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Abstract. We present a novel approach to the problem of distributed
nullforming where a set of transmitters cooperatively transmit a common
message signal in such a way that their individual transmissions precisely
cancel each other at a designated receiver. Under our approach, each
transmitter iteratively makes an adjustment to the phase of its transmit-
ted RF signal, by effectively implementing a gradient descent algorithm
to reduce the amplitude of the overall received signal to zero. We show
that this gradient search can be implemented in a purely distributed
fashion at each transmitter assuming only that each transmitter has an
estimate of its own channel gain to the receiver. This is an important
advantage of our approach and assures its scalability; in contrast any
non-iterative approach to the nullforming problem requires centralized
knowledge of the channel gain of every transmitter. We prove analytically
that the gradient search algorithm converges to a null at the designated
receiver. We also present numerical simulations to illustrate the robust-
ness of this approach.

Keywords: distributed nullforming, cooperative transmission, virtual
antenna arrays.

1 Introduction

We consider the problem of distributed nullforming where a set of transmitters
in a wireless network cooperatively transmit a common message signal in such
a way that their individual transmissions cancel each other at a designated re-
ceiver. In effect the transmitters form a virtual antenna array and shape the
array’s antenna pattern to create a null at the desired location. The technique of
distributed nullforming has many potential applications including interference
avoidance for increased spatial spectrum reuse [1], cognitive radio [2], physical-
layer security [3] and so on.

Distributed nullforming requires precise control of the amplitude and phase of
the radio-frequency signal transmitted by each cooperating transmitter to ensure

� This work was partly supported by US NSF grants CPS-1239509, CCF-0830747,
CNS-1239509, CAREER award ECCS-1150801 and EPS-1101284, and a grant from
the Roy J. Carver Charitable Trust.

H. Qian and K. Kang (Eds.): WICON 2013, LNICST 121, pp. 78–84, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



A Scalable Feedback-Based Approach to Distributed Nullforming 79

that they cancel each other. This is an extremely challenging problem because
each transmitter usually obtains its RF signal from a separate local oscillator
(LO), and signals obtained from different LOs invariably have Brownian motion
driven phase drifts due to manufacturing tolerances and temperature variations.
The nullforming algorithm must estimate, track and compensate for the effect
of these drifts.

While the idea of cooperative communication has been studied for decades [4],
the early work in this area neglected the RF synchronization issues that are crucial
for the practical implementation of these ideas. Recently, however, there has been
a significant amount of research activity on distributed transmit beamforming [5],
[6], [7], including implementation on commodity hardware [8, 9].

While the synchronization techniques developed for distributed beamform-
ing can be adapted for nullforming, there are two important differences that
make nullforming significantly more challenging: (a) While beamforming gains
are highly robust and insensitive to small phase errors (upto about 30 degrees
[5]), nullforming is substantially more sensitive [13] to even modest errors. (b)
One implication of this sensitivity to small phase errors is that the simple 1-bit
feedback algorithm [10] that has proved to be effective for beamforming does not
work for nullforming. However, we show in this paper that a gradient descent al-
gorithm using multi-bit feedback similar to [11] works very well for nullforming.
(c) For beamforming, each transmitter only needs the knowledge of the phase
of its own transmitted signal at the receiver. In contrast for nullforming, the
amplitude and phase of the transmitted signal at each node cannot be chosen
independently of the amplitudes and phases of other nodes [13]. Nullforming
essentially depends on a node’s transmitted signal cancelling the signals from
all other transmitters. Therefore state-of-the-art distributed nullforming algo-
rithms, [12] and [13] assume that each transmitter knows every transmitter’s
complex channel gain to the receiver. This requirement poses a severe challenge
for scalability.

In contrast to previous work on distributed nullforming [12, 13], in this pa-
per we assume that each transmitter knows only its own channel gain to the
null location. Using this in Section 2 we formulate our gradient descent based
algorithm, in which each node adjusts its transmitted phase knowing only its
channel gain, and a common feedback signal from the receiver at which the null
is desired. This feedback signal is simply the complex baseband signal received
by the receiver. Section 3 presents an analysis of the stability and convergence
properties of the algorithm under simplifying assumptions. Section 4 provides
simulations, that include the effect of channel phase offsets and oscillator drift.
Section 5 concludes.

2 Scalable Algorithm for Nullforming

We now describe a scalable gradient descent algorithm for distributed nullform-
ing in a node. As noted in the introduction, we assume that at the beginning of a
nullforming epoch, each transmitter has access to its own complex channel gain
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to the receiver, using which it equalizes its channel to the receiver. This is in
sharp contrast to [12] and [13] where each transmitter knows the Channel State
Information (CSI) for every transmitter. We assume there are N transmitter
nodes that have been synchronized in frequency, using the techniques of [12],
[13] and [11].

Assume at time slot k, the i-th node transmits the baseband signal ejθi[k].
The total baseband signal at the receiver is thus:

s[k] = R[k] + jI[k], (1)

where

R[k] =

N∑

i=1

ri cos (θi[k] + φi[k]) , (2)

I[k] =
N∑

i=1

ri sin (θi[k] + φi[k]) , (3)

ri is the equalized channel gain from the i-th transmitter and φi[k] is a small
uncompensated channel phase from the i-th transmitter. The receiver feeds back
at each time slot the signal s[k]. Consequently, at each time slot the i-th trans-
mitter has access to R[k], I[k], ri and θi[k]; φi[k] is not available to any one.
Define, θ[k] = [θ1[k], · · · , θN [k]]�. The total received power in the k-th time slot
is:

J(θ[k]) = I2[k] +R2[k]. (4)

Throughout we make the following standing assumption:

Assumption 2.1. The ri are such that there is a choice of θi for which J(θ) = 0.

Since the ri are equalized gains, each receiver can always choose its ri to
equal 1, ensuring the existence of a choice of θi that achieve the null mandated by
Assumption 2.1. For a suitably small μ > 0, in our algorithm the i-th transmitter
updates its phase according to:

θi[k + 1] = θi[k] + μri (sin (θi[k])R[k]− cos (θi[k]) I[k]) . (5)

Few features are of note. The algorithm is totally distributed, as each node only
needs the common feedback signal s[k] and ri and θi[k], to implement it. This
contrasts with [12], [13] where much more information is needed. Second, suppose
in vector form the algorithm were expressed as:

θ[k + 1] = θ[k]− f [k]. (6)

Then, when the phase offsets φi[k] are all zero, the f [k] corresponding to (5) is
simply:

f [k] = μ
∂J(θ)

∂θ

∣∣∣∣
θ=θ[k]

. (7)

In other words the algorithm attempts the gradient descent minimization of
the received power. Finally, the fact that the algorithm works from a common
feedback signal supplied by the receiver, makes it totally scalable as the feedback
overhead does not grow with the size of the transmitter array.
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3 Stability

Our stability analysis will be conducted under the idealized assumption of no
noise and zero φi[k]. The underlying philosophy is driven by total stability theory,
[14], that states in essence that should the algorithm uniformly converge to
desired stationary points in the idealized (zero noise, zero φi ) case, uniformity
being with respect to the initial time, then it will exhibit robustness to noise
and small φi. Indeed we will demonstrate the practical uniform convergence of
(5) under the following assumption:

Assumption 3.1. In (2) and (3) for all i ∈ {1, · · · , N} and all k, φi[k] = 0.

Let us clarify what we mean by practical uniform convergence. As will be evident
from the sequel, under Assumption 3.1 the algorithm in (5) has entire manifolds
of stationary points at least to one of which the algorithm converges uniformly.
Some stationary correspond to nulls. The rest, which we dub as being spuri-
ous, do not. We will show that the latter are locally unstable. Thus they are
rarely attained, and even if attained not practically maintained as the slightest
noise would drive the phase trajectories away from them. Thus, by showing the
local stability of the stationary points corresponding to nulls, we would have
demonstrated the practical uniform converence of the algorithm to a null.

We relax Assumption 3.1 to permit non-zero but constant φi. Under these
conditions from (5) we obtain that the stationary points fall into the following
categories. (A) R[k] = I[k] = 0. (B) If R[k] �= 0, then for all i, tan θi[k] =
I[k]
R[k] . (C) If I[k] �= 0, then for all i, cot θi[k] =

R[k]
I[k] . Clearly [A] corresponds to

stationary points reflecting nulls. Both [B] and [C] reflect the condition that for
all i, l, tan θi = tan θl. Some of these may still correspond to nulls. The rest are
spurious.

We will now invoke Assumption 3.1. We have the following Theorem.

Theorem 3.1. Under Assumption 3.1, (2), (3), (5) and (4), there exists a μ∗ >
0, such that for all 0 < μ < μ∗, θ[k] converges uniformly to one of the stationary
points in (A-C) above.

Standard theory shows that the local instability of the algorithm in (5) is assured
if the algorithm linearized around that stationary point has poles outside the unit
circle. Under 3.1 this in turn is assured if the Hessian of J(·) evaluated at such a
stationary point has a negative eigenvalue. As under (B,C) all off diagonal elents
of Hessian are ±1, this is in turn assured by the Hessian evaluated at such a
stationary point having a nonpositive diagonal element. The (i, l)-th element of
such an Hessian obeys:

[H(θ)]il =

{−2
∑N

m �=i cos(θi − θm) i = l

2 cos(θi − θl) i �= l

It is readily seen that for arbitrary N ≥ 2 at least one diagonal element is
negative or zero.
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Thus practical uniform convergence is guaranteed by showing that all station-
ary points corresponding to a true null are locally stable. To this end we must
examine the Hessian at these points corresponding nulls. Assumption 2.1 guar-
antees the existing of stationary points. Under Assumption 3.1 at a stationary
point corresponding to a null, i.e. when R = I = 0, there holds:

[H(θ)]il =

{
2 i = l
2 cos(θi − θl) i �= l

It is readily seen that at such a stationary point, with c =
[
cos θ1 · · · cos θN

]�

and s =
[
sin θ1 · · · sin θN

]T
the Hessian is 2cc�+2ss�. Thus the Hessian evalu-

ated at a null is postive semidefinite, but with rank at most 2. There are several
zero eigenvalues of the Hessian. Using as we did in [15], center manifold theory,
one can nonetheless show that these stationary points are indeed locally stable.
The proof being complicated is omitted. This thus proves the practical uniform
convergence of (5) to a null is guaranteed under Assumptions 2.1 and 3.1.

4 Simulations

We now provide simulations that attest to the efficacy of the algorithm. All
simulations involve 10 transmitters. In the following discussion, SNR is defined
as the ratio of the per-node received power to the noise power.

10 20 30 40 50 60 70 80 90 100
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

SNR (dB)

P
ow

er
 a

t t
ar

ge
t (

dB
)

10 nodes

Phase offset in each node uniformly 
distributed between 0 and 90 degrees

Fig. 1. Power at null target vs. SNR

Fig.1 shows a simulation plot of time-averaged total power at null target as a
function of SNR when there are no phase drifts at the oscillators, but each of the
ten transmitters sees a phase offset φi, that is uniformly distributed between 0
and π/2. The SNR limits the accuracy of the individual phase estimate and this
in turn leads to fluctuations in the estimated gradient and therefore the overall
received signal strength at the null target. As expected the power at the null
target decreases monotonically with increase in SNR.
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Fig. 2. Power at null target vs. phase drift for equal channel gains

Fig. 2 shows the variation of time-averaged total power at null target as a
function of the Brownian motion phase drift for different SNRs. It can be seen
that for very small Brownian motion drifts, the null power is determined by the
SNR. However once drift increases to about a tenth of a degree between two
iterations of the gradient descent, the null is largely limited by the drift and is
more or less independent of the SNR. Observe that the highest phase drift of
two degrees between phase updates corresponds to the very low feedback rate of
5 Hz, for even the cheapest of oscillators.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−90

−80

−70

−60

−50

−40

−30

−20

−10

Mean Brownian motion phase drift between iterations (degrees)

P
ow

er
 a

t t
ar

ge
t (

dB
)

SNR=30dB
SNR=60dB
SNR=100dB

Fig. 3. Power at null target vs. phase drift for unequal channel gains

Fig. 3 is very similar to Fig. 2, except that unlike Fig. 2, that involves a setting
where all gains are 1, in Fig. 3 the actual gains are obtained from a Rayleigh
distribution and then equalized to one. As can be seen Fig. 3, the resulting
potential noise amplification, has virtually no effect on the performance of the
gradient descent nullforming algorithm.

5 Conclusion

We have provided a new gradient descent based distributed nullforming algo-
rithm that requires far less feedback than all its predecessors, in that each trans-
mitter is required by this algorithm to only know its channel state information to
the receiver. In constrast, previous algorithms required that channel state infor-
mation to the receiver from each transmitter be known to each other transmitter
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in the virtual array. This coupled with the fact that it requires an additional com-
mon signal fed back by to all transmitters by the receiver, ensures its scalability.
We have proved practical uniform convergence of the algorithm to a null. This
ensures robustness to noise and channel phase estimation errors., verified by sim-
ulations, that involve nontrivial channel phase estimation errors compounded by
Brownian motion driven oscillator drift.
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