
 

H. Qian and K. Kang (Eds.): WICON 2013, LNICST 121, pp. 65–71, 2013. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013 

TECSS: Time-Efficient Compressive Spectrum Sensing 
Based on Structurally Random Matrix in Cognitive 

Radio Networks 

Ye Tian, Quan Liu, and Xiaodong Wang 

National Key Laboratory for Parallel and Distributed Processing 
National University of Defense Technology  

Changsha, P.R. China 
{tianye172,mars-nudt}@163.com, xdwang@nudt.edu.cn 

Abstract. As an advanced technology of implementing wideband spectrum 
sensing and enhancing the ability of secondary users to utilize multichannel 
diversity in cognitive radio networks, compressive sensing, without requirement 
of increasing ADC sampling rate, makes use of unique trait of sparse channel 
occupancy in cognitive radio networks to detect appearance of primary users in 
wide spectrum. However, current existing research works aim at highly 
accurate sensing based on Gaussian Random Matrix (GRM) design, but they 
fail to take time-efficient sensing into consideration, because GRM causes large 
computing volume and inefficiency, which lowers the capability of compressive 
sensing to quickly adapt to channel occupancy change rate of primary users and 
in turn decreases utility of spectrum exploitation for secondary users. In this 
paper, we design a Structurally Random Matrix (SRM) by combining GRM and 
Partial Fourier Matrix (PFM) to improve time efficiency of compressive 
sensing. As SRM possesses the sensing accuracy merit of GRM and the 
computing efficiency merit of PFM, the proposed compressive sensing scheme 
TECSS largely improves time efficiency at a cost of minor sensing accuracy. 
Simulation results reveal that the sensing accuracy of our proposed TECSS is 
92.5% in average sense, slightly below that (95%) of compressive sensing 
schemes based on GRM, but time-efficiency is upgraded by 100%.  

Keywords: spectrum sensing, compressive sensing, cognitive radio, time-efficient, 
structurally random matrix. 

1 Introduction 

The growth of wireless technology makes wireless applications flourish in past few 
years, which causes a large number of wireless communication systems to crowd in 
limited open access spectrum bands, while the other licensed spectrum bands, 
according to numerous experimental studies [1], is underutilized in time, frequency, 
or space. In order to improve spectrum efficiency, cognitive radio is regarded as the 
most promising technology which enables secondary users (SUs) to access to licensed 
spectrum bands allocated to primary users (PUs) in an opportunistic manner.  
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So spectrum sensing is a necessity of cognitive radio technology for SUs to monitor 
activities of PUs and obtain the opportunity to utilize fallow spectrum bands. So, 
spectrum sensing plays a key role in improving spectrum efficiency in cognitive radio 
networks constituted by SUs. 

Wideband sensing is a kind of spectrum sensing [2], which enables SUs to get the 
status of multiple channels parallel. Wideband sensing is more powerful to conduct 
SUs to acquire the gain of multichannel diversity, because SUs can choose the best 
available channel from a sensing result for transmission, while it is impossible in 
narrow-band sensing. According to Nyquist sampling theory, wideband sensing 
requires high sampling rate. That is, the wider the spectrum band is sensed at a time, 
the higher the sampling rate is required. However, linear increase in sampling rate 
will cause exponential increase in technologic complexity, which limits the capability 
of wideband sensing [3]. 

Compressive sensing theory was proposed by Tao and Candès[4,5], and its 
principium is based on sparse matrix recoverability. According to compressive 
sensing theory [4], if signal has a sparse representation in some other domain by 
transformation from time domain, it can be sampled at sub-Nyquist rate and recovered 
via feasible algorithms without losing any information. The sensing performance (e.g. 
sensing accuracy and sensing time-efficiency) is dominated by compressive matrix 
[5], which must be incoherent with the sparse representation basis matrix. 
Consequently, compressive sensing provides a method to implement wideband 
sensing without stringent requirement on corresponding sampling rate, which relaxes 
high requirement on sampling rate of A/D Convertor. As PUs intermittently occupy 
licensed bands, their appearance presents sparsity in frequency domain[6], which 
inspires researchers with large potential of compressive sensing application in 
wideband spectrum sensing for cognitive radio networks[7]. However, all these 
existing works emphasize on performance of sensing accuracy by GRM design, but 
they ignore performance of sensing time-efficiency. Because GRM causes large 
computing volume and inefficiency, their schemes are time-inefficient in recovery. 
Time-efficiency of compressive spectrum sensing is of importance to cognitive radio 
networks. On one hand, if the sensing time can be shortened, SUs will have more time 
to transmit data to improve aggregate throughput. On the other hand, the status of 
channel occupancy may transit rapidly, which requires fast sensing of SUs to adapt to 
activities of PUs and protect PUs from harmful interference. 

In this paper, we design SRM by combining GRM and PFM. As the SRM 
possesses the sensing accuracy merit of GRM and the computing efficiency merit of 
PFM, the proposed compressive sensing scheme not only guarantees sensing 
accuracy, but also improves sensing time-efficiency. Our contributions of this paper 
include: (1) To the best of our knowledge, we are the first to take into account the 
time-efficiency in compressive sensing; (2) We design a novel SRM for our 
compressive sensing scheme to improve the sensing efficiency at the cost of minor 
sensing accuracy compared to those based on GRM. 

The rest of the paper is organized as follows. In section 2, we overview related 
work of compressive sensing in cognitive radio networks. We present our designed 
time-efficient compressive spectrum sensing (TECSS) in details in section 3 and 
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evaluates the performance of TECSS by simulation in section 4. Finally, section 5 
concludes our work. 

2 Related Work 

Most of the studies of compressive spectrum sensing in cognitive radio networks 
focus on the sensing accuracy, but fail to concentrate on sensing time-efficiency. 
Secondary users must sense the spectrum environment accuracy so as to access the 
spectrum without interfering primary users. Resulted from its high sensing accuracy, 
Gaussian random matrix is widely used for compressive spectrum sensing in [6, 7]. Its 
incoherence with other orthogonal matrices makes the compressive sensing accurately 
with minimal number of measurements [5]. But because of its randomicity it has two 
defects: huge memory buffering and high computational complexity. In wideband 
compressive sensing, the number of sub-channel will be very large, so we have to 
choose another matrix which can be used to deal with large scale data. Moreover, we 
want to get TECSS, the chosen matrix must have low computational complexity. 

Partial Fourier matrix in [8] is a kind of compressive matrix that exploits the 
algorithm of FFT so as to speed up compressive sensing. Partial Fourier matrix can 
significantly reduce the complexity of the compressive sampling system. However, it 
is only inefficient with the signals which are sparse in time-domain, thus it can’t be 
employed in compressive spectrum sensing because the signals are sparse in 
frequency domain not sparse in time domain in cognitive radio networks. 

In this paper, we combine the random Gaussian matrix and partial Fourier matrix 
to get a kind of sensing matrix called structurally random matrix to sense the 
spectrum time-efficiently and accurately. So far we have not found any work on 
sensing time-efficiency, and this missing part is exactly what we are going to do in 
this paper. 

3 TECSS with SRM 

In this section we derive secondary users with SRM sense the state transition of 
primary users accurately and time-efficiently. 

3.1 System Model 

Consider a (ultra-)wide band that hosts both primary users and secondary users. 
Suppose that the spectrum of B Hz is divided into N non-overlapping sub-channels,. 
Signals transmitted by primary users are received by secondary users [9]. We use 

( )r t to denote the received signal by secondary users in time-domain. tr stands for the 

discrete version of ( )r t sampled at Nyquist rate, and fr is the spectrum form of 

tr .And 
SRMT  and 

GRMT denote the sensing time of using SRM and GRM, respectively. 
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3.2 Sensing Processing of Secondary Users 

Secondary users sense the spectrum using received signal, the signal given by 

( ) ( ) ( )pr t r t n t= +  (1)

where ( )pr t denote signals from primary users, ( )n t is additive white Gaussian noise 

(AWGN).Take N-point FFT (Fast Fourier Transform) of the time discrete version of 
(2), then we have 

, .f p f fr r n= +  (2) 

Secondary users estimate the spectrum ,p fr so as to choose a better sub-channel from 

the unoccupied frequency band. Resulted from the low spectrum utilization of 

primary users, ,p fr is sparse, compressive spectrum sensing can be used. In 

compressive spectrum sensing secondary users collect and compress time-domain 
signals using compressive matrix M NC × (M<<N), the measurement signal can be 

calculated as 

t ts C r= ×  (3) 

where tr is the sampled signal of ( )r t at Nyquist rate Nf .With compressive sampling, 

the sample rate decrease to ( )/ NM N f ,which relaxes the high requirement on ADC 

sampling rate. And we have 

1
t N fr F r−=  (4) 

where 1
NF − is the N-Point IFFT matrix. Such that we have 

1
, ft N p fs CF r n−= +  (5) 

where  1
f N fn CF n−= is still AWGN. Based on compressive sensing, secondary users 

reconstruct the spectrum ,p fr with compressive matrix C and measurement ts using 

the recovery algorithms [10]. According to (5), ts is the sampled signal by C , so the 

choice of compressive matrix C is important in compressive spectrum sensing. Both 
sensing accuracy and sensing time-efficiency lie on C .  

3.3 Structurally Random Matrix 

The sensing accuracy depends on the incoherence of compressive sensing matrix 
C with IFFT matrix 1

NF − . The coherence is low when we choose GRM as sensing 

matrix, so the sensing accuracy of GRM is excellent. But when GRM is used in  
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ultra-wideband compressive sensing, its buffering memory is huge and computation 
complexity is very high due to their completely unstructured nature. 

Now wideband compressive sensing need to be accuracy and time-efficiency, in 
order to keep approximate sensing accuracy, the matrix needs to have the properties 
of GRM to guarantee the incoherence. To speed up the sensing, we can utilize the 
properties of partial Fourier matrix [8]. So SRM can be designed like this 

N
C DFP

M
= . (6) 

N NP R ×∈ is a random permutation matrix, which can permute the locations of 
elements of a vector randomly. With this matrix we can guarantee that SRM has 
approximate incoherence with 1

NF − , thus, the sensing accuracy is approximate to the 

GRM. 
N NF R ×∈ is an orthonormal matrix, like the partial Fourier matrix, we can use FFT 

matrix, DCT matrix, or WHT matrix to reduce the computation complexity. Resulted 
from their fast computation algorithms the compressive sensing is speeded up. 

M ND R ×∈ is a randomly downsampler. It can randomly abstract M rows of FP , 
which will generate stochastically independence among the deterministic rows [8]. 
With this matrix we can get sub-Nyquist rate measurements. Multiplying N

M
is to 

guarantee the same power after down rate sample. 
So with this design, SRM realizes the sensing accuracy of Gaussian matrix and 

sensing time-efficiency of Partial Fourier matrix. As a result, using the SRM as 
compressive matrix for spectrum sensing realizes approximate accuracy of GRM and 
higher time-efficiency than GRM. 

4 Simulation Evaluation 

In this section, we conduct simulations to verify the availability and efficiency of 
proposed TECSS with SRM compared with its counterparts with GRM. 

4.1 Simulation Setup and Performance Metrics 

In this section, we will compare the sensing performance of SRM and GRM. The 
assessed sensing performance includes sensing accuracy and sensing time-efficiency. 
The sensing accuracy is evaluated by the probability of detection and the sensing 
time-cost is evaluated by system time of the computer. 

4.2 Sensing Accuracy of SRM and GRM 

In Fig.1, Original signal denotes the spectrum which is occupied, Recovered signal 1 
and 2 denote the sensing spectrum using GRM and SRM, respectively. Difference1  
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and 2 denote the differences between the original signal and recovered signals. We 
can find that the sensing accuracy with GRM is slightly better than SRM in accuracy. 
In Table 1, we list the sensing accuracies with different numbers of sub-channels, we 
can see the average accuracy of SRM is 92.5%, it only decreases by 2.5% compared 
with GRM(95%). 

 

Fig. 1. the number of sub-channels is 1024, the occupied number is 40 

Table 1. Sensing accuracy 

Sub-channel number GRM SRM 

500 
1000 
1500 
2000 

100% 
95% 
95% 
90% 

95% 
92.5% 
92.5% 
90% 

   

4.3 Sensing Time-Cost of SRM and GRM 

In Fig.2, the sensing time of GRM is always longer than that of SRM. As the sub-
channel numbers increase, the GRM sensing time will rapidly increases because of its 
high computation complexity. However, the SRM can deal with large data., the 
sensing time ratio is larger than 2, so the sensing speed is improved by 100% .  
 
 

 

Fig. 2. Sensing time with two matrices 
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5 Conclusions 

The former used methods of wideband compressive spectrum sensing only focused on 
the sensing accuracy, but failed to concentrate on the time-efficiency of sensing. 
Aimed at speeding up the sensing to sense fast change of spectrum and leave more 
time for data transmission, this paper presents TECSS based on SRM. With simulation 
evaluation, we verify our analysis and demonstrate the significant performance gain of 
TECSS with SRM. To deal with situations where primary users appear and disappear 
even faster, the real-time compressive spectrum sensing is our future work. 
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