
A File System Abstraction and Shell Interface for a
Wireless Sensor Network Testbed

Andrew R. Dalton, Jason O. Hallstrom
School of Computing
Clemson University

{adalton, jasonoh}@cs.clemson.edu

Abstract— Despite tremendous research interest and increased
adoption, deeply embedded sensor networks are difficult to
design, debug, and deploy; ultra-dependability remains an elusive
goal. To address these difficulties, we have previously presented
an interactive, server-centrictestbed for wireless sensor networks
that targets systems constructed usingnesCand TinyOS — the
emerging standard in sensor system development. The testbed
infrastructure exposes an API suite that enables users to rapidly
configure, instrument, compile, install, and profile their systems
on one or more remote network deployments. The prototype
deployment consists of 80Tmote Skydevices arranged in a regular
grid. The architecture is extensible in both the hardware and
software dimensions to foster adoption and specialization.

In this paper, we demonstrate the extensibility of the testbed
software design, and present a novel file system abstraction and
shell interface developed using the original API suite. The design
of the new interface is informed by user feedback from client
institutions where the standard graphical interface is being used
to support research and teaching activities. The new shell inter-
face complements the traditional graphical interface, reducing
interaction latency, and enabling programmatic experimentation
through an interpreted scripting facility. We present the design
and implementation of the new testbed interface, and present a
small, but representative case-study that illustrates its utility.

I. I NTRODUCTION

Wireless sensor networks are emerging as a linchpin in the
foundation of the ubiquitous computing vision — networked
computing devices integrated transparently with the world
around us. The devices that form the lowest tiers of these
networks are referred to as “motes” [1], and are responsible
for sensing, processing, and communicating environmental
phenomenon (e.g., light, motion, sound). Themote moniker
reflects their increasingly small form-factors, which have pro-
gressed from the size of a matchbox [2], to the size of a
quarter [3], to the size of a ballpoint pen tip [4]. Their small
size, low-cost, and wire-free operation make it possible to
deploy mote networks in a range of contexts, both indoors
and outdoors, at scales that have already exceeded the 1,000
node threshold. These “smart dust” [1] networks are enabling
an exciting class of applications, including ecological stud-
ies [5], [6], active volcano monitoring [7], structural damage
detection [8], [9], wildfire prediction and tracking [10], [11],
disaster response [12], and intruder detection and classifica-
tion [13]. Looking to the future, we expect an even richer class
of applications to emerge as these networks become integrated
into the international cyberinfrastructure.

Despite recent success and future promise, large-scale sen-
sor systems remain difficult to design, debug, and deploy.
These difficulties stem in large part from the inapplicabil-
ity of existing analytical frameworks and simulation tools.
The systems, when deployed at scale, are highly-distributed,
concurrent, and reactive, resulting in a high degree of non-
determinism in their execution behavior. They also tend to be
embedded in environments that are rife with system hostility;
network and node failure —both transient and persistent—
are the norm rather than the exception. Existing analytical
frameworks for reasoning about system correctness and per-
formance offer limited suitability in this context. Simulation
tools, while helpful, are also inadequate. Existing simulators
fail to accurately model wireless signal propagation and inter-
ference [14], [15], nor do they capture the behavioral subtleties
of underlying mote hardware platforms [16]. As a result,
wireless sensor systems are constructed using cyclic develop-
ment processes that rely on repeatedphysicalexperimentation.
Hence, the community increasingly relies on sharedtestbed
infrastructures. Indeed, numerous sensor network testbeds are
in use at research institutions across the globe [17], [18], [19],
[20], [21], [22], [23], [24].

While the design details vary from one testbed to another,
these systems share a common architecture. Each is sup-
ported by a static collection of network nodes, and provides
a software infrastructure for interacting with these nodes.
The supporting infrastructure generally provides services that
enable remote users to upload program images, map the
images to physical devices, and collect message data for
profiling purposes. The systems are typically batch-based,
enabling multiple users to queue experiments for later exe-
cution. In [16], we present the design and implementation of
the NESTbed system, an alternative testbed architecture for
systems constructed usingnesC[25] andTinyOS[26], [27] —
the emerging platform standard in sensor system development.
The testbed design differs from existing architectures in two
important ways: First, the system isreal-time interactive; it
provides users with real-time access to network- and source-
level symbol data without a priori consideration of the symbols
to be profiled. These features serve not only to achieve the
profiling goals of the system design, but also to enable the
injection of network traffic and transient state faults (to, for
example, assess the fault tolerance properties of a system under
test). Second, the NESTbed architecture isserver-centric; all



phases of the experimentation lifecycle are exposed through a
back-end server API, including pre-deployment activities, such
as program image generation. Remote interfaces are developed
as “thin-clients” using this API. Deferringall aspects of
experimental control to the testbed server results in an archi-
tecture that supports features precluded by existing designs,
including customized source-level analysis, instrumentation,
and compilation. Programmer productivity is also improved
since recurring tasks are automated by the server.

The prototype installation includes 80Tmote Sky[28]
motes arranged in a regular grid, and can be extended to
support additional devices arranged in arbitrary topologies.
Indeed, the NESTbed architecture is extensible in both the
hardwareandsoftware dimensions. In this paper, we focus on
the extensibility of thesoftwaredesign — in particular, on
the extensibility of theremote interfacedesign. The default
software configuration includes a graphical remote interface
for interacting with the testbed. The interface was designed
with ease-of-use as a primary goal, and has been used to
support both research and teaching activities at client insti-
tutions. A complete description of the graphical user interface
is presented in [16], and summarized briefly in Section III.
Based on our experiences working with this interface, and the
experiences of our colleagues, two key limitations have been
identified. First, for remote users outside of the server’s hosting
domain, the interaction latency introduced by the graphical
interface reduces the timeliness of profiling results, hinders
user interaction, and significantly reduces the overall usability
of the tool. Second, and perhaps more important, the interface
is not well-suited to performing a large number of tasks
conveniently — especially repetitive tasks. Querying the value
of a program symbol on each device at various points during
a system’s execution, for example, requires a high-degree of
user interaction, and is both tedious and error-prone.

Contributions. We present two contributions. (i) First, we
describe the design and implementation of a complementary
remote interface for the NESTbed system that addresses the
limitations of the existing graphical interface. The newNEST-
Shell interface provides a file system abstraction for remote
users, through which all of the NESTbed system features can
be accessed. Further, to enable automation of complex and/or
repetitive experimentation tasks, the interface provides an
interpreted scripting facility. The scripting language provides
constructs for interacting with external (client-side) tools,
further enhancing the extensibility of the interface design. We
demonstrate the utility of the new interface in the context of
a small, but representative use-case scenario. (ii ) Second, by
virtue of developing an alternative interface without modifying
(or compromising the operation of) the original system, we
demonstrate the extensibility of the NESTbed architecture.

Paper Organization. In the next section, we survey key
elements of related work, and highlight the novelty of the
NESTbed system. In Section III, we summarize the original
system architecture, with a focus on the server API used
by the NESTShell interface. In Section IV, we present the
design and implementation of the new interface. We present

a representative use-case scenario in Section V. Finally, we
conclude with a summary of contributions, and propose future
points of NESTbed extension.

II. RELATED WORK

The difficulty of achieving predictable performance in wire-
less sensor networks is well-recognized. Numerous experi-
mentation tools have been proposed to reduce this difficulty;
we summarize some of the most relevant here. Our focus is
on tools that supportphysical experimentation, as opposed
to simulation-basedexperimentation. We note, however, that
general purpose wireless simulators [29], [30], [31], and sensor
network specific simulators [32], [33], [34] have proven invalu-
able to the research community in establishing first measures
of system performance. These tools are not, however, sufficient
by themselves; existing simulators are unable to faithfully
model wireless signal propagation and interference [14], [15],
nor do they accurately capture the subtleties of underlying
hardware platforms [16]. Physical experimentation remains a
necessity.

Closer to our work arehybrid frameworks that combine
physical experimentation and simulation. This approach is
often applied in the context of ethernet networks [35], [36],
[37], and has more recently gained application in the context
of wireless sensor networks. One example is theEmStardevel-
opment platform [38]. Applications developed using EmStar
can be executed usingEmCee, a simulator capable of dis-
patching radio instructions to physical devices. Combined with
EmTOS[39], an extension that enables mote-class applications
to be executed within anEmStarapplication, designers can test
their mote-class systems under a range of network realizations.
Still, this tool suite is unable to faithfully simulate mote
hardware. The tools cannot, for instance, account for hard-
ware interrupts or load-induced violations of synchronization
primitives. By contrast, our design relies solely on physical
experimentation, thus yielding high precision.

The NESTbed design is not, however, the first to support
pure physical experimentation. Testbeds of this type are com-
monly used in the context of 802.11 studies [40], [41], [42],
[43], and are increasingly common in the sensor networks
domain [17], [18], [19], [20], [21], [22], [23], [24]. We
consider two representative testbeds from the latter category.

One of the first sensor network testbeds described in the
literature is theMoteLabtestbed [22] deployed at Harvard. The
network includes 190 motes [44] attached to ethernet-based
gateway devices, enabling network reprogramming through a
centralized server. The system exposes a web interface that
enables users to upload application images, and to map the
images to physical devices. Users may additionally upload cus-
tomJavaclasses used to parse and store USB data (transmitted
during system execution) for later retrieval. MoteLab isbatch-
basedrather thaninteractive; it uses a queuing system for
experiment scheduling. It does not support real-time source-
or network-level profiling, nor the injection of transient state
faults. MoteLab users are also required to generate the required
application images, as well as the corresponding Java logging



classes; the design isclient-centricrather thanserver-centric.
Consequently, MoteLab does not support automated source-
level analysis or instrumentation. Finally, the MoteLab server
does expose an API for programmatic control; the remote
interface design is not extensible.

The Kansei testbed [17] deployed at Ohio State is a more
recent example designed to support multi-tiered networks.
The system includes over 400 motes arranged in stationary,
portable, and mobile arrays. The overall architecture parallels
the MoteLab design, but the software architecture includes
several novel features, including job coordination facilities,
system health monitoring, event injection, and sensor stream
scaling. While Kansei is designed forbatch-styleexperimen-
tation, the NESTbed system is designed forinteractiveexperi-
mentation. Kansei does not support real-time profiling or fault
injection, and provides limited traffic logging support [45].
It is also client-centric; automated source-level analysis and
instrumentation are not supported. Developers are required, for
example, to manually integrate specialized components as part
of each application image. Finally, the granularity of control
provided to external applications by the Kansei API is unclear.

MoteLab and Kansei are representative of testbed projects
under development around the world [18], [19], [20], [21],
[23], [24]. While the NESTbed design shares goals and archi-
tectural principles, existing systems are batch-based and client-
centric. By contrast, the NESTbed design supportsinteractive,
server-centricexperimentation and evaluation.

Finally, it is important to note that the NESTShell scripting
interface shares similarities withMarionette[46], a tool suite
for querying and controlling wireless embedded devices. Mar-
ionette provides a Python interface for reading and modifying
program state at runtime, as well as invoking nesC commands.
Like NESTShell, Marionette enables developers to script de-
bugging and profiling activities. It is not, however, tailored
for testbedexperimentation; it lacks services for managing
projects and deployment configurations, reprogramming de-
vices, constructing network gateways, and others. Marionette’s
integration with a popular object-based scripting language,
however, is a point of advantage.

III. NESTBED SYSTEM ARCHITECTURE

We now turn our attention to the NESTbed system architec-
ture, and summarize key aspects of the design detailed in [16].
The focus is on the server API, since this is the API used to
construct the NESTShell interface.

An overview of the architecture is illustrated in Figure 1.
As shown in the figure, the testbed supports multiple network
deployments, each connected to an application server using
a series of USB hubs. Our prototype installation, shown in
Figure 2, includes 80Tmote Sky[28] devices arranged in a
grid measuring 4’x8’1. The Tmote Sky platform is a popular

1The density of our prototype deployment is an artifact of spatial con-
straints. The deployment can be configured to support connections in excess
of 150’ with the addition of wireless USB extenders. But as we will see,
even in this confined space, the server API provides radio power management
features to ensure the construction of representative routing topologies.

research device; it includes anMSP430microcontroller oper-
ating at 8Mhz, 48K of ROM, 10K of RAM, and a 2.4GHz
wireless transceiver. The transceiver is used for all in-network
communication; the USB connection is used as anout-of-band
link by the NESTbed server to manage and power the attached
device. The management services are realized as a suite of six
APIs exposed to remote applications usingJava RMI[47]. We
briefly summarize these APIs in the paragraphs that follow.

Configuration API. The Configuration APIprovides ser-
vices for managingprojects and deployment configurations
(maintained by the server in persistent storage). A project
consists of source materials uploaded by an end-user, and an
associated collection of meta-data (e.g., program symbol and
message structure information). A deployment configuration
specifies the application image to install on each device,
runtime profiling options, and radio power settings. Multiple
deployment configurations may be specified for each project.

Instrumentation and Compilation API. The Instrumen-
tation and Compilation APIprovides services to instrument
and compile project source materials. The API automates the
integration of NESTbed management components, and pro-
vides options to replace default system components (e.g., radio
stack, sensor drivers) with alternative implementations chosen
from a library or uploaded by a user. Compilation services
automate program compilation activities, and provide detailed
result reporting to client applications. The API additionally
provides analysis services to identify program symbols and
message structures used to populate project meta-data.

Deployment API. The Deployment APIprovides services
to activatea deployment configuration. This process involves
programming and configuring the network based on the set-
tings specified by a given configuration. The API provides
per-mote and whole-network programming functions, as well
as error detection, error reporting, and error recovery support.

Profiling API. The Profiling API provides source- and
network-level profiling functions. The source-level functions
enable client applications to read and write program variables
during system execution, supporting both profiling and fault
injection objectives. The network-level functions enable clients
to subscribe tomessage streamscorresponding to message
traffic at one or more nodes. As we will see, this is imple-
mented using a radio-to-USB forwarding mechanism.

Power Control API. The Power Control API provides
services for toggling the power of network nodes. These
services are implemented using USB power control functions
included as part of theUSB 2.0standard. The API services
support the injection of transient and persistent node failures,
as well as recovery from unresponsive device states2.

Gateway Control API. TheGateway Control APIprovides
services for managing a set of TinyOSSerialForwarder in-
stances [27]. Each instance serves as a mote-to-TCP bridge
for a particular device. Messages transmitted by the device
are relayed to an advertised TCP port; messages transmitted to
the port are relayed to the device. The API provides functions

2This API was not included as part of the implementation discussed in [16].



Client InterfacesPhysical Network Deployments

USB

SF

RMI

SF

RMI

Server Back-End

SF (IP) Ports

NESTShell Interface

Default Graphical Interface

Remote Sensor Subnet

Configuration API

Inst. and Comp. API

Deployment API

Profiling API

Gateway Control API

Power Control API

Fig. 1. NESTbed System Architecture

Fig. 2. Prototype NESTbed Deployment (80 Motes)

to associate and disassociateSerialForwarder instances with
individual nodes. Thisgatewaysupport enables remote clients
to extend the testbed infrastructure with custom sensor subnets,
and upper-tier control and analysis tools.

As noted earlier, the default testbed interface was designed
with ease-of-use as a primary goal. It consequently pro-
vides “point-and-click” access to the features exposed by the
NESTbed server. For instance, creating a new deployment
configuration involves mapping each program image to its cor-
responding device using a standard “drag-and-drop” interface.
During execution, retrieving the value of a program symbol
involves selecting the relevant device and choosing the symbol
of interest. Similar interfaces are provided for managing
power, injecting faults, accessing network traffic, etc. More
important than the latency issues associated with using the
interface from outside of its hosting domain, the point-and-
click access format is ill-suited to tasks that are repetitive,
complex, or involve a large network subset. It is inconvenient,
for instance, to query the value of a particular program symbol
on everydevice within the network at various points during
system execution. It is similarly inconvenient to bring nodes
on- or off-line in a particular order, or to inject repetitive state
or fail-stop faults. This is especially significant in scenarios
involving iterative experimentation, where a series of steps
must be followed repeatedly. The NESTShell interface was
designed to complement the graphical interface by addressing
experimentation scenarios of this type.

IV. T HE NESTSHELL INTERFACE

The NESTShell interface is designed to enable remote users
to interact with the NESTbed system in a manner that parallels
the way in which users interact with a typical operating system
shell. The goal is to provide convenient manual and script-
based access to the NESTbed system features, while reducing
interaction latency (by avoiding network-intensive graphics)
— this, of course, without reducing the level of information
detail available to end-users. At the core of the NESTShell
implementation is a file system abstraction that models the
hierarchical structure of (i) physical network deployments,
(ii ) NESTbed projects, (iii ) deployment configurations, (iv)
programs, and (v) profiling data. Users traverse the file system
and interact with the elements that it contains using familiar
UNIX-styleconcepts and command primitives.

Each directory within the file system defines acommand
context. A user’s active directory defines the active context,
and dictates the set of available commands. For example, when
the active directory is theproject managementdirectory, the
shell provides commands for managing projects. Similarly,
when the active directory is thesymbol profilingdirectory for a
particular device, the shell provides commands for reading and
writing program variables defined by the application executing
on the device. A directory may also contain files used to
convey information about the active context. Amotedirectory,
for instance, includes a file that specifies information about
the corresponding network node (e.g., deployment coordinates,
executing program image, hardware characteristics). The con-
tents of this file (and others) are read using standard UNIX-
style commands (e.g., cat).

The NESTShell file system structure is shown in Figure 3.
Boldface labels correspond to literals; italicized labels are
placeholders for names that vary. The commands applicable in
each directory appear in Table I. In the paragraphs that follow,
we describe the purpose of each directory, and the usage of
the associated commands.

A. Experiment Configuration

The root directory of the file system contains subdirectories
corresponding to the physical deployments available for use.
These subdirectories are “created” automatically based on
static configuration data exposed through the server API.
In our current installation, only one physical deployment is



Command Directory Description

cat

all

Display the contents of a file
cd Change the working directory
ls List the contents of the current directory
man (help) Get help on the commands in the current directory
quit (exit) Exit the application
set Set the value of a variable
unset Unset the value of a variable
echo Display a line of text
env Display the name and value of all variables
shell Execute a system-level command
foreach Loop over a list of items and execute a set of commands
iferror Conditionally execute a set of commands if the last command failed
[mk/rm]proj Physical Deployment Create a new project or remove an existing project by name
[mk/rm]conf Project Create a new deployment configuration or remove an existing deployment configuration by name
upload

Programs
Upload a new program

rm Remove an existing program

profile
Messages Select a message type to be profiled
Symbols/Module Select a program symbol to be profiled

rm
SymbolProfiling Deselect a program symbol to be profiled
MessageProfiling Deselect a message type to be profiled

configure
Motes

Configure a mote to run the specified program at the specified radio power level
unconfigure Unconfigure the specified mote

ls
Motes Directory-specific ls; displays network information
NetworkMonitor Directory-specific ls; displays network information and mote state

install

Network Monitor

Installs a program on the specified mote
wait Wait for current installations to complete
reset Perform a soft reset on the specified mote
power[On/Off] Power-on or power-off the specified mote
[mk/rm]gw Create or destroy a network gateway for the specified mote
query

Mote/SymbolProfiling
Query the mote for the value of the specified symbol

write Write the specified value to the specified symbol

TABLE I

NESTSHELL COMMAND SUMMARY

installed; hence, users have access to only one deployment
directory. Within a deployment directory, as in all directories,
users have access to the standard commands. In addition, they
have access to commands used to create and remove project
directories. The project creation command requires project
name and description arguments. The description is stored
within a file located in the corresponding directory.

Deployment configurations are represented as subdirectories
beneath each project, and are managed in a similar manner.
As shown in the figure, a configuration directory contains
five subdirectories: (i) Programs, (ii ) SymbolProfiling, (iii )
MessageProfiling, (iv) Motes, and (v) NetworkMonitor. We
describe each of these directories and the subdirectories they
contain (in a depth-first fashion) in the paragraphs that follow.

As its name suggests,Programs contains subdirectories cor-
responding to the applications uploaded by an end-user3. The
associated command context includes commands for uploading
and removing applications. Theupload command requires an
application name as argument, an associated description, and
a path to the application source materials on the user’s local
machine. When the command completes (and the application
data has been uploaded to the server), the new program
directory is created (beneathPrograms), and two subdirec-
tories are created beneath it,Symbols andMessages. The first

3Applications uploaded by a user are shared across deployment configura-
tions within a project. Hence, although each configuration directory includes
a Programs subdirectory, this is only a syntactic convenience; thePrograms

subdirectory is conceptually stored beneath the containingproject directory.

subdirectory corresponds toprogram symbols, and contains
subdirectories that match the nesC modules defined within the
uploaded application. Within each of these subdirectories are
files corresponding to the program symbols declared by the
respective module. The associated command context enables
users to select a program symbol for profiling, making it
available for runtime access. TheMessages subdirectory con-
tains files corresponding to themessage structuresdeclared by
the uploaded application. These structures are not associated
with particular modules — hence the omission of the module
directories. The associated command context is analogous to
that associated with theSymbols directory.

The next subdirectories beneath a deployment configuration
areSymbolProfiling andMessageProfiling. These contain files
corresponding to the program symbols and message structures,
respectively, that have been selected for runtime profiling. The
files are populated based on the selection commands discussed
in the preceding paragraph. The associated command contexts
include commands to deselect symbols and messages to cancel
profiling of previously selected elements.

Next is theMotes directory, which provides a context for
configuring the images to install on the network when the
current deployment configuration isactivated. The directory
contains a file for each mote, which specifies information
about the hardware characteristics of the device (e.g., network
address, deployment coordinates, memory capacity), and its
currentconfiguration status. The configuration status includes
the application to install on the device, and the radio power



Fig. 3. NESTShell File System Structure

level to be set when the application is executed. The command
context for the Motes directory overrides the standardls
command to provide a formatted display that includes the
configuration status of each mote. A sample of the out-
put produced by this command is shown in Figure 4. The
numbers in parentheses indicate the radio power level of
configuredmotes; unconfiguredmotes are shown in square
brackets. Additional detail (e.g., program image information,
hardware characteristics) can be retrieved by invokingcat on
the individual mote files. The context additionally provides
commands for configuring and unconfiguring a device. The
configuration command requires the address of a device, the
name of an application contained in thePrograms directory,
and the desired radio power level. The command used to
unconfigure a device clears the configuration status of the mote
specified as argument.

B. Experiment Execution

Each deployment configuration directory includes aNet-

workMonitor subdirectory that defines a context for control-

Fig. 4. ls Command Results (Motes)

ling the current network deployment. The most important
commands provided in this context areinstall and wait. The
install command is used toactivate the current deployment
configuration on a specified mote. This involves programming
the device using the application image mapped to it in the
Motes directory, and setting the requested power level upon
installation. The command executes asynchronously to allow
users to initiate concurrent installation requests — to, for
example, activate the current deployment configuration in a
whole-networkfashion. After initiating a sequence ofinstall

commands, the user can issue await command to block until
the programming step completes; the user will be notified
of the aggregate installation results upon completion. The
context includes additional commands to perform a soft reset
on a specified mote, and to toggle the power supply to a
specified mote. Finally, the context provides commands to
create and destroySerialForwarder gateways. The gateway
creation command requires the address of the device that will
serve as the gateway, and prints the resulting server-assigned
IP port. The command used to destroy a gateway accepts a
mote address as argument, and frees the resources associated
with the corresponding gateway.

NetworkMonitor includes subdirectories corresponding to
the network nodes. As before, each subdirectory contains a file
that specifies information about the hardware characteristics
of the corresponding device. In addition, each file specifies
information about the deviceactivity state. Initially, each
device is in anunknownstate since the runtime state of the
network is not maintained in persistent storage. When aninstall

command is issued on a device, the device state changes
to installing. Depending on whether the program installation
succeeds, the mote enters either theprogrammedstate or the
failed state. When a device is in theprogrammedstate, it can
be used as a gateway, at which point it enters thegateway
state. (When the gateway is destroyed, the device returns to
theprogrammedstate.) To simplify the collection of aggregate
status information, the command context of theNetworkMon-

itor directory overrides the standardls command to include
information about the activity state of the network. A sample
of the output produced by this command is shown in Figure 5.
The symbol shown in brackets indicates the respective node’s
activity state (i.e., P=programmed, U=unknown, etc.).

Finally, each mote directory beneathNetworkMonitor in-
cludes two subdirectories used for profiling purposes,Pro-

filingSymbols and ProfilingMessages. ProfilingSymbols con-
tains files corresponding to the program symbols previously
selected for profiling; the file names match those contained



Fig. 5. ls Command Results (NetworkMonitor)

in SymbolProfiling. Each file contains the most recent value
recorded for the corresponding symbol. The command context
includes aquery command to update this value based on
the symbol’scurrent runtime value. It additionally includes
a write command to overwrite the existing value, which in
turn causes the state of the executing device to be modified.
The ProfilingMessages directory is defined analogously; its
contents mirror those ofMessageProfiling. The command
context forProfilingMessages includes commands tosubscribe

andunsubscribe to message streams. When a user subscribes
to a message stream associated with a particular message
structure, the content of the corresponding file is initially
cleared. Messages received over the USB port of the active
device that are of the appropriate message type are appended
to this file4. Each log entry includes a line-separated list of
the values contained within the record fields using a simple
field=value format. The logging process continues until the
user unsubscribes from the message stream.

C. Environment Variables and Control Flow

The NESTShell interface includes a globalenvironment map
used to store variables that can be referenced in NESTShell
commands. The commands used to interact with the envi-
ronment are similar to those found in UNIX-style operating
system shells. The commandsset, unset, andenv, for example,
allow a user to set the value of an environment variable,
remove a variable, and display the contents of the environment,
respectively. The familiar ${variable} notation is used to
access the value of a variable. As in an operating system shell,
the environment map simplifies the interface by enabling users
to define aliases for complex and/or recurring strings. We will
see in Section V that this is especially useful in the case of
NESTShell scripts, where environment variables serve as a
convenient parameterization mechanism.

In addition to user-defined variables, the environment con-
tains thestatus systemvariable. This variable stores theexit
statusof the last executed command. It might, for example,
be used to determine whether awrite against a particular
program symbol was successful, and to trigger the execution
of associated recovery logic if it was not.

We note that the interface also includesiteration and con-
ditional evaluationconstructs to enable users to express more
complex experimentation and evaluation scenarios. We will
see examples of these constructs in Section V.

4A number of radio-to-USB forwarding components are freely available for
TinyOS. Installing one of these components as part of an application image
enables users to easily record network traffic through the mote’s USB port.

D. Interface Interoperability

We conclude this section by emphasizing that the NEST-
Shell interface is intended to complement, rather than replace,
the default graphical interface. In some scenarios, the graphical
interface is appropriate; in others, the NESTShell interface
is a better choice. A novice user might, for example, prefer
using the testbed through a “point-and-click” interface for
simple debugging tasks. An expert user performing a series
of complex experiments is likely to prefer the shell-based
interface. The point is that the user is free to choose the
interface that best addresses the task at hand.

Finally, We note that there are some features provided
by the graphical user interface that are not provided by the
NESTShell interface. In particular, the latter interface does
not provide commands for source-level instrumentation. The
manner in which these features should be integrated with
the shell abstraction is unclear. As a stop-gap measure, users
can access the instrumentation features through the graphical
interface as part of configuring a NESTbed project. This same
project may then be accessed using the NESTShell interface.

V. USE-CASE SCENARIO

We now turn our attention to a use-case scenario designed
to demonstrate the utility of the NESTShell design when the
interface is applied in the context of a typical evaluation
task. The scenario involves runtime profiling of an 80 node
network running a slightly modified version of theSurgeTelos

application included as part of the TinyOS distribution [27].
For the sake of presentation, we demonstrate the interface
using anexperimentation scriptthat can be executed by the
shell interpreter. Alternatively, the contents of the script can
be entered interactively.

SurgeTelos implements a distributed sensing infrastructure.
Participating nodes execute a spanning tree protocol, with
a pre-selected mote serving as theroot node. Each device
periodically polls its attached photo sensor, and conveys the
readings to the root node using the spanning tree as a routing
structure. We modified the basic application to record theRSSI
(received signal strength) and LQI (link quality indicator)
readings associated with the last packet received from each
node’s parent in the spanning tree. RSSI and LQI readings
are commonly used as link quality metrics, and inform the
parent selection process in theSurgeTelos implementation.

The profiling task involves installing theSurgeTelos appli-
cation under three different deployment configurations, each
corresponding to a different radio power setting. In each
configuration, the goal is to allow the routing tree to stabilize
for a period of time before collecting five elements of profiling
data from each node: (i) the RSSI and LQI readings mentioned
previously, (ii ) the address of the node’s parent, (iii ) the node’s
hop count from the root, and (iv) the internal link quality
metric used to inform parent selection.

The experimentation script used to perform the evaluation
task appears in Listing 1. (Due to space constraints, portions
of the script have been simplified or elided.) Key elements are
described in the paragraphs that follow.



1 set MOTES="[0-79]"
2 set LEVELS="[1-3]"
3 cd "Ultra-Dense Network"; cd "Surge Evaluation"
4 iferror ; then
5 mkproj "Surge Evaluation" \
6 "Evaluation of RSSI/LQI"
7 cd "Surge Evaluation"
8 endif
9 foreach powerLevel in ${LEVELS} do

10 mkconf "Power Level ${powerLevel}" \
11 "SurgeTelos at Power Level ${powerLevel}"
12 done
13 cd "Power Level 1"; cd Programs
14 upload SurgeTelos \
15 "SurgeTelos Application" \
16 /opt/tinyos-1.x/apps/SurgeTelos
17 ... iferror, exit ...
18 foreach powerLevel in ${LEVELS} do
19 echo "-- Power Level ${powerLevel}"
20 cd /; cd "Ultra-Dense Network"
21 cd "Surge Evaluation"
22 cd "Power Level ${powerLevel}"
23 cd Programs; cd SurgeTelos; cd Symbols
24 cd MultiHopLQI
25 foreach i in
26 rawRSSI rawLQI gbCurrentParent \
27 gbCurrentHopCount gbCurrentLinkEst do
28 profile ${i}
29 done
30 ... cd .. back to configuration directory ...
31 cd Motes
32 foreach i in ${MOTES} do
33 configure ${i} SurgeTelos ${powerLevel}
34 done
35 cd ..; cd NetworkMonitor
36 foreach i in ${MOTES} do
37 install ${i}
38 done
39 echo "Waiting for installation to complete"
40 wait
41 ... iferror, exit ...
42 echo "Waiting for experiment to complete"
43 shell sleep 1m
44 foreach mote in ${MOTES} do
45 echo "Querying ${mote} symbols"
46 cd ${mote}; cd ProfilingSymbols
47 foreach sym in
48 rawRSSI rawLQI gbCurrentParent \
49 gbCurrentHopCount gbCurrentLinkEst do
50 query MultiHopLQI.${sym}
51 done ; ... cd ..; cd .. ...; done ; done

Listing 1. SurgeTelos Experimentation Script

Lines 1–2. The script first declares the variablesMOTES

and LEVELS, used to parameterize the subset of devices
to be programmed, and the power levels to be considered,
respectively. This enables users to easily modify the script to
execute on the network subset and power levels of interest.

Lines 3–8.Next, the “Surge Evaluation” project is selected
within the “Ultra-Dense Network” deployment. Theiferror

condition checks the value of thestatus variable (set by each
NESTShell command), to determine whether the selection was
successful. Hence, if the project does not exist, it will be cre-
ated. The second parameter tomkproj provides a description
for the new project. At the termination of the block, the current
directory is set to the new project directory.

Lines 9–12.Within the project directory, each of the three
deployment configurations are created. This is achieved using
a foreach construct that iterates through each of the power lev-
els defined inLEVELS. Themkconf command is analogous to
themkproj command; note, however, the use of thepowerLevel

variable in defining the name of the deployment configuration
directory and the associated description.

Lines 13–17.Next, the current directory is changed to the
Programs subdirectory beneath the first configuration. The
SurgeTelos application is then uploaded from the user’s local
machine, using the specified name and description. (Recall
that uploaded applications are shared across the deployment
configurations within a project.)

Line 18. The remainder of the script is contained within
the body of the loop initiated on this line. It iterates through
the selected power levels to (i) complete the process of
configuring each deployment configuration, (ii ) activate each
configuration, and (iii ) collect the required profiling data.

Lines 19–29. The first step within the loop body is to
select the program symbols to be profiled. This is achieved
by changing the current directory to theMultiHopLQI module
directory. The nesC module of the same name defines the
symbols of interest. These symbols, selected in the body of the
foreach loop, correspond to the five data elements enumerated
in the discussion of our profiling goals.

Lines 30–34. In the Motes directory, the foreach block
configures each device in the selected subset. Given the value
of the MOTES variable, all 80 motes are configured with the
SurgeTelos application at the current power level.

Lines 35–41.Next, theinstall command is used to activate
the current deployment configuration on each device in the
network. Recall that this command executes asynchronously;
the network is programmed in parallel. Thewait command
blocks until the pendinginstalls are complete, and sets the
status variable (used byiferror) appropriately.

Lines 42–43.When the installation process completes, the
experimentation script remains idle for one minute to allow
the network routing structure to stabilize. Note that theshell

command enables a NESTShell script to invoke commands
in the hostingoperating systemshell. In this case, theUNIX
sleep command is used to implement the idle period.

Lines 44–51.Finally, after the one minute idle period, the
script iterates through each device, and queries the runtime
value of each of the five program symbols being profiled. Note
that in addition to updating the content of the relevant symbol
file, the query command displays the retrieved value to the
console. (If desired, the script output can be redirected to a
file using standard redirection primitives.)

A. Result Summary

While the focus of the presentation is on the enabling
features of the NESTShell interface, it is useful to briefly
summarize the results of executing the experimentation script.
The purpose is to emphasize the types of studies that can be
performed using the interface.



ID Par RSSI LQI ID Par RSSI LQI

1 0 215 105 35 32 211 83
2 0 217 106 36 20 219 107
3 0 215 103 48 32 219 108
4 20 213 103 49 32 215 99

16 16 216 103 50 48 210 105
17 32 211 95 51 20 215 87
18 33 211 104 52 20 211 102
19 33 210 95 64 32 213 104
20 48 206 69 65 32 212 103
32 0 218 103 66 67 219 105
33 32 215 106 67 48 207 81
34 0 207 91 68 67 218 106

TABLE II

SurgeTelos EXPERIMENT RESULTS (PARTIAL)

Profiling data collected for a subset of the nodes appears
in Table II; the table includes RSSI, LQI, and parent address
information for 24 devices. This information is represented
graphically in Figure 6. Each circle corresponds to a device;
arrows represent parent links. The size of each arrow head is
proportional to the RSSI measured on the link, and the corre-
sponding line width is proportional to the LQI measurement.
Not surprisingly, the two metrics are strongly correlated.

Again, the point is to emphasize the expressivity of the
scripting language, and thecontrollability and observabil-
ity offered by the file system abstraction. Even with little
experience, users can quickly specify and perform complex
configuration, deployment, and profiling scenarios.

VI. CONCLUSION

In [16], we presented the NESTbed system, aninterac-
tive, server-centrictestbed for wireless sensor networks. The
testbed is designed to support rapid experimentation, debug-
ging, and profiling of network applications constructed using
nesC [25] and TinyOS [26], [27] — the emerging platform
standard in the sensor networks domain. The system is de-
ployed on the Clemson University campus, and includes 80
Tmote Skydevices [28] exposed for shared, interactive use. The
system includes a graphical user interface constructed using
the NESTbed server API; it enables remote clients to easily
configure, deploy, and profile their systems on one or more
fixed network deployments. The system is used to support
a range of research and teaching activities, and is accessed
by researchers and students from both Clemson University
and Cleveland State University. Our experiences working with
the system over the past eight months provide the point of
departure for the work presented here.

While the graphical user interface has proven useful —
especially for students and novice users— we have faced two
significant challenges. First, when accessed from outside of
its hosting domain (i.e., the Clemson campus), the graphical
interface introduces interaction delays that compromise the
freshness of profiling data, and reduce the overall usability
of the tool. Second, and more important, the tool is ill-suited
to performing tasks that are complex, repetitive, and/or involve
a large number of devices. An interpreted scripting interface
is preferable in such cases.

Fig. 6. SurgeTelos Experiment Results (partial)

Contributions. To address the limitations of the graphi-
cal interface, we presented the design and implementation
of NESTShell, an alternativeshell-basedinterface for the
NESTbed system. The interface exposes the testbed infras-
tructure using a file system abstraction that enables clients to
interact with the testbed in a manner similar to that used when
interacting with a file system through an operating system
shell. The interface includes a full set of shell commands,
and an interpreted scripting facility that enables users to
control the testbed programmatically.Experimentation scripts
conveniently capture complex experimentation and evaluation
scenarios, and can be stored for repeated use. The NESTShell
commands and scripting features were demonstrated in the
context of a small, but representative case-study. We empha-
size that the NESTShell interface uses the original NESTbed
server API, and co-exists with the graphical interface, demon-
strating the extensibility of the NESTbed software design.

The NESTbed system and its associated user interfaces
are continually refined based on user feedback. Refinement
will continue as part of future work. Looking further out,
we plan to pursue two additional activities. First, we plan
to integrate the NESTShell file system abstraction as part of
an existing operating system shell. Thus, for example, a user
could interact with the NESTbed system as though it were
an actual UNIX device, dramatically extending the suite of
tools available for working with the testbed. This will involve
adaptation of the existing abstraction, and the construction
of suitable virtual device drivers to support the realization.
Second, we plan to integrate ethernet-based gateway devices
in the NESTbed architecture to enable physical deployments
that are more geographically distributed. Our long-term goal
is to deploy acampus-widetestbed consisting of nodes placed
both indoors and outdoors. This would enable a rich class of
experimentation scenarios, beyond what is supported by any
existing sensor network testbed.

All of the software tools described in this manuscript,
including source code, documentation, and script examples,
are available by contacting the authors. (If accepted for presen-
tation at TridentCom’07, these artifacts will be made publicly
available through our web site.)

ACKNOWLEDGEMENTS

This work is funded in part by a grant from the National
Science Foundation (CNS-0520222), and a grant from the



South Carolina Space Grant Consortium. The authors grate-
fully acknowledge these agencies for their support.

REFERENCES

[1] B. Warnekeet al., “Smart dust: Communicating with a cubic-millimeter
computer,”Computer, vol. 34, no. 1, pp. 44–51, 2001.

[2] Crossbow Technology Incorporated, “Mica2 datasheet,”
http://www.xbow.com/Products/Productpdf files/Wirelesspdf/6020-
0042-06B MICA2.pdf, 2003.

[3] ——, “Mica2Dot datasheet,”
http://www.xbow.com/Products/Productpdf files/Wirelesspdf/6020-
0043-04C MICA2DOT.pdf, 2003.

[4] J. Hill, “Integratedµ-wireless communication platform,”
http://webs.cs.berkeley.edu/retreat-1-03/slides/MoteChip Jhill Nest
jan2003.ppt, 2003.

[5] W. Hu et al., “The design and evaluation of a hybrid sensor network
for cane-toad monitoring,” inThe 4th International Symposium on
Information Processing in Sensor Networks. IEEE, April 2005, pp.
503–508.

[6] A. Mainwaringet al., “Wireless sensor networks for habitat monitoring,”
in The 1st ACM International Workshop on Wireless Sensor Networks
and Applications. ACM, September 2002, pp. 88–97.

[7] G. Werner-Allen et al., “Deploying a wireless sensor network on an
active volcano,”IEEE Internet Computing, vol. 10, no. 2, pp. 18–25,
2006.

[8] K. Chintalapudiet al., “Monitoring civil structures with a wireless sensor
network,” IEEE Internet Computing, vol. 10, no. 2, pp. 26–34, 2006.

[9] S. Glaser, “Some real-world applications of wireless sensor nodes,” in
SPIE Symposium on Smart Structures & Materials / NDE 2004. SPIE
Press, March 2004, pp. 344–355.

[10] C. Hartunget al., “FireWxNet: a multi-tiered portable wireless system
for monitoring weather conditions in wildland fire environments,” in
The 4th International Conference on Mobile Systems, Applications, and
Services. ACM, June 2006, (to appear).

[11] D. Doolin and N. Sitar, “Wireless sensors for wildfire monitoring,” in
SPIE Symposium on Smart Structures and Materials / NDE 2005. SPIE
Press, March 2005, pp. 477–484.

[12] K. Lorincz et al., “Sensor networks for emergency response: Challenges
and opportunities,”IEEE Pervasive Computing, vol. 3, no. 4, pp. 16–23,
2004.

[13] A. Arora et al., “Exscal: Elements of an extreme scale wireless sensor
network,” inThe 11th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications. IEEE, August 2005,
pp. 102–108.

[14] G. Zhou et al., “Impact of radio irregularity on wireless sensor
networks,” in The 2nd International Conference on Mobile Systems,
Applications, and Services. ACM, June 2004, pp. 125–138.

[15] M. Takai et al., “Effects of wireless physical layer modeling in mobile
ad hoc networks,” inThe 2nd ACM International Symposium on Mobile
Ad Hoc Networking & Computing. ACM, October 2001, pp. 87–94.

[16] A. Dalton and J. Hallstrom, “An interactive, server-centric testbed for
wireless sensor systems,” Clemson University (Dependable Systems
Research Group), Tech. Rep. CU-DSRG-08-06-01, 2006.

[17] E. Ertin et al., “Kansei: A testbed for sensing at scale,” inThe 5th

International Conference on Information Processing in Sensor Networks.
ACM, April 2006, pp. 399–406.

[18] University of Southern California, “Tutornet: A tiered wireless sensor
network testbed,” http://enl.usc.edu/projects/testbed/, 2006.

[19] V. Handziskiet al., “TWIST: a scalable and reconfigurable testbed for
wireless indoor experiments with sensor networks,” inProceedings of
the 2nd International Workshop on Multi-hop Ad Hoc Networks: From
Theory to Reality. ACM, January 2006, pp. 63–70.

[20] D. Johnsonet al., “TrueMobile: A mobile robotic wireless and sensor
network testbed,” inThe 25th Annual Joint Conference of the IEEE
Computer and Communications Societies. IEEE, April 2006.

[21] UC Berkeley, “Soda hall wireless sensor network testbeds,”
http://www.millennium.berkeley.edu/sensornets/, 2006.

[22] G. Werner-Allenet al., “MoteLab: a wireless sensor network testbed,” in
The 4th International Conference on Information Processing in Sensor
Networks. IEEE, April 2005, pp. 483–488.

[23] B. Chunet al., “Mirage: A microeconomic resource allocation system
for sensornet testbeds,” inThe 2nd IEEE Workshop on Embedded
Networked Sensors. IEEE, May 2005, p. 10pp.

[24] E. Welsh et al., “GNOMES: a testbed for low-power heterogeneous
wireless sensor networks,” inIEEE International Symposium on Circuits
and Systems. IEEE, May 2003, pp. 836–839.

[25] D. Gay et al., “The nesC language: A holistic approach to networked
embedded systems,” inACM SIGPLAN 2003 Conference on Program-
ming Language Design and Implementation. ACM, June 2003, pp.
1–11.

[26] J. Hill et al., “System architecture directions for networked sensors,”
in The 9th International Conference on Architectural Support for
Programming Languages and Operating Systems, vol. 34, no. 5. ACM,
November 2000, pp. 93–104.

[27] UC Berkeley, “TinyOS community forum —— an open-source OS for
the networked sensor regime,” http://www.tinyos.net/, 2004.

[28] Moteiv Corporation, “Tmote Sky datasheet,”
http://www.moteiv.com/products/docs/tmote-sky-datasheet.pdf, 2006.

[29] S. McCanne and S. Floyd, “Network simulator ns-2,”
http://www.isi.edu/nsnam/ns/, 1997.

[30] X. Zeng et al., “GloMoSim: A library for parallel simulation of
large-scale wireless networks,” inThe 12th Workshop on Parallel and
Distributed Simulation. IEEE, May 1998, pp. 154–161.

[31] R. Barr et al., “Scalable wireless ad hoc network simulation,” in
Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc
Wireless, and Peer-to-Peer Networks, J. Wu, Ed. CRC Press, 2005, pp.
297–311.

[32] P. Levis et al., “TOSSIM: Accurate and scalable simulation of entire
TinyOS applications,” inThe 1st ACM Conference on Embedded
Networked Sensor Systems. ACM, November 2003, pp. 126–137.

[33] B. Titzeret al., “Avrora: Scalable sensor network simulation with precise
timing,” in The 4th International Symposium on Information Processing
in Sensor Networks. IEEE, April 2005, pp. 477–482.

[34] G. Simon et al., “Simulation-based optimization of communication
protocols for large-scale wireless sensor networks,” inThe 2003 IEEE
Aerospace Conference, vol. 3. IEEE, March 2003, pp. 1339–1346.

[35] J. Zhou et al., “TWINE: a hybrid emulation testbed for wireless
networks,” inThe 25th IEEE Conference on Computer Communications.
IEEE, April 2006.

[36] P. Deet al., “MiNT: A miniaturized network testbed for mobile wireless
research,” inThe 24th Annual Joint Conference of the IEEE Computer
and Communications Societies. IEEE, March 2005, pp. 2731–2742.

[37] B. White et al., “An integrated experimental environment for distributed
systems and networks,” inThe 5th Symposium on Operating Systems
Design and Implementation. ACM, December 2002, pp. 255–270.

[38] L. Girod et al., “EmStar: a software environment for developing and
deploying wireless sensor networks,” inThe 2004 USENIX Technical
Conference. USENIX Association, June–July 2004.

[39] ——, “A system for simulation, emulation, and deployment of het-
erogeneous sensor networks,” inThe 2nd International Conference on
Embedded Networked Sensor Systems. ACM, November 2004, pp.
201–213.

[40] A. Karygiannis and E. Antonakakis, “mLab: a mobile ad hoc network
testbed,” in The 1st Workshop on Security, Privacy, and Trust in
Pervasive and Ubiquitous Computing. Diavlos S.A., July 2005, pp.
88–97.

[41] D. Raychaudhuriet al., “Overview of the ORBIT radio grid testbed for
evaluation of next-generation wireless network protocols,” inWireless
Communications and Networking Conference, vol. 3. IEEE, March
2005, pp. 1664–1669.

[42] E. Nordstr̈om et al., “A testbed and methodology for experimental
evaluation of wireless mobile ad hoc networks,” inProceedings of the
1st International Conference on Testbeds and Research Infrastructures
for the Development of Networks and Communities. IEEE, February
2005, pp. 100–109.

[43] B. Chambers, “The grid roofnet: a rooftop ad hoc wireless network,”
Master’s thesis, Massachusetts Institute of Technology, May 2002.

[44] Harvard University, “MoteLab: harvard network sensor testbed,”
http://motelab.eecs.harvard.edu/, 2006.

[45] Ohio State University, “Using kansei — basics,”
http://exscal.nullcode.org/kansei/help.php, 2006.

[46] K. Whitehouseet al., “Marionette: Using RPC for interactive devel-
opment and debugging of wireless embedded networks,” inThe 5th

International Conference on Information Processing in Sensor Networks.
New York, NY, USA: ACM, 2006, pp. 416–423.

[47] Sun Microsystems, “Java(TM) remote method invocation (Java RMI),”
http://java.sun.com/j2se/1.5.0/docs/guide/rmi/index.html, 2004.


