen
[23], [24]. While the NESTbed design shares goals and arcliiem a library or uploaded by a user. Compilation services
tectural principles, existing systems are batch-based and cliemitomate program compilation activities, and provide detailed
centric. By contrast, the NESTbed design suppiottisractive result reporting to client applications. The API additionally
server-centricexperimentation and evaluation. provides analysis services to identify program symbols and
Finally, it is important to note that the NESTShell scriptingnessage structures used to populate project meta-data.
interface shares similarities witkarionette[46], a tool suite Deployment API. The Deployment APlprovides services
for querying and controlling wireless embedded devices. Mapn activatea deployment configuration. This process involves
ionette provides a Python interface for reading and modifyilrogramming and configuring the network based on the set-
program state at runtime, as well as invoking nesC commantiags specified by a given configuration. The API provides
Like NESTShell, Marionette enables developers to script dger-mote and whole-network programming functions, as well
bugging and profiling activities. It is not, however, tailoredhs error detection, error reporting, and error recovery support.
for testbedexperimentation; it lacks services for managing Profiling API. The Profiling API provides source- and
projects and deployment configurations, reprogramming deetwork-level profiling functions. The source-level functions
vices, constructing network gateways, and others. Marionetteisable client applications to read and write program variables
integration with a popular object-based scripting languagéuring system execution, supporting both profiling and fault

however, is a point of advantage. injection objectives. The network-level functions enable clients
to subscribe tomessage streamsorresponding to message
Il. NESTBED SYSTEM ARCHITECTURE traffic at one or more nodes. As we will see, this is imple-

We now turn our attention to the NESTbed system architegented using a radio-to-USB forwarding mechanism.
ture, and summarize key aspects of the design detailed in [16]Power Control API. The Power Control API provides
The focus is on the server API, since this is the API used services for toggling the power of network nodes. These
construct the NESTShell interface. services are implemented using USB power control functions
An overview of the architecture is illustrated in Figure lincluded as part of th&JSB 2.0standard. The API services
As shown in the figure, the testbed supports multiple netwoskipport the injection of transient and persistent node failures,
deployments, each connected to an application server usasgwell as recovery from unresponsive device states
a series of USB hubs. Our prototype installation, shown in Gateway Control API. The Gateway Control APprovides
Figure 2, includes 8mote Sky[28] devices arranged in aservices for managing a set of TinyQSrialForwarder in-
grid measuring 4'x8". The Tmote Sky platform is a popularstances [27]. Each instance serves as a mote-to-TCP bridge
for a particular device. Messages transmitted by the device
IThe density of our prototype deployment is an artifact of spatial corgre relayed to an advertised TCP port; messages transmitted to

straints. The deployment can be configured to support connections in ex - - .
of 150" with the addition of wireless USB extenders. But as we will seg,ﬁlé port are relayed to the device. The API provides functions

even in this confined space, the server API provides radio power management
features to ensure the construction of representative routing topologies. 2This APl was not included as part of the implementation discussed in [16].

Configuration API

N I et eeeeeeeeeeaaaa e .
i C) b - | NESTShell Interface :
N (Inst. and Comp. API|) ™ - N el .
[T N ," (Deployment API) :
vee E Profiling AP1 % 1_RMI - Default Graphical Interface
L : 8 N .
C)

Power Control API
Gateway Control API|

8
SF (IP) Ports

L 4

Fig. 1. NESTbed System Architecture

IV. THE NESTSHELL INTERFACE

The NESTShell interface is designed to enable remote users
to interact with the NESTbed system in a manner that parallels
the way in which users interact with a typical operating system
shell. The goal is to provide convenient manual and script-
based access to the NESTbed system features, while reducing
interaction latency (by avoiding network-intensive graphics)
— this, of course, without reducing the level of information
detail available to end-users. At the core of the NESTShell
implementation is a file system abstraction that models the
g hierarchical structure ofi) physical network deployments,
— (i) NESTbed projects,ii{) deployment configurations,jvj
programs, andvj profiling data. Users traverse the file system
and interact with the elements that it contains using familiar
UNIX-styleconcepts and command primitives.

Each directory within the file system definescammand
to associate and disassociaerialForwarder instances with context A user’s active directory defines the active context,
individual nodes. Thigatewaysupport enables remote clientsand dictates the set of available commands. For example, when
to extend the testbed infrastructure with custom sensor subnéig, active directory is th@roject managemerdirectory, the
and upper-tier control and analysis tools. shell provides commands for managing projects. Similarly,

As noted earlier, the default testbed interface was designeten the active directory is ttsymbol profilingdirectory for a
with ease-of-use as a primary goal. It consequently prparticular device, the shell provides commands for reading and
vides “point-and-click access to the features exposed by theriting program variables defined by the application executing
NESTbed server. For instance, creating a new deploymemt the device. A directory may also contain files used to
configuration involves mapping each program image to its carenvey information about the active contextrm#otedirectory,
responding device using a standaditdg-and-drog interface. for instance, includes a file that specifies information about
During execution, retrieving the value of a program symbdhe corresponding network noded, deployment coordinates,
involves selecting the relevant device and choosing the symlgakcuting program image, hardware characteristics). The con-
of interest. Similar interfaces are provided for managin@nts of this file (and others) are read using standard UNIX-
power, injecting faults, accessing network traffic, etc. Morgtyle commandse(g, cat).
important than the latency issues associated with using théThe NESTShell file system structure is shown in Figure 3.
interface from outside of its hosting domain, the point-andBoldface labels correspond to literals; italicized labels are
click access format is ill-suited to tasks that are repetitivplaceholders for names that vary. The commands applicable in
complex, or involve a large network subset. It is inconveniergach directory appear in Table I. In the paragraphs that follow,
for instance, to query the value of a particular program symbak describe the purpose of each directory, and the usage of
on everydevice within the network at various points duringhe associated commands.
system execution. It is similarly inconvenient to bring nodes
on- or off-line in a particular order, or to inject repetitive staté. Experiment Configuration

or fail-stop faults. This is especially significant in scenarios The root directory of the file system contains subdirectories
involving iterative experimentation, where a series of stepgrresponding to the physical deployments available for use.
must be followed repeatedly. The NESTShell interface Wathese subdirectories are “created” automatically based on
designed to complement the graphical interface by addressifigtic configuration data exposed through the server API.
experimentation scenarios of this type. In our current installation, only one physical deployment is

i

Fig. 2. Prototype NESTbed Deployment (80 Motes)

[Command | Directory | Description
cat Display the contents of a file
cd Change the working directory
Is List the contents of the current directory
man (help) Get help on the commands in the current directory
quit (exit) Exit the application
set all Set the value of a variable
unset Unset the value of a variable
echo Display a line of text
env Display the name and value of all variables
shell Execute a system-level command
foreach Loop over a list of items and execute a set of commands
iferror Conditionally execute a set of commands if the last command failed
[mk/rm]proj Physical Deployment| Create a new project or remove an existing project by name
[mk/rm]conf Project Create a new deployment configuration or remove an existing deployment configuration by| name
upload Programs Upload a new program
rm Remove an existing program
profile Messages Select a message type to be profile_d
SymbolsModule Select a program symbol to be profiled
m SymbolProfiling Deselect a program symbol to be profiled
MessageProfiling Deselect a message type to be profiled
configure Motes Configure a mote to run the specified program at the specified radio power level
unconfigure Unconfigure the specified mote
Is Motes Directory-specific Is; displays network information
NetworkMonitor Directory-specific Is; displays network information and mote state
install Installs a program on the specified mote
wait Wait for current installations to complete
reset Network Monitor Perform a soft reset on the specified mote
power[On/Off] Power-on or power-off the specified mote
[mk/rm]gw Create or destroy a network gateway for the specified mote
query - Query the mote for the value of the specified symbol
write Mote'SymbolProfiling Write the specified value to the specified symbol

TABLE |
NESTSHELL COMMAND SUMMARY

installed; hence, users have access to only one deploymsmbdirectory corresponds tarogram symbolsand contains
directory. Within a deployment directory, as in all directoriessubdirectories that match the nesC modules defined within the
users have access to the standard commands. In addition, ting@paded application. Within each of these subdirectories are
have access to commands used to create and remove prdjexs corresponding to the program symbols declared by the
directories. The project creation command requires projaespective module. The associated command context enables
name and description arguments. The description is stongskrs to select a program symbol for profiling, making it
within a file located in the corresponding directory. available for runtime access. Theessages subdirectory con-

Deployment configurations are represented as subdirectoti@iss files corresponding to thmessage structureteclared by
beneath each project, and are managed in a similar mantiee. uploaded application. These structures are not associated
As shown in the figure, a configuration directory containgith particular modules — hence the omission of the module
five subdirectories: i Programs, (ii) SymbolProfiling, (iii) directories. The associated command context is analogous to
MessageProfiling, (iv) Motes, and) NetworkMonitor. We that associated with theymbols directory.
describe each of these directories and the subdirectories theyhe next subdirectories beneath a deployment configuration
contain (in a depth-first fashion) in the paragraphs that follo&re SymbolProfiling and MessageProfiling. These contain files

As its name suggesteyograms contains subdirectories cor-corresponding to the program symbols and message structures,
responding to the applications uploaded by an end®u3ére respectively, that have been selected for runtime profiling. The
associated command context includes commands for uploadiites are populated based on the selection commands discussed
and removing applications. Theload command requires anin the preceding paragraph. The associated command contexts
application name as argument, an associated description, suiude commands to deselect symbols and messages to cancel
a path to the application source materials on the user’s logaibfiling of previously selected elements.
machine. When the command completes (and the applicatiofNext is theMotes directory, which provides a context for
data has been uploaded to the server), the new progragmfiguring the images to install on the network when the
directory is created (beneatbrograms), and two subdirec- current deployment configuration &ctivated The directory
tories are created beneathstmbols and Messages. The first contains a file for each mote, which specifies information

about the hardware characteristics of the devicg,(network

_ 3App_|ic§ti0ns uploaded by a user are shared across deployment (_:onfiglﬁadress, deployment coordinates, memory capacity), and its
tions within a project. Hence, although each configuration directory includes
a Programs subdirectory, this is only a syntactic convenience;#iegrams currentconfiguration statusThe configuration status includes
subdirectory is conceptually stored beneath the contaipiogectdirectory. the application to install on the device, and the radio power

(1

@ Physical Deployment
—'j Project
—'j Configuration

—'j Programs

Program

Symbols

Module

Symbol

Messages

Message

SymbolProfiling
Symbol

MessageProfiling
Message

Motes

Mote Address

@ NetworkMonitor

Mote Address

ProfilingSymbols

Foo /Motes § 1=
OC31y 1631y 2031y 3(31)
16031y 17(31) 18(31) 19r31)
32031y 33(31) 34¢31) 3531

48031y 49(31) [501 [51]
[64] [&65] [&&8] [&7]
Fo. . /Motes §]

Fig. 4. |s Command ResultsMotes)

ling the current network deployment. The most important
commands provided in this context ar&tall and wait. The
install command is used tactivate the current deployment
configuration on a specified mote. This involves programming
the device using the application image mapped to it in the
Motes directory, and setting the requested power level upon
installation. The command executes asynchronously to allow
users to initiate concurrent installation requests — to, for
example, activate the current deployment configuration in a
whole-networkfashion. After initiating a sequence afstall
commands, the user can issuevait command to block until
the programming step completes; the user will be notified
of the aggregate installation results upon completion. The
context includes additional commands to perform a soft reset
on a specified mote, and to toggle the power supply to a
specified mote. Finally, the context provides commands to
create and destrogerialForwarder gateways The gateway
creation command requires the address of the device that will

serve as the gateway, and prints the resulting server-assigned
IP port. The command used to destroy a gateway accepts a
mote address as argument, and frees the resources associated
with the corresponding gateway.

NetworkMonitor includes subdirectories corresponding to
the network nodes. As before, each subdirectory contains a file
that specifies information about the hardware characteristics
of the corresponding device. In addition, each file specifies
information about the deviceactivity state Initially, each

ice is in anunknownstate since the runtime state of the

Symbol

ProfilingMessages

Message

Fig. 3. NESTShell File System Structure

level to be set when the application is executed. The comm

context for theMotes directory overrides the standamd eryork is not maintained in persistent storage. Whenaail
com_mand' to provide a formatted display that includes t mmand is issued on a device, the device state changes
configuration status of each mote. A sample of the ouf jngtalling, Depending on whether the program installation
put produced by this command is shown in Figure 4. cceeds, the mote enters either ginegrammedstate or the
numbers in parentheses indicate the radio power level @fioq state. When a device is in trogrammedbtate, it can
configured motes; unconfiguredmotes are shown in squarep, sed as a gateway, at which point it enters gateway
brackets. Additional detaile{g, program image information, gate (When the gateway is destroyed, the device returns to
hard.wa.re. character|st.|cs) can be retrieved by Invokmgon the programmedstate.) To simplify the collection of aggregate
the individual mote files. The context additionally prOV'de§tatus information. the command context of teworkMon-
commands for configuring and unconfiguring a device. The, girectory overrides the standard command to include
configuration command requires the address of a device, figymation about the activity state of the network. A sample
name of an application contained in theograms directory, of the output produced by this command is shown in Figure 5.
and the desired radio power level. The command used R symhol shown in brackets indicates the respective node’s
unconfigure a device clears the configuration status of the m%@ivity state e, P=programmed u=unknown etc.).
specified as argument. Finally, each mote directory beneatetworkMonitor in-
cludes two subdirectories used for profiling purposess-
filingSymbols and ProfilingMessages. ProfilingSymbols con-
Each deployment configuration directory includesvet- tains files corresponding to the program symbols previously
workMonitor subdirectory that defines a context for controlselected for profiling; the file names match those contained

B. Experiment Execution

/... /NetworkMonitor § ls D. Interface Interoperability
orr]s 1[P1/ 2[P]/ B[P]/ ...

16[P1/ 17[P]/ 18[P]1/ 19[P1/ ... We conclude this section by emphaSiZing that the NEST-

32[1]/ 33[I11/ 34[U]/ 35[U]/ ... Shell interface is intended to complement, rather than replace,

48[U]/ 49[U]/ S0[U]/ SL[Ul/ ... the default graphical interface. In some scenarios, the graphical

g4[U]/ 85[Ul/S 68[UY/ &7 [UTS ... interface is appropriate; in others, the NESTShell interface

/... /NetworkMonitor § i is a better choice. A novice user might, for example, prefer
using the testbed through gdint-and-click interface for

Fig. 5. Is Command ResultsNetworkMonitor) simple debugging tasks. An expert user performing a series

of complex experiments is likely to prefer the shell-based
in SymbolProfiling. Each file contains the most recent valuinterface. The point is that the user is free to choose the
recorded for the corresponding symbol. The command contéxterface that best addresses the task at hand.
includes aquery command to update this value based on Finally, We note that there are some features provided
the symbol'scurrent runtime value. It additionally includes by the graphical user interface that are not provided by the
a write command to overwrite the existing value, which ilNESTShell interface. In particular, the latter interface does
turn causes the state of the executing device to be modifi@dt provide commands for source-level instrumentation. The
The ProfilingMessages directory is defined analogously; itsmanner in which these features should be integrated with
contents mirror those ofessageProfiing. The command the shell abstraction is unclear. As a stop-gap measure, users
context forProfilingMessages includes commands taibscribe can access the instrumentation features through the graphical
and unsubscribe to message stream¥Vhen a user subscribesinterface as part of configuring a NESTbed project. This same
to a message stream associated with a particular messpggect may then be accessed using the NESTShell interface.
structure, the content of the corresponding file is initially
cleared. Messages received over the USB port of the active
device that are of the appropriate message type are appendéNe now turn our attention to a use-case scenario deSigned
to this file*. Each log entry includes a line-separated list d¢ demonstrate the utility of the NESTShell design when the
the values contained within the record fields using a simpfterface is applied in the context of a typical evaluation
field=value format. The logging process continues until théask. The scenario involves runtime profiling of an 80 node

V. USE-CASE SCENARIO

user unsubscribes from the message stream. network running a Sllghtly modified version of ts@rgeTelos
i i application included as part of the TinyOS distribution [27].
C. Environment Variables and Control Flow For the sake of presentation, we demonstrate the interface

The NESTShell interface includes a glolealvironment map using anexperimentation scripthat can be executed by the
used to store variables that can be referenced in NESTShgikll interpreter. Alternatively, the contents of the script can
commands. The commands used to interact with the engie entered interactively.
ronment are similar to those found in UNIX-style operating surgeTelos implements a distributed sensing infrastructure.
system shells. The commangs, unset, andenv, for example, Participating nodes execute a spanning tree protocol, with
allow a user to set the value of an environment variablg, pre-selected mote serving as ttoot node Each device
remove a variable, and display the contents of the environmepériodically polls its attached photo sensor, and conveys the
respectively. The familiar §ariable} notation is used to readings to the root node using the spanning tree as a routing
access the value of a variable. As in an operating system sheftucture. We modified the basic application to recordRSsI
the environment map simplifies the interface by enabling usdrsceived signal strengihand LQI (link quality indicato)
to define aliases for complex and/or recurring strings. We wilkadings associated with the last packet received from each
see in Section V that this is especially useful in the case mbde’s parentin the spanning tree. RSSI and LQI readings
NESTShell scripts, where environment variables serve asa® commonly used as link quality metrics, and inform the
convenient parameterization mechanism. parent selection process in tBargeTelos implementation.

In addition to user-defined variables, the environment con-The profiling task involves installing thgurgeTelos appli-
tains thestatus systemvariable. This variable stores tlexit cation under three different deployment configurations, each
statusof the last executed command. It might, for exampl&orresponding to a different radio power setting. In each
be used to determine whethervaite against a particular configuration, the goal is to allow the routing tree to stabilize
program symbol was successful, and to trigger the executifgr a period of time before collecting five elements of profiling
of associated recovery logic if it was not. data from each nodei)(the RSSI and LQI readings mentioned

We note that the interface also includésration andcon- previously, {i) the address of the node’s pareiit) the node’s
ditional evaluationconstructs to enable users to express mor@p countfrom the root, and i) the internal link quality
complex experimentation and evaluation scenarios. We Wifletric used to inform parent selection.
see examples of these constructs in Section V. The experimentation script used to perform the evaluation
task appears in Listing 1. (Due to space constraints, portions

4A number of radio-to-USB forwarding components are freely available for

TinyOS. Installing one of these components as part of an application ima@gthe script have been simplified or elided.) Key elements are

enables users to easily record network traffic through the mote’s USB pordescribed in the paragraphs that follow.

set MOTES="[0-79]" Lines 9-12.Within the project directory, each of the three

1
2 set LEVELS="1-3]" , deployment configurations are created. This is achieved using
3 cd "Ultra-Dense Network"; cd "Surge Evaluation” .
. iferror : then aforeach construct that iterates through each of the power lev-
5 mkproj "Surge Evaluation" \ els defined in_LEVELS. The mkconf command is analogous to
6 4 s "EVS'U?t'Ot’_‘ of RSSILQI" the mkproj command; note, however, the use of theverLevel

I n
Dengif e Evaluato variable in defining the name of the deployment configuration
o foreach powerLevel in ${LEVELS} do directory and the associated description.
10 mkeconf "Power Level ${powerLevel}" \ Lines 13-17.Next, the current directory is changed to the
1 SurgeTelos at Power Level ${powerLevel}
1> done Programs subdirectory beneath the first configuration. The
13 cd "Power Level 1, cd Programs SurgeTelos application is then uploaded from the user’s local
1 upload SurgeTelos \ machine, using the specified name and description. (Recall
15 SurgeTelos Application" \ ..
1 Jopt/tinyos-1.x/apps/SurgeTelos that _uploa_ded appl_lcatmns_ are shared across the deployment
17 ... iferror, exit ... _ configurations within a project.)
w foreach —powerlevel in ${LEVELS} do Line 18. The remainder of the script is contained within
19 echo "-- Power Level ${powerLevel} L N)
2 cd /' cd "Ultra-Dense Network” the body of the loop initiated on this line. It iterates through
2 cd "Surge Evaluation” the selected power levels td) (complete the process of
22 cd "Power Level ${powerLevel} configuring each deployment configuratioii) @ctivate each
23 cd Programs; cd SurgeTelos; cd Symbols . ; . . -
24 cd MultiHopLQI configuration, andiif) collect the required profiling data.
25 foreach RISSIIn LOl gbC o . Lines 19-29.The first step within the loop body is to
26 rawi rawi g urrentParent . PP H
- gbCurrentHopCount gbCurrentLinkEst do select thg program symbpls to be profiled. This is achieved
28 profile ${i} by changing the current directory to theultiHopL QI module
29 doned back i on di directory. The nesC module of the same name defines the
> i Moien” to configuration directory ... symbols of interest. These symbols, selected in the body of the
2 foreach i in ${MOTES} do foreach loop, correspond to the five data elements enumerated
3 g configure ${i} SurgeTelos ${powerLevel} in the discussion of our profiling goals.
34 one . .
. cd .. cd NetworkMonitor Ln_1es 30-34.1In the Motes directory, theforea;h block
36 foreach i in ${MOTES} do configures each device in the selected subset. Given the value
3) install ${i} of the MOTES variable, all 80 motes are configured with the
38 one . .
w echo "Waiting for installation to complete" SurgeTelos application at the current power level. _
40 wait _ Lines 35-41.Next, theinstall command is used to activate
a -, iferror, exit the current deployment configuration on each device in the
42 echo "Waiting for experiment to complete .
s shell sleep 1m network. Recall that this command executes asynchronously;
4 foreach mote in ${MOTES} do the network is programmed in parallel. Thait command
5 echo "Querying ${mote} symbols blocks until the pendingnstalis are complete, and sets the
46 cd ${mote}; cd ProfilingSymbols .) .
“ foreach sym in status variable (used byferror) appropriately.
48 rawRSSI rawLQI gbCurrentParent \ Lines 42—-43.When the installation process completes, the
® gggr‘;”e”thgﬂggtgl g{bs(;r‘:]r}fe”tL'”kESt do experimentation script remains idle for one minute to allow
5 done: ..cd.:cd.. .. “done: done the network routing structure to stabilize. Note that thell

command enables a NESTShell script to invoke commands
in the hostingoperating systenshell. In this case, th&INIX
sleep command is used to implement the idle period.

Lines 44-51.Finally, after the one minute idle period, the

Lines 1-2. The script first declares the variablesoTES script iterates through each device, and queries the runtime
and LEVELS, used to parameterize the subset of devicdalue of each of the five program symbols being profiled. Note
to be programmed, and the power levels to be considerd@ft in addition to updating the content of the relevant symbol
respectively. This enables users to easily modify the script 1§ the auery command displays the retrieved value to the
execute on the network subset and power levels of interes€onsole. (If desired, the script output can be redirected to a

Lines 3—-8.Next, the ‘Surge Evaluatiohproject is selected file using standard redirection primitives.)
within the “Ultra-Dense Network deployment. Theiferror
condition checks the value of theatus variable (set by each
NESTShell command), to determine whether the selection wasVhile the focus of the presentation is on the enabling
successful. Hence, if the project does not exist, it will be créeatures of the NESTShell interface, it is useful to briefly
ated. The second parameterrttproj provides a description summarize the results of executing the experimentation script.
for the new project. At the termination of the block, the currerhe purpose is to emphasize the types of studies that can be
directory is set to the new project directory. performed using the interface.

Listing 1. SurgeTelos Experimentation Script

A. Result Summary

[ID [Par [RSSI[LQI [[ID | Par [RSSI [LQI]
1 0 215 105 || 35 32 211 83
2 0 217 | 106 || 36 20 219 | 107
3 0 215 | 103 || 48 32 219 | 108
4 20 213 | 103 || 49 32 215 99
16 16 216 | 103 || 50 48 210 | 105
17 32 211 95 || 51 20 215 87
18 33 211 | 104 || 52 20 211 | 102
19 33 210 95 || 64| 32 213 | 104
20 48 206 69 || 65 32 212 | 103
32 0 218 | 103 || 66 67 219 | 105
33 32 215 | 106 || 67 48 207 81
34 0 207 91 || 68 67 218 | 106

TABLE Il
SurgeTelos EXPERIMENT RESULTS (PARTIAL) Fig. 6. SurgeTelos Experiment Results (partial)

. Contributions. To address the limitations of the graphi-
Profiling data collected for a subset of the nodes appear§ interface, we presented the design and implementation

in Table II; the table includes RSSI, LQI, and parent addregs NESTShejl an alternativeshell-basedinterface for the

information for 24 devices. This information is representedegTheq system. The interface exposes the testbed infras-
graphically in Figure 6. Each circle corresponds to a devicgy,ctyre using a file system abstraction that enables clients to
arrows represent parent links. The size of each arrow headqgact with the testbed in a manner similar to that used when

proportional to the RSSI measured on the link, and the CoMfgeracting with a file system through an operating system
sponding line width is proportional to the LQI measurement o The interface includes a full set of shell commands,

Not su_rprlsmgly, _the.two metrics a_lre strongly corrgl_ated. and an interpreted scripting facility that enables users to
Again, the point is to emphasize the expressivity of thgontrol the testbed programmaticalxperimentation scripts
scripting language, and theontrollability and observabil- conyeniently capture complex experimentation and evaluation
ity offered by the file system abstraction. Even with littlgcenarios, and can be stored for repeated use. The NESTShell
experience, users can quickly specify and perform complg¥mmands and scripting features were demonstrated in the

configuration, deployment, and profiling scenarios. context of a small, but representative case-study. We empha-
size that the NESTShell interface uses the original NESThed
VI. CONCLUSION server API, and co-exists with the graphical interface, demon-

i strating the extensibility of the NESTbed software design.
In [16], we presented the NESTbed system, iaferac- the NESThed system and its associated user interfaces

tive, server-centrictestbed for wireless sensor networks. Thﬁre continually refined based on user feedback. Refinement
testbed is designed to support rapid experimentation, dekaﬂn continue as part of future work. Looking further out,

ging, and profiling of network applications constructed usinge hjan to pursue two additional activities. First, we plan
nesC[25] and TinyOS[26], [27] — the emerging platform y, iyteqrate the NESTShell file system abstraction as part of

standard in the sensor networks domain. The systém is de- eisting operating system shell. Thus, for example, a user
ployed on the Clemson University campus, and includes 88,4 interact with the NESTbed system as though it were
Tmote S_kyzlewces [28] exposed fors_hared, Interactive use. Tl_&?] actual UNIX device, dramatically extending the suite of
system includes a graphical user interface constructed Usjgyq ayajlable for working with the testbed. This will involve
the NESTbed server API; it enables remote clients to easlyantation of the existing abstraction, and the construction
configure, deploy, and profile their systems on one or MOge g itaple virtual device drivers to support the realization.
fixed network deployments. The system is used t0 SUPPLcong, we plan to integrate ethernet-based gateway devices
a range of research and teaching activities, and is agces_ﬁpflne NESTbed architecture to enable physical deployments
by researchers and StL.Jdent.S from both .Clemson U,n'verﬁﬂét are more geographically distributed. Our long-term goal
and Cleveland State Un|vers.|ty. Our experiences workmg_ wqg to deploy acampus-widdestbed consisting of nodes placed
the system over the past eight months provide the point @iy, jnqoors and outdoors. This would enable a rich class of

departure for the work presented here. experimentation scenarios, beyond what is supported by any
While the graphical user interface has proven useful existing sensor network testbed.

especially for students and novice users— we have faced tWoy|| of the software tools described in this manuscript,
§|gn|f|c§1nt challenges. First, when accessed from outs@eil%luding source code, documentation, and script examples,
its hosting domaini(e, the Clemson campus), the graphicale available by contacting the authors. (If accepted for presen-

interface introduces interaction delays that compromise t&ion at TridentCom’07, these artifacts will be made publicly
freshness of profiling data, and reduce the overall usabilify,aijaple through our web site.)

of the tool. Second, and more important, the tool is ill-suited

to performing tasks that are complex, repetitive, and/or involve ACKNOWLEDGEMENTS

a large number of devices. An interpreted scripting interface This work is funded in part by a grant from the National
is preferable in such cases. Science Foundation (CNS-0520222), and a grant from the

South Carolina Space Grant Consortium. The authors graeq E. Welshet al, “GNOMES: a testbed for low-power heterogeneous
fully acknowledge these agencies for their support.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

[20]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

REFERENCES (25]

B. Warnekeet al, “Smart dust: Communicating with a cubic-millimeter
computer,”"Computer vol. 34, no. 1, pp. 44-51, 2001.

Crossbow Technology Incorporated, “Mica2 datasheet,” [26]
http://www.xbow.com/Products/Produptif_files/Wirelesspdf/6020-
0042-06B_MICA2.pdf, 2003.

——, “Mica2Dot datasheet,”
http://www.xbow.com/Products/Produptf_files/Wirelesspdf/6020- [27]
0043-04C_MICA2DOT.pdf, 2003.

J. Hill, “Integrated -wireless communication platform,” [28]
http://webs.cs.berkeley.edu/retreat-1-03/slides/Meté_Jhill_Nest.
jan2003.ppt, 2003. [29]

W. Hu et al, “The design and evaluation of a hybrid sensor network
for cane-toad monitoring,” inThe 4" International Symposium on [30]
Information Processing in Sensor NetwarksIEEE, April 2005, pp.
503-508.

A. Mainwaringet al,, “Wireless sensor networks for habitat monitoring,"[31]
in The ¥* ACM International Workshop on Wireless Sensor Networks
and Applications ACM, September 2002, pp. 88-97.

G. Werner-Allenet al, “Deploying a wireless sensor network on an
active volcano,”|lEEE Internet Computingvol. 10, no. 2, pp. 18-25, [32]
2006.

K. Chintalapudiet al., “Monitoring civil structures with a wireless sensor
network,” IEEE Internet Computingvol. 10, no. 2, pp. 26—34, 2006. (33]
S. Glaser, “Some real-world applications of wireless sensor nodes,” in
SPIE Symposium on Smart Structures & Materials / NDE 20@®PIE
Press, March 2004, pp. 344-355. (34]
C. Hartunget al., “FireWxNet: a multi-tiered portable wireless system

for monitoring weather conditions in wildland fire environments,” in
The 4" International Conference on Mobile Systems, Applications, arlg%]
Services ACM, June 2006, (to appear).

D. Doolin and N. Sitar, “Wireless sensors for wildfire monitoring,” in
SPIE Symposium on Smart Structures and Materials / NDE 28BIE
Press, March 2005, pp. 477—-484.

K. Lorincz et al,, “Sensor networks for emergency response: Challenges
and opportunities,JEEE Pervasive Computingol. 3, no. 4, pp. 16-23,
2004.

A. Arora et al,, “Exscal: Elements of an extreme scale wireless sensor
network,” inThe 12" IEEE International Conference on Embedded and38
Real-Time Computing Systems and Application&EE, August 2005,

pp. 102-108.

G. Zhou et al, “Impact of radio irregularity on wireless sensor[39]
networks,” in The 2*? International Conference on Mobile Systems,
Applications, and Services ACM, June 2004, pp. 125-138.

M. Takai et al, “Effects of wireless physical layer modeling in mobile

ad hoc networks,” ifThe 2*¢ ACM International Symposium on Mobile [40]
Ad Hoc Networking & Computing ACM, October 2001, pp. 87-94.

A. Dalton and J. Hallstrom, “An interactive, server-centric testbed for
wireless sensor systems,” Clemson University (Dependable Systems
Research Group), Tech. Rep. CU-DSRG-08-06-01, 2006. [41]
E. Ertin et al, “Kansei: A testbed for sensing at scale,” The 3"
International Conference on Information Processing in Sensor Networks
ACM, April 2006, pp. 399-406.

University of Southern California, “Tutornet: A tiered wireless sensoi?]
network testbed,” http://enl.usc.edu/projects/testbed/, 2006.

V. Handziskiet al, “TWIST: a scalable and reconfigurable testbed for
wireless indoor experiments with sensor networks, Pimceedings of
the 2*¢ International Workshop on Multi-hop Ad Hoc Networks: From
Theory to Reality ACM, January 2006, pp. 63—70.

D. Johnsoret al, “TrueMobile: A mobile robotic wireless and sensor
network testbed,” inThe 23" Annual Joint Conference of the IEEE [44]
Computer and Communications Societie$EEE, April 2006.

UC Berkeley, “Soda hall wireless sensor network testbeds[,45]
http://www.millennium.berkeley.edu/sensornets/, 2006.

G. Werner-Alleret al, “MoteLab: a wireless sensor network testbed,” in46]
The 4" International Conference on Information Processing in Sensor
Networks |EEE, April 2005, pp. 483—-488.

B. Chunet al, “Mirage: A microeconomic resource allocation systen‘t
for sensornet testbeds,” ifhe 2*¢ |[EEE Workshop on Embedded 47]
Networked Sensars IEEE, May 2005, p. 10pp.

(36]

(43]

wireless sensor networks,” IEEE International Symposium on Circuits
and Systems IEEE, May 2003, pp. 836—-839.

D. Gayet al, “The nesC language: A holistic approach to networked
embedded systems,” IACM SIGPLAN 2003 Conference on Program-
ming Language Design and ImplementationACM, June 2003, pp.
1-11.

J. Hill et al, “System architecture directions for networked sensors,”
in The 9" International Conference on Architectural Support for
Programming Languages and Operating Systevok 34, no. 5. ACM,
November 2000, pp. 93-104.

UC Berkeley, “TinyOS community forum —— an open-source OS for
the networked sensor regime,” http://www.tinyos.net/, 2004.

Moteiv Corporation, “Tmote Sky datasheet,”
http://www.moteiv.com/products/docs/tmote-sky-datasheet.pdf, 2006.
S. McCanne and S. Floyd, “Network simulator ns-2,"
http://www.isi.edu/nsnam/ns/, 1997.

X. Zeng et al, “GloMoSim: A library for parallel simulation of
large-scale wireless networks,” ifhe 12 Workshop on Parallel and
Distributed Simulation IEEE, May 1998, pp. 154-161.

R. Barr et al, “Scalable wireless ad hoc network simulation,” in
Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc
Wireless, and Peer-to-Peer Networks Wu, Ed. CRC Press, 2005, pp.
297-311.

P. Leviset al, “TOSSIM: Accurate and scalable simulation of entire
TinyOS applications,” inThe ¥* ACM Conference on Embedded
Networked Sensor SystemsACM, November 2003, pp. 126-137.

B. Titzeret al, “Avrora: Scalable sensor network simulation with precise
timing,” in The 4" International Symposium on Information Processing
in Sensor Networks IEEE, April 2005, pp. 477-482.

G. Simon et al, “Simulation-based optimization of communication
protocols for large-scale wireless sensor networks,Tlre 2003 |IEEE
Aerospace Conferencgol. 3. IEEE, March 2003, pp. 1339-1346.

J. Zhou et al, “TWINE: a hybrid emulation testbed for wireless
networks,” inThe 28" IEEE Conference on Computer Communications
IEEE, April 2006.

P. Deet al,, “MINT: A miniaturized network testbed for mobile wireless
research,” irThe 24" Annual Joint Conference of the IEEE Computer
and Communications SocietieslEEE, March 2005, pp. 2731-2742.

1 B. White et al,, “An integrated experimental environment for distributed

systems and networks,” ilthe 8" Symposium on Operating Systems
Design and Implementation ACM, December 2002, pp. 255-270.

] L. Girod et al, “EmStar: a software environment for developing and

deploying wireless sensor networks,” fthe 2004 USENIX Technical
Conference USENIX Association, June-July 2004.

——, “A system for simulation, emulation, and deployment of het-
erogeneous sensor networks,”Tine 2*¢ International Conference on
Embedded Networked Sensor System#&CM, November 2004, pp.
201-213.

A. Karygiannis and E. Antonakakis, “mLab: a mobile ad hoc network
testbed,” in The ¥! Workshop on Security, Privacy, and Trust in
Pervasive and Ubiquitous Computing Diavlos S.A., July 2005, pp.
88-97.

D. Raychaudhuret al, “Overview of the ORBIT radio grid testbed for
evaluation of next-generation wireless network protocols,Wieless
Communications and Networking Conferenwvel. 3. IEEE, March
2005, pp. 1664-1669.

E. Nordstbm et al, “A testbed and methodology for experimental
evaluation of wireless mobile ad hoc networks,”Rnoceedings of the
15t International Conference on Testbeds and Research Infrastructures
for the Development of Networks and CommunitielEEEE, February
2005, pp. 100-109.

B. Chambers, “The grid roofnet: a rooftop ad hoc wireless network,”
Master's thesis, Massachusetts Institute of Technology, May 2002.
Harvard University, “MoteLab: harvard network sensor testbed,”
http://motelab.eecs.harvard.edu/, 2006.

Ohio State University, “Using kansei — basics,”
http://exscal.nullcode.org/kansei/help.php, 2006.

K. Whitehouseet al, “Marionette: Using RPC for interactive devel-
opment and debugging of wireless embedded networksTHa 3"
International Conference on Information Processing in Sensor Networks
New York, NY, USA: ACM, 2006, pp. 416-423.

Sun Microsystems, “Java(TM) remote method invocation (Java RMI),”
http://java.sun.com/j2se/1.5.0/docs/guide/rmi/index.html, 2004.

