
Chowkidar: A Health Monitor
for Wireless Sensor Network Testbeds

Sandip Bapat, William Leal, Taewoo Kwon, Pihui Wei, Anish Arora
Department of Computer Science and Engineering
The Ohio State University, Columbus, Ohio, USA

Email: {bapat, leal, kwonta, weip, anish}@cse.ohio-state.edu

Abstract— Wireless sensor network (WSN) testbeds are useful
because they provide a way to test applications in an environ-
ment that makes it easy to deploy experiments, configure them
statically or dynamically, and gather performance information.
Sensor data collected in the field can be replayed on nodes, and
new ways to process the data can be tested easily. Testbeds
are rapidly growing in size, with hundreds or thousands of
devices, and testbed services are also becoming richer and more
complex. Due to their size and complexity, faults can (and do)
occur in these testbeds, affecting the outcomes of experiments.
Awareness of testbed health status is important to both testbed
administrators charged with maintaining functional services, and
users who prefer to use healthy devices and like to know if there
are any failures during their experiments.

Based on our experience with Kansei, a large WSN testbed
at Ohio State, we identify use cases that motivate the design
of Chowkidar, a health monitoring facility. Key among these
are: monitoring as a service that operates independently of users
to provide up-to-date testbed status information; monitoring
of heterogeneous testbed devices and networks; distinguishing
between node and interface failures; and diagnosing common-
mode failures such as power supply or Ethernet hub failure. We
present in this paper, a centralized and a distributed Chowkidar
protocol that reliably monitor the health of large, heterogenous
WSN testbeds. We present experimentally measured Chowkidar
performance as well as real experiences and lessons learnt from
the integration of Chowkidar with Kansei, including feedback
from both testbed users and administrators who have found
Chowkidar to be a useful tool for improving the accuracy and
efficiency of testbed experimentation and maintenance.

I. INTRODUCTION

Wireless sensor networks (WSNs) have gained in
popularity, due to their potential for use in a variety
of applications such as perimeter security and intrusion
detection, structural monitoring, industrial sensing and
control, medical applications, etc.; however developing and
fielding one is hard. Simulations are a useful way to debug
code and get basic protocols working, but they do not take
into account the realities of radio communication, power
consumption, unanticipated faults, and the like. Hence WSNs
tested via simulations often do not work when deployed
in the field. On the other hand, experimenting with a

1This work was supported in part by NSF grants NSF-NETS/NOSS-
0520222 and NSF-HDCCSR-0341703, and by DARPA contract OSU-RF
#F33615-01-C-1901.

field-deployed WSN is not practical due to significant time
and labor overheads. When something does not work in a
WSN application, understanding why can be difficult since
memory, power, bandwidth and reliability limit a developer’s
ability to instrument the network. A testbed, designed to
support experimentation with actual devices in a realistic
environment, provides an effective compromise between
simulation and deployment that can speed WSN development
by providing a supporting infrastructure to run, configure and
monitor experiments.

(a) Physical layout of Kansei (b) A multi-device Kansei node

Fig. 1. THE KANSEI TESTBED AT OHIO STATE.

Key to testbed efficacy is a reliable infrastructure through
which deployment, configuration, monitoring and data re-
trieval for an experiment can be done with minimal interfer-
ence with the experiment itself. Large testbeds have hundreds
or thousands of devices, using different types of hardware
and software. One example of such a large, multi-platform
testbed is Kansei [1], which we have developed at Ohio State
and is shown in Figure 1. Kansei currently houses several
hundred WSN devices of different types, whose characteristics
are listed in Table I.

Device type XSM TelosB Stargate
Processor 4MHz 8MHz 400MHz

RAM 4KB 10KB 32MB
OS TinyOS TinyOS Linux

Interfaces CC1000, CC2420, Ethernet, 802.11b,
Serial USB Serial, USB

Bandwidth 38.4kbps 250kbps 11Mbps

TABLE I
DIFFERENT PLATFORMS IN KANSEI.

A. The Need for Health Monitoring

The use of WSN testbeds is rapidly evolving from simple
testing and debugging of protocols to complex, multi-phase
experimentation in which experiments are scripted so that
when a particular run completes, the data generated is analyzed
and a new set of parameters, likely to give better results,
is automatically selected and the experiment is re-run. Such
scenarios are common in testing routing or MAC protocols
where many different parameters such as queue length, backoff
intervals, and the like may have to be tuned to select the
combination that works best. At present, Kansei already sup-
ports interactive experimentation in which a user can visualize,
in real time, the data produced by an experiment and select
new parameters that can then be injected by Kansei into
the experiment. Automated execution of scripted experiments
will soon become part of Kansei’s scheduling and experiment
management service.

Given the relatively unreliable nature of WSN devices, faults
may occur before or during an experiment that affect the
quality of data produced in a run. Even if devices are reliable,
software bugs or incorrect device configurations could lead to
faults. While designing, maintaining and experimenting using
Kansei over the last two years, we have encountered a variety
of faults, which we believe are also applicable to other WSN
testbeds. These faults can be categorized as follows.

• Device fail-stop faults. A fail-stop results in the complete
failure of a device. Fail-stops may occur as a result of
hardware failure or due to software crashes that render
the device completely unresponsive. The impact of a fail-
stop fault may depend on the type of the affected device
in heterogenous testbeds such as Kansei. For example,
the fail-stop of an XSM mote simply results in that mote
being unavailable for user experimentation. However, the
fail-stop of a Stargate has much more impact since a
Stargate is used by Kansei to program and log data from
XSM and TelosB motes that are attached to it via their
serial and USB interfaces. Similarly, the fail-stop of an
Ethernet hub results in loss of wired connectivity to all
of its attached Stargates and in turn their attached motes.
Since the wired network is used by Kansei for instru-
mentation and data retrieval during an experiment, these
fail-stops render the affected testbed regions unavailable.

• Network interface faults. A network interface fault at a
device results in the device being unable to communicate
over that interface. Network interface faults may occur
due to driver failure or loose hardware connections such
as an unplugged Ethernet cable, an unseated 802.11b
wireless card or a detached Stargate-mote connector.
Since most testbeds have separate experimentation and
instrumentation interfaces, the failure of a single network
interface does not render a device unreachable. Failure
of all its network interfaces, however, results in a device
being partitioned from the testbed.

• Software faults. A software fault results in a physically
correct device or network interface being driven into a
corrupted or bad state. These faults may occur due to
bad or buggy code or due to misconfigured software. For
example, a user program may change the radio power
level to a very low value or change the transmission fre-
quency, so that neighbors cannot receive radio messages
sent by this device. Another type of configuration fault
occurs if the Stargate or its attached mote changes the
configuration of some pin in their serial connector to an
incompatible state.

If these faults are not detected and accounted for while ana-
lyzing experimental results, users or automated test programs
that consume them could end up deriving incorrect conclusions
or making incorrect parameter choices that adversely affect the
performance of subsequent runs. It is therefore imperative for
health status information to be available before, during and
after an experiment so that the results produced by a testbed
experiment can be accurately analyzed.

In addition to node health status, diagnostic services pro-
vided by monitoring can help administrators distinguish be-
tween a testbed fault and an error caused by the experiment
itself. This is important since some faults may have the same
visible effect as others. For example, a 802.11b wireless
driver process crash has the same effect as the card becoming
unseated. Diagnosis of such faults can help administrators
determine the appropriate correction actions needed to restore
the testbed to a fully functional state. Knowing, for example,
via alternate network interfaces that the wireless driver has
crashed, an administrator could simply reload it, whereas an
unplugged card would require the administrator to go to the
testbed and physically re-insert it.

We therefore developed Chowkidar, Hindi for “watchman”,
as a service that provides health data about testbed resources,
periodically as well as on demand. Users (or a testbed schedul-
ing service) can use the information provided by Chowkidar
to ensure that experiments run only on working devices by
checking health before and after an experiment. They can
also better assess experimental results knowing whether or not
some failures occurred during the experiment. Administrators
can use Chowkidar to learn about testbed faults and any
available diagnostic information to help determine the most
effective response.

B. Monitoring Requirements

The general network monitoring problem may be stated
as follows: to identify which network objects are functioning
correctly, and, for those that are not, to identify them and so
far as possible, indicate why they are not functioning. Objects
typically include network resources such as links, nodes, and
so forth, but may also include things such as application
components and processes.

In our practical experience with Kansei testbed, various

recurring use cases have caused us to add a number of specific
requirements to monitoring WSN testbeds.

• Reliability. For monitoring results to be useful, they
should be reliable. Reliability has two important dimen-
sions; first, the reported results should be consistent
with the actual state of the testbed and second, they
should be complete so that if a node is working and is
reachable, this status should be known to the monitor.
Due to resource constraints such as limited bandwidth
and energy, WSNs often use sampling-based monitoring
where the overall state of the network is estimated based
on data received from a subset of nodes. The goal
of a testbed health monitoring service however, is to
provide ground truth information against which users
can compare obtained experimental results. We therefore
require that the status of each resource in the network be
monitored and that these results be reliably exfiltrated.

Reliability also implies that monitoring must be inde-
pendent of an experiment’s semantics or communication
structure; otherwise design or implementation errors in
an experiment could yield incorrect monitoring results.

• Efficiency. Regardless of whether a monitor collects
health status from some or all nodes, monitoring should
be both time and energy efficient. By this we mean that
monitoring must complete quickly, using few messages.

• Heterogeneity. As exemplified in Table I, WSN testbeds
may have different hardware and software platforms
with varying capabilities and limitations. A monitor must
therefore handle heterogeneous devices and networks.
This might include PCs, embedded Linux systems such as
Stargates and motes such as Mica2s, XSMs or TelosBs,
as well as a variety of networks, including mote radio,
WiFi, Ethernet, and others. There can be several instances
of each network (such as multiple Ethernets). A monitor
must be able to check the status of each of these.

• Diagnosability. Administrators need to be able to dis-
tinguish between complete device failure and interface
failure. In the former case, devices usually have to be
physically repaired or replaced; in the second, a remote
correction might be possible. Hence the monitor must
distinguish between these failures.

• Adaptability. WSN testbeds keep evolving due to factors
such as device failures and replacements, new technology
and changing user requirements. Testbed configurations
may also change as a result of rewiring and physical
relocation. A monitor must therefore not be dependent
on any particular testbed architecture and must be able
to easily accommodate different types of networks and
devices and adapt to changes in network configuration
with minimal efforts.

• Usability. Monitoring results must be available centrally
to users and administrators. Administrators need status

information periodically to detect permanent failures or
identify failure patterns while users want to know the
network status before and after an experiment. Hence
monitoring must be performed both automatically or on
demand, targeting specific devices as appropriate.

• Composability. Users may be interested in monitoring
node health during an experiment. Hence monitoring
should be easy to compose with user applications. At
the same time, a monitor must have at most bounded in-
terference with experiments during concurrent operation.
This is of particular concern for radio networks, but can
affect others such as Ethernet as well.

Existing monitoring approaches such as Motelab [2],
SNMP [3], SNMS [4], fault tracing [5] and Sympathy [6]
satisfy some of these requirements but none of them satisfy
all of them. In particular, none distinguish between node and
interface faults, and none are heterogeneous. This is discussed
in more detail in Section IV. It was because of these limitations
that we developed Chowkidar.

Although these monitoring requirements are desirable, not
all testbeds might support them. We therefore identify the
following set of assumptions about testbeds in general for
Chowkidar to realize the monitoring requirements listed above.

• There is an organizational structure that permits auto-
matic, unattended monitoring. If we want monitoring to
be conducted when nodes become free, for instance, there
must be a way for the monitor to identify those nodes.
In Kansei, the scheduling service maintains a database of
node status that Chowkidar accesses.

• To avoid interference with experiments running concur-
rently on the testbed, radio-based communication (includ-
ing mote radio and 802.11 WiFi) has a channel dedicated
to monitoring; or else policies are structured in such
a way as to disable certain kinds of monitoring when
necessary to prevent interference.

C. Organization of the Paper

The rest of the paper is organized is follows. Section II
presents details of Chowkidar including its fault model and
centralized and distributed versions of its monitoring protocol.
Section III describes implementation details of Chowkidar
including performance results measured experimentally on
the Kansei testbed, integration with Kansei and real user
experiences. Section IV discusses related work. Finally we
discuss future work and conclude in Section V.

II. MONITORING A WSN TESTBED WITH CHOWKIDAR

In this section, we first describe the fault model for Chowki-
dar and our approach for diagnosing failure dependencies.
We then present two Chowkidar protocols: the first uses
centralized control while the second one is distributed. Recall

from Section I-B that reliability and efficiency are the key re-
quirements for WSN testbed monitoring, hence we especially
focus on these aspects in our discussion.

Although the two protocols differ in a number of ways, they
both have the following characteristics.

• Monitoring information is collected and evaluated cen-
trally at a base station. The base station is aware of the
topology of the network, and knows which nodes are in
use by experiments and which are not. This information
is used to perform monitoring, to assess the results, and
to provide current and historical status.

• Monitors are correct in the presence of node and link fail-
stops and restarts that occur during the run or between
runs. A given collection either gives a consistent result
(corresponding to testbed state that existed during the run)
or reports failure. In the latter case, the monitor can be
run again.

• All devices are explored for reachability along all avail-
able networks, with a typical path consisting of multiple
networks.

• Paths to resources are least-cost, where the cost of a
network link is assigned by the administrator, taking
into account factors such as bandwidth, reliability, and
interference.

• Monitoring runs are done periodically and, at the request
of the user or the testbed scheduler, can be done on
demand.

• Between monitoring runs, no resources are used except
for components that listen for monitoring messages.

As a minimum, we want Chowkidar to monitor testbed
resources that are not in use. We assume that the testbed has
a scheduling service with the following characteristics.

• When an experiment begins on some set of resources,
Chowkidar is informed that those resources are in use.

• When an experiment ends, Chowkidar components are
automatically loaded on those components and Chowki-
dar is informed that the resources are available.

In our Kansei implementation, Director is the scheduling
service; it maintains an SQL database of resource status.
Chowkidar accesses this database to assess resource status for
monitoring.

Since Chowkidar is configuration-driven, it is testbed-
independent. For a given testbed, communication components
for each network on a node must be provided along with a
configuration of the testbed as a whole. Other than this, no
changes need be made to the architecture of Chowkidar to use
it on another testbed.

A. Fault Model

We assume fail-stop faults with clean restart. When a node
fails, it does not communicate on any of its interfaces. When

an interface fails, the node cannot communicate on it. When
a node restarts, it does so cleanly, reinitializing variables
as required by the monitoring component. We assume an
interface does not have state, so a restart is always clean.

A fault can happen at any time, including during a moni-
toring run. If this happens, we want the monitoring either to
report the failure so that it can be restarted, or we want the
collection to be consistent in the sense that the state reported
actually occurred in the system during the run.

For example, suppose a reachable node’s status has been
confirmed and, during the balance of the monitoring run, it
is not accessed again. If this node fails before the end of the
monitoring run, the report (that the node is reachable) will
be inconsistent with the final state of the system (in which it
is not); but it will be consistent with the state of the system
before the node failed.

On the other hand, if a node was found to be reachable
at one point during the run but found to be unreachable later,
then the run would terminate with an error value. If we assume
that faults stop, or at least stop long enough, then an erroneous
run can be rescheduled, and eventually it will succeed.

Links in a WSN can be unidirectional or bidirectional.
While we do not require all links to be bidirectional, we do
assume that a bidirectional path exists from the root, or the
Chowkidar server, to each node. Thus, our protocols may try
to use some unidirectional links and fail, but eventually they
will discover a bidirectional path if it exists.

Wireless links are subject to interference in the presence of
multiple concurrent senders. Interference affects link reliability
and may result in message losses due to collisions. Message
losses during exfiltration of health data from the testbed may
affect monitoring reliability.

B. Diagnosing Dependencies

Basic monitoring gives reachability information about nodes
and interfaces. If a node is reachable then it is up; but if not, we
cannot automatically conclude its status, since it might be still
be functional, in the sense that it would be reachable if placed
in a suitable environment. Although unreachable, a node might
be functional if the power is off, if all of its interfaces are not
functional, or if it can only be reached through other nodes
that are unreachable.

We have to consider the case of devices where checking
status depends on some other device. These include “dumb”
nodes such as Ethernet hubs that cannot be addressed directly
as well as device interfaces and power supplies.

To know whether a dumb node such as an Ethernet hub
is working or not we have to try to reach an attached node.
Hence if some attached node is reachable via the dumb node
then the dumb node is reachable and therefore up. However,
if no attached node is reachable via the dumb node then either
the dumb node is not functioning, all of the attached devices
are not functioning, all or the interfaces of the attached devices

are not functioning, or some combination. Of course, there can
be additional dependencies, since the interface of an attached
node won’t function if the node itself is not functioning, which
in turn might be due to a power supply failure.

For power supplies, the supply is up if some associated
node is up. If all associated nodes are not reachable then
either the power supply is not functioning or all the nodes
are unreachable for some other reason.

For interfaces, an interface on a node is reachable if it can
be used to reach some other node; in this case, the interfaces
are up as are both nodes and the link between the nodes.
Although unreachable, an interface might be functional if its
node is unreachable or if no other nodes are reachable via the
interface.

Identifying these alternatives requires knowledge of the
testbed topology. Intuitively, some alternatives are more likely
than others. If a hub and all of its attached nodes are
unreachable via the hub, it is more likely that it is the hub
that is not functional. These intuitions can be used to order
the alternatives to guide a testbed administrator. As part of
future work we plan to gather data that relate alternatives to
the actual diagnosis so that probabilities can be assigned based
on historical data.

C. Centralized Chowkidar

The centralized version of Chowkidar performs a collection
on the network that indicates which nodes are reachable. It
also gives information about the status of interfaces. The main
idea is that the base station, using configuration information
and knowledge of nodes that are in use, attempts to construct
a path to each node whose status is unknown, avoiding links
that are down. The process terminates either when all nodes
are confirmed as up or when there are no more paths to check.

Since a given collection does not depend on previous ones,
the protocol handles both fail-stop and restart directly. If
failure happens while the protocol is running that affects
the consistency of the collection, it will be detected and the
collection aborted. Restarts can happen at any time and will
be included the next time a path is created that includes the
resource.

The configuration information can be provided in two ways.
In the “high atomicity” view, the configuration consists of
nodes with network links between them. In this case, a
collection will give all reachable nodes but may not check all
interfaces. Alternatively, the configuration can be given with
“low atomicity” in which interfaces are explicitly included.
This forces Chowkidar to explore paths that include each
interface, thus checking each one.

The following process is repeated, where initially, the status
of each node and link is unknown.

1) Using testbed configuration information, construct a
least cost path (LCP) tree that covers the free nodes

of unknown status, using links that are not down, with
the constraint that all leaves are nodes whose status is
unknown. The tree can be empty, which means that all
reachable nodes have been found, and we are done.

2) For each path, construct a probe message that contains
the path. Send the message to the first node along the
designated interface. As each node receives the message,
it forwards it to the next node if any, and waits for a
reply. If a node is the leaf in the path, it sends a reply
back along the path. If a node that is waiting for a reply
receives it, it forwards it on; if it does not arrive after
a timeout (which can be calculated from the path), it
replies on its own.

3) When a reply arrives at the base station, the knowledge
of the path and the node that replied lets the base station
identify the nodes and links that were reachable along
that path; these are marked as “up”. If some node other
than the leaf replied then the downward link is marked
as down and is effectively removed from the topology
for the duration of the run.

A network link involves a sender and a receiver;
hence lack of responsiveness on the link implies that the
sender’s interface is down or that the receiver’s interface
is down or that the downward node node is down (or
any combination). In any case, we consider the link as
failed and do not use it again: it is removed from the
configuration for the duration of the run.

If, during the run, a particular node or link was found to be
up as the result of some probe but later when that node or link
was reused, it was found to be down, then a node or link fault
has occurred that affects consistency. In that case, we abort
the run and restart. If the run did not abort with an error, then
the collection is consistent. Hence, in the presence of restart
or of fail-stop that does not affect consistency, centralized
Chowkidar will terminate with a consistent collection. If a fail-
stop happens that might affect consistency, it will terminate
with an error.

As a protocol that checks reachability by exploring all
paths sequentially, centralized Chowkidar does not scale well.
Calculating an LCP tree takes O(|N | · |E|) time where N is
the number of nodes and E is the number of edges per node.
Since a network can be fully connected, the time complexity
is O(N2). It results in O(N) probes and, since the set of
probes cover the nodes, there are O(N) messages total. The
number of times the LCP tree calculation process and probing
has to be repeated depends on the pattern of failures. It can
be as high as O(N2) in a network where half the nodes are
down and each is directly linked to an up node; in this case,
paths will be created from each up node to each down one.
Hence time complexity can be as high as O(N4) and message
complexity as high as O(N3).

D. Distributed Chowkidar

As described earlier, in the worst case pattern of failures, the
time and message complexity of the centralized protocol can
be quite high. From our experience with Kansei, a collection
for centralized Chowkidar can take up to 10 minutes for the
low atomicity case for 210 nodes. Kansei is in the process of
growing, with up to 630 TelosB motes to be added in the near
future, so clearly the centralized approach will not scale.

We have therefore developed a self-stabilizing distributed
protocol [7] to be used as part of Chowkidar. This protocol
solves an instance of the well-known problem of message-
passing rooted spanning tree construction and its use in PIF
(propagation of information with feedback) for the case of a
WSN. Our protocol differs from previous work in message-
passing PIFs in two ways that are critical for the WSN model.
First, it is message efficient in that it uses only a few messages
per node, which is important given the resource constraints of
WSNs. Second, it tolerates ongoing node as well as link faults,
and their restart, which do indeed occur in WSNs, in contrast
to requiring that faults stop during convergence.

Our distributed protocol first builds a spanning tree over
the set of reachable nodes in the network. A key idea in
this tree construction is a handshake between a node and its
potential parent. At the start of an execution, the root (or the
central Chowkidar server) broadcasts a wave message on all
its outgoing interfaces with a session number higher than any
used previously. When a node X receives a wave broadcast
from another node Y with a higher session number, it asks
Y to become its parent. Y records X as a child and sends an
acknowledgement. Our protocol also forms LCPs from each
node to the root by phasing the delivery of the wave messages:
nodes forward a wave message on all outgoing links; however
on links with lower cost, the messages are forwarded earlier
than on links with higher cost. A node that is connected to
the root through multiple paths will therefore receive a wave
message on the LCP first as the total forwarding delay is
proportional to the total path cost and select it.

If node or interface failures do not happen during the tree
formation, the result is a tree with bidirectional edges: each
child knows its parent and each parent knows its children.
When a PIF is subsequently run on the tree, each parent waits
on its children to report before it reports to its parent; if
the parent fails to hear from a child in a timely fashion, it
initiates a failure message to the root, in which case a new
tree is constructed. The acknowledgement process between
the proposed parent and child combined with child timeouts
lets us handle failures that occur during the acknowledgement
sequence. If a node fails to receive the acknowledgement from
the proposed parent then it does not join the tree but waits for
another wave message from another neighbor. Under certain
fault conditions, it may be possible for two nodes to consider
the same node as their child; however this fault is detected
during the PIF phase when one of them does not receive a
report from that child. A formal protocol description can be

found in [7] and proofs of its correctness in a related technical
report [8].

When a tree formation or PIF phase is complete, the
protocol is quiescent, so there is no ongoing message traffic
unless a node restarts. In the absence of failures, a total of three
messages per node are required for tree formation: one for
the wave, two for the parent acknowledgement. The message
complexity is O(N); the time complexity depends on the height
of the tree which is O(log N) in the normal case but can be
O(N) in the worst case where link failures result in a single
path through the network. If there are no failures once a correct
tree has been constructed, subsequent PIFs will continue to
use the same tree. Thus, for every such PIF, two messages per
node are required: one to propagate the wave and one to return
the feedback. Hence the message and time complexity are the
same as for tree formation. If failures occur during the parent
acknowledgement process, additional messages are required as
a node attempts to confirm with subsequent potential parents.
However, this occurs only if a failure happens after the wave
message but before the acknowledgement is complete.

III. CHOWKIDAR IMPLEMENTATION FOR KANSEI

We have implemented both the centralized and distributed
Chowkidar protocols for the Kansei testbed, though both
implementations can easily be adapted to other testbeds with
minor modifications. Our implementations span the different
hardware and software platforms in Kansei listed in Table I.
In this section, we first compare the performance of both
protocols based on data collected from several experiments
in Kansei. We then describe some important lessons learnt
during the integration of centralized Chowkidar and some real
experiences from both users and administrators of Kansei in
using Chowkidar.

A. Experimental Results

To evaluate the performance benefits of using the distributed
protocol over the centralized one, we ran a number of exper-
iments using both implementations in our Kansei testbed. We
ran both protocols on the same sets of nodes. In the initial
experiments, we tested correctness in the absence of failures
by simply executing the protocols on nodes that were known
to be working. We then injected failures by killing Chowkidar
processes on randomly selected nodes (the same nodes for
both cases).

Table II shows the experimentally measured performance
for a set of 25 nodes in Kansei. This data does not take into
account the time taken to compute the paths in the centralized
case as this is quite small on a powerful server. Recall that
the distributed protocol first constructs a spanning tree over
which subsequent PIFs can be collected, hence the total time
for the distributed protocol is the sum of the times taken by
each of these phases.

% of failed nodes Tcent Tdist Ttree TPIF

0% 9s 7s 2s 5s
8% 54s 14s 8.5s 5.5s

20% 86s 16s 10.5s 5.5s
40% 153s 17s 11.5s 5.5s

TABLE II
PERFORMANCE COMPARISON ON A 25 NODE NETWORK.

As seen from the data, in the absence of faults, the per-
formance of the centralized and the distributed protocols is
quite comparable. However, the performance of the centralized
protocol degrades substantially as the number of failures
increases, even for a 25 node network. This is because the
centralized protocol not only operates sequentially but also
tries to explore all possible working paths in case of a failed
node before giving up. By contrast, the distributed protocol
finds existing paths concurrently instead of pruning failed ones
sequentially, so its performance is only marginally affected. It
should be understood though that the centralized protocol was
inherently reliable due to its sequentially design that avoids
interference losses whereas the distributed implementation
had to be carefully tuned to select appropriate randomized
backoff parameters to minimize network interference created
by concurrent execution. The centralized protocol could also
be parallelized and similarly tuned for reliability, but it is clear
that it will not outperform the distributed one.

We also experimentally measured the scalability of both
protocols by varying the network size, the results of which
are shown in Table III.

of % of node
nodes failures Tcent Tdist Ttree TPIF

25 0% 9s 7s 2s 5s
50 0% 23s 9s 3s 5s
25 40% 153s 17s 11.5s 5.5s
50 40% 305s 23s 17s 6s

TABLE III
SCALABILITY OF CENTRALIZED VS. DISTRIBUTED PROTOCOLS.

The first two rows in the table indicate the completion times
for both protocols in the absence of any injected faults while
the last two rows indicate the completion time when (the same)
40% nodes, selected randomly in the network, are failed. The
data clearly demonstrates that as the network size increases,
the performance of the centralized protocol degrades much
faster than the distributed one.

Another important point to note in the distributed case is
that the PIF completion time increases only slightly as the
failure rate and network size are increased. This is because
the PIF completion time is a function of the depth of the
constructed spanning tree. Also, since the same tree is used
when there are no new failures, the PIF cost is amortized over
multiple successive runs, hence if failures occur rarely, the

average completion time for the distributed protocol is even
smaller.

Our experiments thus show that when carefully tuned for
reliability, the distributed protocol outperforms the centralized
one and scales much better as both failure rate and network
size are increased.

B. Integration with Kansei

As noted, Chowkidar is testbed-independent. As a case
study, we have integrated its centralized implementation with
the Kansei testbed, which satisfies the requirements mentioned
earlier.

The Director service in Kansei is a distributed implemen-
tation that schedules and manages experiments, automatically
terminating them when the reserved time has passed. When
that happens, each Stargate activates Chowkidar’s Stargate
components and loads Chowkidar’s mote components; since
this happens locally, it does not depend on the base station
and hence does not depend on reachability via Ethernet. At
the base station, Director updates the status of nodes in a
central database. When Chowkidar is scheduled to run, either
periodically or upon demand, it accesses this database and
checks free nodes. If Director needs a node for a scheduled
experiment, it kills the Chowkidar components, rendering the
node inaccessible to Chowkidar, and updates the database. If
Chowkidar has completed probing the nodes just removed then
there is no problem; otherwise, if the node was up, Chowkidar
will note that it is no longer accessible and will terminate with
error and restart.

There are various policy issues that require coordination
between Director and Chowkidar. XSM and TelosB motes
have several non-interfering radio channels available in their
operational frequency band. Radio communication in Chowki-
dar can thus occur on a reserved frequency, avoiding interfer-
ence with experiments. However, because Kansei is located in
a warehouse with industrial neighbors, interference prevents
Chowkidar from using a reserved frequency for 802.11b WiFi.
To avoid interference, Director should note experiments that
use the WiFi network so that Chowkidar can avoid using it.
A similar policy issue concerns Ethernet in case Chowkidar’s
use of Ethernet might interfere with an experiment.

Since Stargates have substantially more resources than XSM
and TelosB motes, it is reasonable to perform monitoring on
them even when they are in use by an experiment. However,
a particular experiment might prefer that Chowkidar not run
during that time. Director and Chowkidar need to be set up
so experimenters can indicate their preference.

Implementation of these policy issues is part of ongoing
work.

C. Experience with Chowkidar

Since its integration with Kansei, users and administrators
have been using Chowkidar quite actively for different reasons.

Fig. 2. VISUALIZATION OF KANSEI HEALTH USING CHOWKIDAR.

In this section, we describe our initial experiences and lessons
learnt from user feedback after deploying Chowkidar.

Visualizing test results. At the end of a run, Chowkidar
timestamps and stores the collected results in a database. The
results are also displayed on a webpage [9] so that they are
easily readable to users and administrators.

Figure 2 shows a screenshot of the output generated by
Chowkidar which represents a high-level view of Kansei
health. In this visualization, each Stargate and its attached
motes are represented by a single logical node. Logical nodes
with all devices working correctly are denoted by simple
circles whereas if either of these devices or their interfaces
have failed, the node is denoted by a bold, broken circle. Nodes
whose status could not be monitored because no neighbors
were reachable are denoted by squares. Users can learn more
about exactly which devices and interfaces have failed by
clicking on the corresponding circle or square. A graph shows
recent history of the devices. As seen in the figure, the
visualizer allows users to view the output of previous runs by
specifying their id or timestamp. We are currently extending
the visualizer to display the health history of a particular node.
Since experiments can leave nodes in an inaccessible status,
we plan to display cases where nodes failed immediately after
an experiment.

Using Chowkidar results. In the past, Kansei users would
schedule experiments on a set of nodes only to realize later
that some of them were not working. This usually led to users

having to retry several times before they finally ended up with
a set of working nodes. However, users now check the latest
Chowkidar output or invoke Chowkidar on-demand prior to
scheduling experiments so their experiments always run on
working nodes. By running Chowkidar on-demand after an
experiment, users are also able to verify that no new failures
occurred during their experiment, increasing confidence in the
obtained data.

Chowkidar is also being used by Kansei administrators to
diagnose failures. Previously, an administrator would execute
a script to ping all Stargates and then individually diagnose
the ones that did not respond. This approach is not only
tedious but also does not work for non-IP based devices such
as motes that do not respond to ping commands. However,
using Chowkidar, Kansei administrators are now able to detect
several new types of faults such as mote failure, failure of
particular interfaces, etc. Even in cases where Chowkidar
cannot definitively diagnose what fault has occurred, it pro-
vides enough information to the administrators to simplify
manual debugging. Administrators are also using historical
information in Chowkidar to identify failure-prone devices.
For instance, if a particular mote oscillates between correct
and failed states over many Chowkidar runs, it is highly likely
that its serial connector to the Stargate may have become loose
leading to disruptions in power supply to the mote.

Given that the implementation of Chowkidar is reliable, we
have been able to use Chowkidar for diagnosing failures of the
Kansei Director service, which keeps evolving as new features
are added and so is occasionally subject to programming
bugs. For instance, if an unusually high number of nodes are
reported as failed by Chowkidar, it is likely that some Director
component may have failed, causing the Chowkidar service
itself to not be loaded correctly.

Monitoring predicates. After Chowkidar went online, we
received feedback from several Kansei users and adminis-
trators about additional information they would like to be
monitored. For example, testbed administrators were interested
in monitoring whether the various Director processes were
running correctly on Stargates while users wanted to know
whether the SerialForwarder program used to send/receive
TinyOS packets to/from motes was running throughout an
experiment. As a result, we identified several new predicates
besides node and network health that can now be monitored
using Chowkidar.

IV. RELATED WORK

A variety of monitoring facilities have been developed for
testbeds and for deployed WSNs, but all those we are aware
of fall short of our needs. Experiments are assumed to run
on homogeneous devices; although a testbed itself is usually
heterogeneous, existing support tools do not take this into
account. Tools do not distinguish between the health of a node
and the health of its interfaces. For some, the reliability is

too low to be useful and for others, there is a dependency
on the communication structure of the application. Also, in
most testbeds monitoring and the subsequent failure diagnosis
requires explicit action on the part of a user or administrator
and is not done automatically.

Traditional networks such as the Internet use standard
protocols such as the Simple Network Management Protocol
(SNMP) [3] for monitoring network devices and identifying
faults. However, SNMP assumes the IP routing layer in its
operation and is therefore dependent on the fault-tolerance of
IP to be able to reach the monitored devices. In WSN testbeds,
there are often multiple paths to a node using alternative
networks (such as mote radio), but SNMP’s dependence on
IP precludes its use.

Similarly, Motelab [2], Tutornet [10] and Orbit [11] provide
users with a ping-based status for each device, indicating
whether it is reachable or not. However, simply detecting that
a device is unresponsive on a given network is not sufficient
since it does not provide diagnostic information that can for
instance help distinguish between node, interface and network
device faults.

The Sensor Network Management System (SNMS) [4]
provides networking support for WSNs via its own networking
stack, including routing. SNMS allows network administrators
to remotely query network devices and learn their status.
However, experimental studies such as [12] have shown that
reliability of SNMS does not suffice to provide accurate fault
status, leading to false positives in detecting failures.

Sympathy [6] is designed for fault detection at a central
base station in a data collection application in which nodes
periodically send data to the base. Sympathy thus exploits
knowledge of a specific application’s traffic pattern to define
certain fault metrics. Sympathy monitors the flow of applica-
tion traffic, evaluates the defined metrics, and communicates
them to the base station using additional messages. This
information is collected by an automated failure detector
program at the base station, which tries to localize the type and
the source of the faults in the network and notifies the user.
A similar approach is used in [5] where the fault management
system exploits not only the continuous data traffic flow in
the network to piggy-back health information, but also uses
the route update messages in the routing protocol to effect
changes in routing paths for suspected nodes in order to trace
failed nodes. These approaches, although similar to ours, are
critically dependent on knowledge of application routing and
traffic patterns. Further, in both approaches, monitoring is not
conducted when an application is not running, which is a
requirement for testbed health scenarios.

None of the protocols described above are designed to
deal with heterogenous networks. Existing implementations
of these protocols only work only for a homogenous net-
work of certain types of devices. However, even if these
implementations were adapted to span multiple platforms and
networks, it would not be sufficient. This is because the

different types of nodes and networks in a testbed each have
different physical characteristics and resource constraints that
can change with the nature of experiments running on them.
For instance, the Ethernet network in the Kansei testbed is
well-suited for reliably exfiltrating large amounts of data in
a short time. Similarly, the XSM and Stargate nodes can be
tuned to use different radio frequencies so that interference
between health monitoring and ongoing experiments can be
minimized. Dealing with heterogeneity thus requires knowing
and adapting to the specific device characteristics and available
resources, which is not addressed in existing protocols.

As described in Section II, the distributed Chowkidar proto-
col only requires O(N) messages per PIF wave. This is because
nodes maintain information about child links in the spanning
tree and thus by design aggregate their responses. Although it
might be possible to extend Sympathy and SNMS to include
aggregation, the protocols as defined require one message per
node and therefore have a complexity of O(N log N) messages
per collection.

V. CONCLUSIONS AND FUTURE WORK

A reliable, heterogeneous and efficient health monitoring
service is critical to successful maintenance and use of a
wireless sensor network testbed. Chowkidar has proven to be
a useful tool for assessing the testbed health. The centralized
version is suitable for smaller testbeds while the distributed
version works efficiently for larger ones.

Future work will mainly focus on three aspects; extending
the functionality of Chowkidar, making Chowkidar more ef-
ficient and improving its usability. We identify the important
tasks in each of these.

An important predicate that needs to be monitored, espe-
cially in WSNs, is the quality of radio links. Monitoring this
predicate requires the exchange of several messages before an
evaluation can be made. We plan to integrate a link estimation
service so that Chowkidar can report on link quality in addition
to basic “up”ness. The evaluated predicates can also provide
feedback to Chowkidar itself, so that a node dynamically
adjusts link costs depending on the estimation.

Our current Chowkidar implementation ignores the moni-
toring of sensors, which are an important resource in WSN
testbeds. Monitoring sensor health is difficult due to several
reasons. First, ground truth is often not available, even in a
controlled testbed setting, so there is no absolute reference
point for evaluating obtained sensor readings [13]. Second,
an understanding of the physical model is critical, especially
when comparing the readings from nearby sensors. Third, an
understanding of the effect of hardware and other environmen-
tal variations is important. We plan to use robots that are part
of the mobile Kansei platform, to help monitor the health of a
sensor by generating a known signature in its neighborhood.
Similarly, we wish to monitor actuator health using calibrated
sensors.

At present, Chowkidar does not distinguish interface failure
from misconfiguration of the interfaces (say, to disable the
Ethernet driver). In general, however, misconfiguration can be
detected by reading the status of device registers or environ-
ment variables, so we plan to add configurations to the list
of predicates to be monitored by Chowkidar. When a device
interface is misconfigured but the device is accessible via some
other interface, this fact can be reported.

As network scale increases, the issue of bidirectional link
reliability becomes more important. Towards improving the
efficiency of Chowkidar in unreliable wireless environments,
we will compare the performance of CSMA-based approaches
combined with appropriate timing choices for backoffs, that
provide probabilistic guarantees about accuracy with determin-
istically reliable schemes such as TDMA.

A node interface has two parts, a transmitter and a receiver.
Evaluating the receiver locally is easy but a neighbor is needed
to evaluate the transmitter. However, a broadcast might be
heard by many neighbors and if they all report it, there will be
excessive redundancy. Also, there may be other predicates that
involve a node’s neighbors, but those neighbors could be in
different subtrees, so the structure of the spanning tree could
work against us. Future research will focus on techniques such
as data compression and in-network aggregation to improve
the efficiency of collecting transmitter health.

Besides functionality and efficiency, we also plan to improve
the usability of Chowkidar. Chowkidar presently monitors only
those nodes that are not running a user experiment. Monitoring
the health of nodes running an experiment is desirable from a
user’s perspective to improve confidence in the experiment
outcome. We plan to address the concurrent execution of
Chowkidar with a user experiment in two ways. First, we will
provide a standard set of lightweight Chowkidar components,
along with tools for easy integration of user and Chowkidar
components. Second, we will define mechanisms whereby
users can specify policies that dictate which and what fraction
of available resources on a node running a user experiment can
be used by Chowkidar for health monitoring. This will provide
flexibility to users in controlling the interference between the
experiment and health monitoring. Another interesting idea for
future research is to investigate whether there is a systematic
way to exploit the semantics of an application for monitoring
while still offering correctness guarantees.

At present, the integration of Chowkidar with Kansei is
one-way, since the information reported by Chowkidar is not
used by Director. Future integration steps will involve Director
using the output of Chowkidar to automatically select a set of
nodes that are known to be good to run an experiment.

We also plan to design visualization and analysis tools that
will help users and administrators better interpret monitoring
results, including history, produced by Chowkidar. This in-
cludes distinguishing interface vs. device failures, the data
required for which is being collected even in the existing
Chowkidar implementations.

REFERENCES

[1] Anish Arora, Emre Ertin, Rajiv Ramnath, Mikhail Nesterenko, and
William Leal. Kansei: A high-fidelity sensing testbed. IEEE Internet
Computing, 10(2):35–47, March/April 2006.

[2] G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: A Wireless
Sensor Network Testbed. In 4th Intl. Conf. on Information Processing
in Sensor Networks (IPSN), 2005.

[3] IETF. RFC 1157. www.ietf.org/rfc/rfc1157.txt.
[4] G. Tolle and D. Culler. Design of an Application-Cooperative Man-

agement System for Wireless Sensor Networks. In Proceedings of the
EWSN’04, 2004.

[5] J. Staddon, D. Balfanz, and G. Durfee. Efficient tracing of failed
nodes in sensor networks. In WSNA ’02: Proceedings of the 1st ACM
international workshop on Wireless sensor networks and applications,
pages 122–130, 2002.

[6] N. Ramanathan et al. Sympathy for the sensor network debugger. In
SenSys ’05: 3rd Intl. Conf. on Embedded networked sensor systems,
pages 255–267, 2005.

[7] W. Leal and S. Bapat and T. Kwon and P. Wei and A. Arora. Stabilizing
Health Monitoring for Wireless Sensor Networks. In 8th Intl Symp on
Stabilization, Safety, and Security of Distributed Systems (SSS), pages
395–410, 2006.

[8] W. Leal, S. Bapat, T. Kwon, P. Wei, and A. Arora. Stabilizing health
monitoring for wireless sensor networks. Technical Report OSU-CISRC-
6/06-TR62, Department of Computer Science and Engineering, The
Ohio State University, 2006.

[9] Chowkidar Node Status Webpage. http://exscal.nullcode.org/kansei/
chowkidar/nodestatus.php.

[10] University of Southern California, Embedded Systems Laboratory. Tu-
tornet: A Tiered Wireless Sensor Network Testbed. http://enl.usc.edu/
projects/tutornet/index.html.

[11] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh. Overview of the
ORBIT Radio Grid Testbed for Evaluation of Next-Generation Wireless
Network Protocols. In IEEE Wireless Communications and Networking
Conference (WCNC), 2005.

[12] S. Bapat, V. Kulathumani, and A. Arora. Analyzing the Yield of ExScal,
a Large-Scale Wireless Sensor Network Experiment. In 13th IEEE Intl.
Conf. on Network Protocols (ICNP), pages 53–62, 2005.

[13] N. Ramanathan et al. Rapid deployment with confidence: Calibration
and fault detection in environmental sensor networks. Technical Report
CENS 62, Center for Embedded Network Systems, UCLA, 2006.

