
Design and Evaluation of a Publish/Subscribe

Framework for Ubiquitous Systems

Zigor Salvador, Alberto Lafuente, and Mikel Larrea

University of the Basque Country UPV/EHU
Donostia-San Sebastián, Spain

{zigor.salvador,alberto.lafuente,mikel.larrea}@ehu.es

Abstract. This paper describes the design and evaluation of a novel
publish/subscribe communication framework for ubiquitous systems and
applications. The motivation of this work is the realization of the fact
that the publish/subscribe communication model has several features
that make it suitable to serve as a communication substrate for ubiq-
uitous systems. In particular, we argue that a publish/subscribe frame-
work that is scalable and supports client mobility is a valuable asset
for the development of ubiquitous applications. We present a reference
implementation, Phoenix, that supports the deployment of publish/sub-
scribe components in mobile devices such as smartphones. In addition,
we evaluate the functionality of Phoenix and its performance, in order
to determine its operational constraints for server and mobile platforms.

Keywords: publish/subscribe, client mobility, ubiquitous environments,
software implementation, empirical validation, performance evaluation.

1 Introduction

The client/server model has played a foundational role in the ongoing success
of distributed systems and the Internet. However, distributed systems that are
based on the traditional client/server model exhibit a tight coupling of compo-
nents. Consequently, the deployment and maintenance of large-scale distributed
systems based on the client/server model is a complex task. This becomes even
more evident when the distributed systems are composed of heterogeneous ser-
vices, devices and flows of information, as is the case with ubiquitous systems.

The publish/subscribe communication model or interaction paradigm over-
comes this limitation by introducing an indirection layer that decouples com-
ponents, i.e., producers and consumers of information [21]. This enables the
creation of flexible and robust distributed systems that exploit the benefits of
space, time and synchronization decoupling of components. The decoupling of
components increases scalability by removing all explicit dependencies between
the interacting participants [7]. Removing these dependencies reduces coordina-
tion and synchronization requirements and makes the publish/subscribe com-
munication model suitable for distributed environments that are asynchronous
by nature, such as ubiquitous systems that seek to integrate mobile devices [10].

K. Zheng, M. Li, and H. Jiang (Eds.): MOBIQUITOUS 2012, LNICST 120, pp. 50–63, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



Publish/Subscribe Framework 51

In publish/subscribe systems, information producers are known as publishers
and information consumers are referred to as subscribers. Publishers generate in-
formation in the form of events while an independent Event Notification Service
handles the task of delivering those events to a subset of the subscribers. The
use of an explicit layer of indirection provides an overall separation of concerns
and is what makes publish/subscribe systems inherently flexible and scalable.

Publish/subscribe applications are the result of using a publish/subscribe
communication model to orchestrate distributed application components. In
essence, publish/subscribe applications employ publishers and subscribers to im-
plement a series of information flows or content streams [30]. Content streams
are continuous flows of information that are transported from a publisher com-
ponent to subscriber components by the publish/subscribe infrastructure. In
order to shape the content streams of a publish/subscribe system, the use of
content-based filtering mechanisms can be requested by subscriber components.

Publish/subscribe applications are characterized by the number of client com-
ponents they employ and the content streams or events they exchange. Assuming
the availability of a broker infrastructure, a minimal application can be created
with a publisher, a subscriber and a single content stream. However, real appli-
cations exhibit a higher cardinality with regards to both the number of client
components and the volume of content streams they employ. Depending on the
application domain, the amount of publish/subscribe components can range from
a handful to tens of thousands. This is often the case with ubiquitous systems
and their applications, where having a large number of components is expected.

In general, the decoupled and data-centric nature of the publish/subscribe
interaction paradigm makes it a suitable foundation for a wide variety of ap-
plications. In particular, the most suitable applications for this communication
model are the ones that require the timely, efficient and scalable dissemination
of information between large numbers of components [16]. Note that large-scale
systems can result either from the geographic distribution of nodes or from the
concentration of nodes on a relatively small area [23]. Examples of publish/
subscribe application domains include network monitoring, financial services,
mobile computing, industrial automation, social networks, smart environments,
scientific computation, content distribution and sensor networks [13] [23] [29].

Taking into account that the software architecture of a ubiquitous system
has to overcome a series of specific issues and challenges [6], we argue that the
underlying communication infrastructure of a ubiquitous system should provide:

– Heterogeneity: allowing a variety of devices and services to operate.

– Dependability: avoiding severe failures that happen frequently.

– Scalability: enabling the deployment of large-scale systems.

– Mobility: enabling the users to roam the environment.

The publish/subscribe communication model not only provides these features
but also supports relevant concepts such as localised scalability [27] and content-
centric networking [11]. As a consequence, we conclude that ubiquitous systems
and applications can benefit from the use of content-based publish/subscribe [7].



52 Z. Salvador, A. Lafuente, and M. Larrea

The present work documents a foray into this idea, with the objective of
validating the applications of our previous work in the field [25]. To that end,
we introduce Phoenix, a novel publish/subscribe communication framework for
ubiquitous systems, and illustrate the empirical evaluation process and first-hand
experimentation that has been carried out in order to validate our approach.

The remainder of this paper is structured as follows: in Section 2 we describe
the context and features of our publish/subscribe implementation. In Section 3
we present the process that has been carried out to validate the implementation
with a ubiquitous application that includes mobile clients. In Section 4 we in-
troduce a timeliness model for our framework and measure the performance of
the system. Finally, Section 5 outlines our findings and concludes the paper.

2 The Phoenix Publish/Subscribe Framework

In this section we describe our approach to publish/subscribe and client mobility.
We also cover the reference implementation, Phoenix, and key related work.

2.1 Service Interface

Publish/subscribe is a communication model where information producers (pub-
lishers) and information consumers (subscribers) exchange information (events)
by means of an Event Notification Service that is composed of a set of brokers.
Publishers publish events and subscribers make use of predicate-based filters to
subscribe to specific kinds of events. The distributed network of brokers matches
published events and subscriptions, routing them as required. Figure 1 shows the
interface provided to the clients of a content-based publish/subscribe system.

public void publish(Event notification);

public void subscribe(Filter subscription);

public void unsubscribe(Filter subscription);

Fig. 1. Interface for publish/subscribe applications

2.2 Client Mobility

Publish/subscribe clients have a reference broker that mediates between them
and the rest of the system. When a client is hosted in a mobile device, sudden
disconnections can take place as a result of limited wireless coverage. As a result,
the link between a client and its reference broker will break and publish/subscribe
service will be disrupted. Upon the recovery of wireless connectivity, clients may
connect to the same reference broker and resume their operation. However, the
physical mobility of a device may prevent this and a client could be required to



Publish/Subscribe Framework 53

migrate to a new reference broker. In order to cope with these situations, the
Event Notification Service needs to handle client mobility and disconnections.

To that end, we propose the use of a publish/subscribe routing algorithm that
warrants the transparent reconnection of clients [25]. Based on a Simple Routing
strategy [1] our custom routing algorithm ensures that the routing tables of bro-
kers are updated to reflect the mobility of their clients. In addition, our routing
algorithm can optionally replay published events that may be pending delivery
as a result of a disconnection. A detailed description of the contributed routing
algorithm and its correctness proof can be found in [26]. Figure 2 shows the
mobility related interface provided to subscribers. Note that publisher mobility
is transparent to the system as a result of extending a Simple Routing strategy.

public void migrate(boolean replay);

public void resume(boolean replay);

Fig. 2. Interface for migration and resumption operations

2.3 Design and Implementation

In order to evaluate our approach, we have implemented a reference content-
based publish/subscribe framework known as Phoenix [24]. The main objective
of Phoenix is to provide a robust and scalable communication infrastructure
for ubiquitous systems where mobility plays a key role. Therefore, it takes into
account the requirements that have already been outlined and implements a
custom routing algorithm that supports communication efficient client mobility.

Phoenix has been implemented in Java in order to enable the use of publish/
subscribe application components in a wide variety of devices and platforms.
In particular, Phoenix supports the deployment of publishers and subscribers
in Android devices. Phoenix makes use of the Apache MINA network appli-
cation framework to provide asynchronous communication capabilities to both
the publish/subscribe components and, by extension, the high-level services and
applications that are built on top of them. Internally, the publish/subscribe com-
ponents of the framework communicate by means of JSON formatted message
passing over TCP/IP streams. Other noteworthy features of Phoenix include:

– Optimal routing of events and communication efficient client hand-offs.
– Automatic discovery of brokers by means of multicast and unicast.
– Interoperable message serialization/deserialization mechanism.
– Graphical user interface for the management of brokers.

The middleware layer of the Phoenix framework incorporates over 7,000 lines of
code and provides developers with simple interfaces such as the ones depicted in
Figures 1 and 2. Note that Phoenix has been released1 under the MIT license.

1 ThePhoenix source code repository ishttps://github.com/zigorsalvador/phoenix

https://github.com/zigorsalvador/phoenix


54 Z. Salvador, A. Lafuente, and M. Larrea

Indeed, a key motivation behind the development of Phoenix stems from the fact
that although several academic contributions have been published in the field,
few open source implementations are available and none of them provides key
features such as client mobility support and/or full integration with Android.

2.4 Related Work

JEDI was the first publish/subscribe system to support client mobility [5]. In
particular, JEDI implements a client hand-off or migration protocol that requires
clients to proactively inform the middleware before moving away from a broker.
This initial move out operation must then be followed by a move in operation
that triggers the reconfiguration of the system. As a consequence, the client
mobility protocol of JEDI is not suitable for situations where clients suffer sudden
disconnections from the infrastructure [29]. Additionally, it must be noted that in
order to support migrations, JEDI requires the reissuing of subscriptions and the
availability of out-of-band communication between the pair of brokers involved
in the migration. Furthermore, migrations in JEDI often result in the delivery
of duplicate events due to the coexistence of old and new delivery routes.

The Siena publish/subscribe system was also among the first to support client
mobility [3]. In particular, a generic Mobility Service was implemented in order
to validate a client hand-off protocol that could be used with any publish/sub-
scribe system or implementation. The Mobility Service relies in client proxies and
explicit move in and move out operations and due to its generic nature requires
no changes to the application programming interface of the system. On the other
hand, the use of the Mobility Service results in a high messaging overhead, due to
the fact that it has to rely on message flooding to locate source and destination
brokers. Indeed, the high signalling cost of this approach was modelled and found
to be excessive [29], which severely limits its value for ubiquitous systems.

The REBECA publish/subscribe system was eventually extended to cope with
client mobility [8] [9] [17] [32]. In particular, an algorithm for Roaming Clients
was proposed in the context of a publish/subscribe system based on an acyclic
graph topology with advertisement semantics. Note that REBECA does not
support publisher mobility, due to the choice of advertisement semantics and the
lack of a specific publisher mobility protocol. Moreover, the REBECA algorithm
relies in the reissue of subscriptions upon migration, which is inefficient.

Client mobility support has also been an active research topic in the context
of the PADRES publish/subscribe system. In particular, several contributions
were targeted at publisher mobility and represent the first foray into this relevant
aspect of client mobility support [18] [19] [20] [22]. Additionally, several perfor-
mance evaluations were carried out regarding publish/subscribe scenarios where
client mobility is generalized. One of the most interesting findings is that in most
mobile scenarios the replay of buffered events dominates the signalling cost of
subscriber hand-off protocols in real-world deployments of client mobility [2].

All in all, Phoenix builds upon previous contributions introduced by the afore-
mentioned systems. However, the custom routing algorithm [25] employed by
Phoenix has some advantages with respect to the preceding systems. For one,



Publish/Subscribe Framework 55

Phoenix supports both publisher and subscriber mobility. For another, Phoenix
implements a client hand-off protocol that is communication efficient, i.e., mini-
mizes the amount of traffic generated as a result of client mobility. Furthermore,
the formal correctness of our custom routing algorithm has been established and
therefore Phoenix provides a solid foundation for incremental work in the field.

3 Validation

In this section we describe the empirical validation of the new communication
framework with a combination of synthetic tests and application prototypes.

3.1 Synthetic Tests

Resumption and migration mechanisms have been validated using mobile de-
vices. Figure 3 illustrates the Android application that has been developed to
conduct the validation. The Mobility application is composed of a subscriber
component and a user interface that enables researchers to request subscrip-
tions, resumptions and migrations. Normally, the user launches the application
and enables the wireless communication interface of the mobile device. Once the
network interface is up, the user triggers the discovery of a broker in the local
area network. If a broker has been found, the user can request the submission
of a subscription to that broker, initiating the delivery of events. After an ar-
bitrary amount of time, the user will disable the network interface, disrupting
the communication channel between the subscriber and the broker. Then, the
user will have to re-enable the network interface, and repeat the discovery pro-
cedure. When the identity of the broker that is discovered matches that of the
broker that was available before the disconnection, the application will request
a resumption. If, on the other hand, a new broker is discovered after the discon-
nection period, the application will issue a migration request. In either case, the
broker will resume the delivery of new events and will replay any events that
were not delivered during the disconnection. The Mobility application will check
that all expected messages were successfully delivered. Figure 4 illustrates the
traffic profiles of source and destination brokers during an example migration.

3.2 Functional Prototypes

The overall functionality and performance of the framework have been vali-
dated using realistic publish/subscribe application prototypes. Figure 5 shows a
screenshot of a prototype developed for that purpose: the Tracker application.
The idea behind the Tracker application is to implement a real-time visitor track-
ing system using the Phoenix communication framework. The web application
is composed of a single subscriber component and a user interface that enables
researchers to visually manage subscriptions and track the location of visitors
on a map. In the figure, the red circles represent location-based subscriptions,



56 Z. Salvador, A. Lafuente, and M. Larrea

Fig. 3. Screenshot sequence of the Mobility application during a migration test

Fig. 4. Traffic profiles of source and destination brokers during a migration test

Fig. 5. Screenshot of a web browser rendering the Tracker application



Publish/Subscribe Framework 57

while the small dots represent the real-time location of visitors. In order to
generate location data, the mobile devices of visitors are equipped with publisher
components that periodically publish the GPS location of these mobile devices
and their owners. Using the web application, users can generate fine-grained
location-based subscriptions which enable the system to filter incoming events
and only deliver those that match a given subscription. The Tracker application
has been tested with real subjects using Android devices. However, in order to
validate the scalability of the application, virtual visitors can be created by the
system and instructed to update their location with an arbitrary periodicity.

4 Performance

In this section we analyse the performance of Phoenix from three perspectives.
First, we adopt a theoretical approach and perform an analysis of content-based
publish/subscribe performance. Then, we present the results obtained in a series
of experimental tests. Finally, we evaluate performance using Android devices.

4.1 Timeliness Model

We assume that the number of brokers is finite and their connection graph G is
acyclic and static. Therefore, we can define the diameter of the broker graph as:

d = diameter(G)

We assume that the communication links in the system are timely, i.e., message
transmission delays are bounded. As a result, we can model the communication
times involved in the operation of the system and combine them with several
assumptions regarding the processing times for different messages in order to
model the performance or average message dispatching times of a our system.
Let δc be the average time required for a message to traverse a link that connects
a broker and one of its local clients and let δb be the average time required for
a message to traverse a link that connects a broker and one of its neighbour
brokers. If we assume that brokers will benefit from high capacity network links:

δc � δb

Once a given message reaches a process, the message has to be processed, involv-
ing changes to data structures and/or event matching calculations. Consequently,
we can define the average processing time for each publish/subscribe primitive:

– σSUB : average time required for a broker to process a subscription message
– σUNS : average time required for a broker to process a unsubscription message
– σPUB : average time required for a broker to process a publication message

Based on the fact that the event matching problem is regarded as the main
potential bottleneck of a publish/subscribe system [12] [13] [15], we assume that:

σPUB � σSUB � σUNS



58 Z. Salvador, A. Lafuente, and M. Larrea

And based on the previous, we can model average message dispatching times for
subscription, unsubscription and publication messages, respectively, as follows:

ΔSUB � δc + σSUB + d(δb + σSUB)

ΔUNS � δc + σUNS + d(δb + σUNS)

ΔPUB ≤ δc + σPUB + d(δb + σPUB) + δc

Finally, based on the assumptions that have been noted, we can now assert that:

ΔPUB � ΔSUB � ΔUNS

This realization underlines the importance of the matching process in publish/
subscribe systems. Furthermore, it motivates us to conduct a performance analy-
sis that is focused in ΔPUB scalability and the impact of different optimizations.

4.2 Empirical Evaluation

In order to measure the performance of Phoenix, we have deployed our publish/
subscribe system in a dedicated cluster composed of eight server nodes running
Ubuntu 11.10 with dual 2.4 GHz Xeon CPUs and 24 GBytes of RAM. Six of the
nodes are exclusively dedicated to the execution of a broker overlay with a star
topology. The two remaining nodes are dedicated to the execution of a bench-
marking application and a workload generator. The benchmarking application is
composed of a publisher and a subscriber component that exchange probe mes-
sages which traverse the broker overlay. Probe messages are time-stamped and
enable the benchmarking application to measure two performance metrics: probe
latency and probe throughput. The workload generator orchestrates the execution
of synthetic clients and generates arbitrary amounts of background traffic. Probe
messages and workload messages are, respectively, 286 and 886 bytes long.

In its basic, non-optimized form, the algorithm in [25] makes heavy use of event
matching, which limits the scalability of the system. As a result, two optimiza-
tions have been implemented in Phoenix and considered in the experiments. The
first optimization, Filter Poset, aims at reducing the number of filters that are
involved in the matching operation of a given event. To do so, it exploits the rela-
tionship among the filters stored in the routing tables by maintaining a partially
ordered set of filters [4] [31]. The second optimization, Single Matching, aims at
reducing the number of matching operations that are involved in the delivery
of a given event. To do so, it exploits global knowledge by having the front-end
broker of each publisher compute the set of matching subscriptions on behalf
of the rest of the brokers. This optimization is similar to the approach followed
in [13] [14] [28]. The combination of the two optimizations results in four bench-
marking configurations: C1 (no optimization), C2 (Single Matching), C3 (Filter
Poset) and C4 (both optimizations). The workload consists of a set of publish/
subscribe clients that generate various degrees of synthetic background traffic,
in the form of spurious events that need to be dispatched. The performance fac-
tors that dimension workloads are: Rp: the rate of background publications in the



Publish/Subscribe Framework 59

Table 1. Average probe throughput (events/second)

Workload (Rp, Ns) C1 C2 C3 C4

W 1 (0, 0) 24,687 20,626 23,955 21,421
W 2 (0, 250) 10,089 11,639 17,522 20,557
W 3 (0, 500) 6,843 8,631 18,158 17,050
W 4 (5,000, 0) 25,198 22,506 22,197 21,806
W 5 (5,000, 250) 7,324 11,305 15,942 18,394
W 6 (5,000, 500) 3,905 8,365 14,327 15,996
W 7 (10,000, 0) 22,848 21,843 21,693 21,788
W 8 (10,000, 250) 5,448 11,474 15,031 16,597
W 9 (10,000, 500) 2,746 8,071 11,956 15,221

Table 2. Average probe latency (milliseconds)

Workload (Rp, Ns) C1 C2 C3 C4

W 1 (0, 0) 1.002 1.118 1.079 1.137
W 2 (0, 250) 1.247 1.109 1.060 1.175
W 3 (0, 500) 1.451 1.168 1.030 1.144
W 4 (5,000, 0) 1.063 1.079 1.022 1.229
W 5 (5,000, 250) 1.827 1.462 1.583 1.634
W 6 (5,000, 500) 2.873 1.630 1.764 1.573
W 7 (10,000, 0) 1.048 1.092 1.063 1.047
W 8 (10,000, 250) 3.121 1.749 1.926 1.556
W 9 (10,000, 500) 38.891 1.740 2.108 1.649

Table 3. Average smartphone throughput (events/second) and latency (miliseconds)

Interface Throughput Latency

WIFI 148 11
UMTS 185 151

Table 4. Average smartphone battery life (minutes)

Scenario Duration Percentage

Baseline 582 100%
Publisher 252 43%
Subscriber 267 46%

Combination 215 37%



60 Z. Salvador, A. Lafuente, and M. Larrea

system and, Ns: the amount of global subscriptions in the system. Note that
three discrete levels have been considered for each of the two cited performance
factors. In particular, Rp can be one of 0, 1,000 or 2,000 events/second and Ns

can be one of 0, 50 or 100 subscribers for each of the five border brokers. This
translates into a global publication rate of 0, 5,000 or 10,000 events/second and
a total of 0, 250 or 500 concurrent subscribers in the system. Note that two
metrics, four configurations and nine workloads require 72 unique experiments.

Tables 1 and 2 show average probe throughputs and average probe latencies,
respectively. Throughput measurements involve the publication of 50,000 events
and were repeated 10 times. Latency measurements require a single event and
were repeated 10, 000 times. Based on these results, we can highlight that the per-
formance of the non-optimized configuration (C1) stalls under load (W9). How-
ever, in the highly-optimized configuration (C4), Phoenix manages to dispatch
over 15,000 messages per second with an average latency of under 2 milliseconds,
which represents a significant improvement and a good degree of scalability.

4.3 Android Performance

In order to complete the performance analysis of the Phoenix communication
framework, we have conducted additional experiments using Android mobile
devices. In particular, we have used a Google Nexus S smartphone as a reference,
running Android 4.1.1 with a 1 GHz ARM CPU and 512 MBytes of RAM.

The first set of experiments was aimed at measuring the performance of the
Phoenix communication framework when using wireless communication inter-
faces. Table 3 illustrates the average probe throughput and average probe latency
that were measured using both WIFI and UMTS hardware interfaces. Note that
probe messages were 280 bytes in size, throughput tests were repeated 25 times
and the latency values represent the averages out of 100 measurements. Based
on the results, we can assert that our Phoenix cluster is well capable of serving
hundreds, if not thousands, of mobile devices running Phoenix clients.

The second set of experiments analysed the energy consumption derived from
the use of the Phoenix in a mobile device. In particular, we conducted several
experiments where the battery level of the smartphone was monitored during
the execution of different communication routines. Table 4 shows the average
duration of the battery under four different scenarios. In the first scenario, the
device is in standby mode with the screen set to 5% brightness. In the second
scenario, a publisher component generates 100 events/second while in the third
scenario a subscriber receives 100 events/second. Finally, the fourth scenario
combines the publication and the reception of 100 events/second. Based on the
results, the impact of using Phoenix is moderate and its energy efficiency is fair.

5 Conclusion

In this paper, we have described the overall design and evaluation of a novel
communication framework for ubiquitous systems. The framework is based on



Publish/Subscribe Framework 61

the publish/subscribe communication model and has taken into account the
requirements of ubiquitous systems. In particular, we have tried to design a
communication framework that supports client mobility and provides a good
degree of scalability. To that end, we have leveraged a routing algorithm [25]
that provides optimal event routing and communication efficient client mobility.

The implementation of the Phoenix publish/subscribe framework has been
motivated by the lack of suitable open source implementations that provide what
we believe are key features of a communication infrastructure for ubiquitous sys-
tems, namely client mobility support and full integration with mobile devices.
The reference implementation of Phoenix enables researchers and application
developers to create ubiquitous systems and applications using wireless commu-
nication interfaces and nowadays common devices such as Android smartphones.

In addition, we have conducted both an empirical validation process and a
thorough performance analysis and, based on the results, can assert that Phoenix
is a valid and fairly scalable communication framework for ubiquitous systems.

Acknowledgements. The authors wish to note that this research has partially
been supported by the Spanish Research Council, under grant TIN2010-17170,
theBasqueGovernment, under grants IT395-10 andS-PE11UN099, the Provincial
Government of Gipuzkoa, under grant 2012-DTIC-000101-01, and the University
of the Basque Country UPV/EHU, under grant UFI11/45.

References

1. Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R.E., Sturman,
D.C.: An Efficient Multicast Protocol for Content-Based Publish-Subscribe Sys-
tems. In: ICDCS, pp. 262–272 (1999)

2. Burcea, I., Jacobsen, H.-A., de Lara, E., Muthusamy, V., Petrovic, M.: Discon-
nected Operation in Publish/Subscribe Middleware. In: Mobile Data Management,
pp. 39–50. IEEE Computer Society (2004)

3. Caporuscio, M., Carzaniga, A., Wolf, A.L.: Design and Evaluation of a Support
Service for Mobile, Wireless Publish/Subscribe Applications. IEEE Transactions
on Software Engineering 29(12), 1059–1071 (2003)

4. Carzaniga, A.: Architectures for an Event Notification Service Scalable to Wide-
Area Networks. PhD thesis, Politecnico di Milano, Italy (1998)

5. Cugola, G., Jacobsen, H.-A.: Using Publish/Subscribe Middleware for Mobile Sys-
tems. Mobile Computing and Communications Review 6(4), 25–33 (2002)

6. da Costa, C.A., Yamin, A.C., Geyer, C.F.R.: Toward a General Software Infras-
tructure for Ubiquitous Computing. IEEE Pervasive Computing 7(1), 64–73 (2008)

7. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The Many Faces of
Publish/Subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

8. Fiege, L., Gärtner, F.C., Kasten, O., Zeidler, A.: Supporting Mobility in Content-
Based Publish/Subscribe Middleware. In: Endler, M., Schmidt, D.C. (eds.) Mid-
dleware 2003. LNCS, vol. 2672, pp. 103–122. Springer, Heidelberg (2003)



62 Z. Salvador, A. Lafuente, and M. Larrea

9. Fiege, L., Zeidler, A., Gärtner, F.C., Handurukande, S.B.: Dealing with Uncertainty
in Mobile Publish/Subscribe Middleware. In: Middleware Workshops, pp. 60–67.
PUC-Rio (2003)

10. Huang, Y., Garcia-Molina, H.: Publish/Subscribe in a Mobile Enviroment. In: Mo-
biDE, pp. 27–34. ACM (2001)

11. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M., Briggs, N., Braynard, R.:
Networking Named Content. Communications of the ACM 55(1), 117–124 (2012)

12. Jayram, T.S., Khot, S., Kumar, R., Rabani, Y.: Cell-Probe Lower Bounds for the
Partial Match Problem. Journal of Computer and System Sciences 69(3), 435–447
(2004)

13. Jerzak, Z.: XSiena: The Content-Based Publish/Subscribe System. PhD thesis,
Technische Universität Dresden, Germany (2009)

14. Jerzak, Z., Fetzer, C.: Prefix Forwarding for Publish/Subscribe. In: Jacobsen, H.-
A., Mühl, G., Jaeger, M.A. (eds.) DEBS. ACM International Conference Proceed-
ing Series, vol. 233, pp. 238–249. ACM (2007)

15. Kale, S., Hazan, E., Cao, F., Singh, J.P.: Analysis and Algorithms for Content-
Based Event Matching. In: ICDCS Workshops, pp. 363–369. IEEE Computer So-
ciety (2005)

16. Mühl, G., Fiege, L., Pietzuch, P.R.: Distributed Event-Based Systems. Springer
(2006)

17. Mühl, G., Ulbrich, A., Herrmann, K., Weis, T.: Disseminating Information to Mo-
bile Clients Using Publish-Subscribe. IEEE Internet Computing 8(3), 46–53 (2004)

18. Muthusamy, V., Jacobsen, H.-A.: Small Scale Peer-to-Peer Publish/Subscribe. In:
Horrocks, I., Sattler, U., Wolter, F. (eds.) P2PKM. CEUR Workshop Proceedings,
vol. 147. CEUR-WS.org (2005)

19. Muthusamy, V., Petrovic, M., Gao, D., Jacobsen, H.-A.: Publisher Mobility in
Distributed Publish/Subscribe Systems. In: ICDCS Workshops, pp. 421–427. IEEE
Computer Society (2005)

20. Muthusamy, V., Petrovic, M., Jacobsen, H.-A.: Effects of Routing Computations
in Content-Based Routing Networks with Mobile Data Sources. In: Porta, T.F.L.,
Lindemann, C., Belding-Royer, E.M., Lu, S. (eds.) MOBICOM, pp. 103–116. ACM
(2005)

21. Oki, B., Pflügl, M., Siegel, A., Skeen, D.: The Information Bus - An Architecture
for Extensible Distributed Systems. In: SOSP, pp. 58–68 (1993)

22. Petrovic, M., Muthusamy, V., Jacobsen, H.-A.: Content-Based Routing in Mobile
Ad Hoc Networks. In: MobiQuitous, pp. 45–55. IEEE Computer Society (2005)

23. Pietzuch, P.: Hermes: A Scalable Event-Based Middleware. PhD thesis, University
of Cambridge, United Kingdom (2004)

24. Salvador, Z.: Client Mobility Support and Communication Efficiency in Distributed
Publish/Subscribe. PhD thesis, University of the Basque Country, Spain (2012)

25. Salvador, Z., Larrea, M., Phoenix, A.L.: Phoenix: A Protocol for Seamless Client
Mobility in Publish/Subscribe. In: NCA, pp. 111–120. IEEE Computer Society
(2012)

26. Salvador, Z., Larrea, M., Phoenix, A.L.: Phoenix: A Protocol for Seamless Client
Mobility in Publish/Subscribe. Technical Report EHU-KAT-IK-02-12, University
of the Basque Country UPV/EHU (April 2012),
http://www.sc.ehu.es/acwlaalm/

http://www.sc.ehu.es/acwlaalm/


Publish/Subscribe Framework 63

27. Satyanarayanan, M.: Pervasive Computing: Vision and Challenges. IEEE Personal
Communications 8(4), 10–17 (2001)

28. Shen, Z., Tirthapura, S.: Faster Event Forwarding in a Content-Based Publish-
Subscribe System through Lookup Reuse. In: NCA, pp. 77–84. IEEE Computer
Society (2006)

29. Tarkoma, S.: Efficient Content-Based Routing, Mobility-Aware Topologies, and
Temporal Subspace Matching. PhD thesis, University of Helsinki, Finland (2006)

30. Tarkoma, S., Kangasharju, J.: Handover Cost and Mobility-Safety of Content
Streams. In: Boukerche, A., Leung, V.C.M., Chiasserini, C.-F., Srinivasan, V. (eds.)
MSWiM, pp. 354–358. ACM (2005)

31. Tarkoma, S., Kangasharju, J.: Optimizing Content-Based Routers: Posets and
Forests. Distributed Computing 19(1), 62–77 (2006)

32. Zeidler, A., Fiege, L.: Mobility Support with Rebeca. In: ICDCS Workshops,
pp. 354–360. IEEE Computer Society (2003)


	Design and Evaluation of a Publish/Subscribe Framework for Ubiquitous Systems

	1 Introduction
	2 The Phoenix Publish/Subscribe Framework
	2.1 Service Interface
	2.2 Client Mobility
	2.3 Design and Implementation
	2.4 Related Work

	3 Validation
	3.1 Synthetic Tests
	3.2 Functional Prototypes

	4 Performance
	4.1 Timeliness Model
	4.2 Empirical Evaluation
	4.3 Android Performance

	5 Conclusion
	References




