

K. Zheng, M. Li, and H. Jiang (Eds.): MOBIQUITOUS 2012, LNICST 120, pp. 250–262, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Adapting the Obtrusiveness of Service Interactions
in Dynamically Discovered Environments

William Van Woensel1, Miriam Gil2, Sven Casteleyn1,2, Estefanía Serral2,

and Vicente Pelechano2

1 Vrije Universiteit Brussel,
Pleinlaan 2, 1000 Brussels, Belgium

{william.van.woensel}@vub.ac.be
2 Centro de Investigación en Métodos de Producción de Software,

Universitat Politècnica de València, Camino de Vera, 46022 Valencia, Spain
{sven.casteleyn}@upv.es, {mgil,eserral,pele}@pros.upv.es

Abstract. Due to the ubiquity of mobile devices, mobile service interactions
(e.g., agenda notifications) may occur in any situation, leading to potential
obtrusiveness (e.g., while in a meeting). In order to effectively adapt interaction
obtrusiveness to suit the user’s situation, the user’s different situations should
be defined in an unambiguous, generic and fine-grained way, while being valid
across previously unknown, dynamically discovered environments. To realize
this, we put the user in charge of defining his own situations, and exploit rich,
descriptive environment information for defining and determining user
situations. Our concrete approach aligns and extends two approaches, namely
AdaptIO and SCOUT, to autonomously adapt mobile interactions in new,
dynamically discovered environments. We supply a mobile user interface for
defining situations, and validate it via an initial study with end-users.

Keywords: interaction adaptation, obtrusiveness adaptation, dynamic
environment discovery.

1 Introduction

Mobile devices are an integral part of our lives. Improved battery life, screen
resolution, input capabilities and computing power, as well as increased WiFi and
3G/4G coverage, have made them powerful and quasi-permanently connected
computing devices. As a result, mobile devices are used at any time and everywhere,
for instance to run general-purpose, resource-intensive applications (e.g., office
applications, games) or to access online information and services.

Mobile service interactions comprise any interaction between mobile users and
mobile services, where a service may proactively notify the user (e.g., agenda
notification) or the user may directly contact the service (e.g., buying tickets from an
e-ticket service). Because of their ubiquitous nature, mobile service interactions occur
during a variety of situations, thus increasing their potential for obtrusiveness; for
instance, loud notifications while the user is at a meeting or in a theatre. The necessity
to reduce the obtrusiveness of mobile interactions is well recognized [1, 2]. In order
to determine interaction obtrusiveness, most approaches currently either rely on

 Adapting the Obtrusiveness of Service Interactions 251

(semi-)automatic learning techniques [3] or on designer knowledge [4]. Automatic
learning techniques require training data and do not support cold-starts [5]; also, they
require time to adjust to new user behavior. On the other hand, the designer cannot
capture all situations that influence interaction obtrusiveness for all users, especially
in a priori unknown environments without well-defined context or location models
(e.g., at a theatre or at work). The only stakeholder with the required knowledge to
define such situations accurately and unambiguously is the user himself. Furthermore,
in order to effectively define situations across a priori unknown environments, we
need to rely on rich environment data. In contrast, solely relying on local context,
collected by sensors (e.g., microphones) or applications (e.g., agenda) [6], can lead to
inaccuracy and ambiguity; e.g., simply turning up the ring volume in loud areas
would not work while watching an action movie in a theatre. By relying on
descriptive environment data, the user can specify he is in a “quiet-place” whenever
he is inside a place of type “Theatre”, thus defining situations in a more fine-grained
and generic way.

Our goal is to adapt the obtrusiveness of mobile interactions in a priori unknown
environments. To achieve this, the user is put in charge of defining his own situations,
while rich environment context is exploited to define and determine user situations.
Our approach aligns AdaptIO [7], a mobile obtrusiveness adaptation approach, with
SCOUT [8], a mobile framework that dynamically discovers new (smart)
environments, and autonomously collects context data. To ensure autonomy in any
environment (potentially lacking middleware), all the components run on the mobile
Android platform. Moreover, the AdaptIO approach has been extended in several
ways. A user situation inferencing component has been added, which derives the
user’s current situation based on rich environment context. Furthermore, AdaptIO is
extended with expressive user support for defining situations, via a user-friendly
mobile interface. To validate the AdaptIO extension, where the user becomes a major
stakeholder in mobile interactions adaptation, we evaluate the expressivity and
usability of the interface by means of an initial study with real users. The developed
software can be found at http://www.pros.upv.es/adaptio/dynamicenvironments.

2 Related Work

Some studies [3, 9] have been conducted on automatically adapting the modality
configurations of mobile devices, based on user context. However, their focus is on
context recognition, not on the modality configuration and how it influences
obtrusiveness. Moreover, they rely on the designer to define the different user
situations. In the same area of context-aware adaptation, [10] provides users with a UI
to manually define new interactions in smart phones (e.g., gestures) and link them to
device actions; however, interaction adaptation is not provided.

In the area of mobile interaction obtrusiveness, research focuses on minimizing
unnecessary interruptions for the user [11]. This problem has been addressed directly
by means of models of importance and willingness [4]. Also, [2] uses context-aware
mobile devices to calculate the adequate timing for interruptions. Sensay [6] infers
user’s context from a variety of sensed data and determines whether or not the phone
should interrupt the user while in regular communications. This research focuses
primarily on determining when to interrupt for a particular application. In contrast,

252 W. Van Woensel et al.

our approach dynamically adapts the obtrusiveness of interruptions to suit the user’s
current situation. Furthermore, as far as we know, no approach provides support for
newly discovered services.

A number of approaches aim to facilitate mobile devices in interacting with newly
discovered smart environments. For instance, the SOFIA project [12] interacts with
new, heterogeneous smart environments (e.g., with legacy services, different data
formats) by providing mobile applications with shared, interoperable information
spaces. In [13], personalized service access is supported across different,
heterogeneous environments. However, these approaches require environments to be
outfitted with extra middleware, deploying their specific software. On the other hand,
mobile ad-hoc networks (MANETS) allow mobile applications and services to
directly discover and communicate with each other, without requiring an existing
infrastructure (e.g., via event-based communication) [14, 15]. MANETS allow
powerful ad-hoc and loosely coupled communication with newly discovered services;
however, their approach-specific software needs to be deployed on each component.

In contrast, we rely on open, minimally outfitted and standards-based environments
that do not require middleware; instead, services are semantically described, and any
coordination work is delegated towards the client. In addition, by relying on well-
known standards, any client can discover new services and interact with them,
without requiring support for specific approaches.

3 Architecture Overview

Our approach adapts the obtrusiveness of mobile interactions in previously unknown
environments. To determine and define fine-grained and generic situations in such
environments, our approach relies on rich and descriptive environment context.
Furthermore, the user is made responsible for specifying his own situations, allowing
for accurate and unambiguous situation definitions.

Our integrated system (see Fig. 1) comprises three layers: the environment
discovery and management layer, which utilizes SCOUT to discover and manage
previously unknown environments; the services layer, comprising interactive mobile
services; and the obtrusiveness adaptation layer, which employs AdaptIO to adapt
mobile interaction obtrusiveness. The AdaptIO system has been extended to support
our goals, and its components moved to the mobile platform to ensure autonomy.
Below, we elaborate on each of the layers.

3.1 Environment Discovery and Management Layer

This layer discovers a priori unknown (smart) environments, interacts with them, and
collects context data. To achieve this, it relies on SCOUT, a mobile, client-side
framework for the development of context-aware applications. SCOUT runs
autonomously on the mobile device and utilizes technologies such as Quick Response
(QR) codes, RFID/NFC and GPS to dynamically discover new environments and
collect information on the user’s surroundings. Based on this detected information,
SCOUT builds a client-side, integrated view on the user’s environment called the
Environment Model, which is expressed using Semantic Web technology.

F

As shown in Fig. 1, four ma

1/ User Model: This
preferences, characteristics

2/ Proximity Model: Th
environment, specifying wh

3/ Service Model: This m
the user’s environment (see

4/ Online semantic data
semantically annotated w
services. SCOUT obtains re
instance, by automatically
utilizing open online da
coordinates (e.g., the user’s

The SCOUT API provides
in a push- and pull-based w
Service. Data selection and

1 http://linkedgeodata

Adapting the Obtrusiveness of Service Interactions

Fig. 1. System architecture overview

ain information sources compose the Environment Mod

model contains the user’s personal profile, includ
and device information (using ontologies such as FOAF

his model encodes positional information about the use
hich people, places, things and services are nearby.
model keeps semantic descriptions of detected service

e below).
a sources: This includes RDF(S)/OWL data sources

websites, describing nearby people, places, things
eferences to these sources from the user’s environment;

y reading URLs from QR codes or RFID tags, and
atasets such as LinkedGeoData1, which link absol
s GPS position) to online semantic information.

mobile applications with access to the Environment Mo
way, respectively via the Notification Service and Qu
d caching techniques are in place to optimize data acc

a.org/

253

el:

ding
F).
er’s

s in

and
and
 for
by

lute

odel
uery
cess

254 W. Van Woensel et al.

[16]. Finally, SCOUT provides applications with a general-purpose Reasoning
Engine. Each time the user’s environment changes, the engine (re-)evaluates the
registered rules, potentially inferring new environment facts.

Regarding services support, SCOUT focuses on lightweight smart environments,
i.e., environments outfitted with sensing, actuation and information services
containing only the required service hardware and no external middleware. This way,
SCOUT aims to support a wide range of smart environments that are cheap and easy
to setup. SCOUT relies on environments that are fully standards-based and contain
semantically described services; this way, any discovery, invocation and orchestration
work can be delegated towards the client. In order to interact with newly discovered
smart environments, SCOUT relies on the following semantic service stack. The W3C
Semantic Annotations for WSDL and XML Schema2 (SAWSDL) defines
mechanisms to complement technical service descriptions (written using the W3C
Web Service Description Language3 or WSDL) with concrete semantics. WSMO-
Lite4 exploits the SAWSDL mechanisms, and utilizes a concrete ontology to
semantically describe services. SCOUT converts and adds the online semantic service
descriptions to the Service Model (see before) in RDF format, making it part of the
Environment Model. In order to be alerted when certain services become nearby,
mobile applications can register a discovery query with the Notification Service (or
use the Query Service), to find services useful (nearby) services offering specific
functionality. Applications interact with discovered services via the Service Invoker.

In order to convert WSDL descriptions (with SAWSDL annotations) to RDF, part
of the SOA4ALL iServe5 project code was extended and ported to Android. The
Service Invoker uses the kSOAP2 library to interact with SOAP services, while the
Reasoning Engine is based on the Androjena6 general-purpose rule engine. We refer
to [8] for more information on the SCOUT implementation.

3.2 Services Layer

This layer comprises local and remote services (see Fig. 1) that interact with the
mobile user. Typically, plenty of local services or applications are running on a user’s
mobile device (e.g., agenda), which may for instance notify the user in case of
important events (e.g., agenda deadline approaching). Remote services can also be
plugged in, making their interaction capabilities available on the device. For instance,
in Fig. 1, a local tourism application enables discovered remote tourist services to
provide the user with information on good nearby hotel deals, and nearby points-of-
interest. Such local applications register a discovery query with the Notification
Service from the environment discovery and management layer (see Section 3.1). In
case a relevant remote service is encountered, the application is notified, and utilizes
the Service Invoker for remote communication. Based on the received data, the
application provides notifications, for instance informing the user of good deals.

2 http://www.w3.org/2002/ws/sawsdl/
3 http://www.w3.org/TR/wsdl
4 http://www.w3.org/Submission/WSMO-Lite/
5 http://technologies.kmi.open.ac.uk/
 soa4all-studio/provisioning-platform/iserve/
6 http://code.google.com/p/androjena/

 Adapting the Obtrusiveness of Service Interactions 255

Local services can also utilize the environment discovery and management layer to
enhance their own functionality. For instance, the shopping service (see Fig. 1)
notifies the user in case a shop that sells products on his digital shopping list becomes
nearby. To achieve this, the service registers a query with the Notification Service, to
be alerted in case such shops become nearby. A number of service discovery
scenarios and queries can be found on http://wise.vub.ac.be/Mobiquitous2012/.

3.3 Obtrusiveness Adaptation Layer

This layer adapts the obtrusiveness of mobile service interactions received from the
services layer, depending on the user’s current situation. This layer utilizes and
extends the AdaptIO system, a mobile adaptation approach that adapts service
interaction obtrusiveness at runtime. It is a model-based approach, where a service
designer declaratively specifies the service’s interaction adaptation behavior in
knowledge models (see Section 4.1; for more information, we refer to [7]). In a
nutshell, AdaptIO intercepts notifications from mobile services, chooses appropriate
interaction resources (e.g., dialog, sound), and presents them to the user. Below, we
elaborate on the main components (see Fig. 1).

Firstly, AdaptIO is extended with the User Situation Inferencer, which
determines the user’s current situation and notifies other components of changes. The
user-supplied situation definitions (see Situation Specification Interface), expressed as
logic rules, are passed to the environment discovery and management layer
(Reasoning Engine), which uses them to accurately infer the user’s situation. If a new
situation is inferred, that layer’s Notification Service notifies this component.

The Reconfiguration Engine determines which high-level interaction resources
should be used for each service’s interaction, based on the user’s current situation.
When alerted by the User Situation Inferencer of a new user situation, the engine
consults the aforementioned knowledge models to retrieve the interaction resources
that best suit the user’s new situation. The Interaction Controller converts these
abstract interaction resources (e.g., dialog) to concrete platform-specific (e.g.,
Android) interaction components, thus decoupling the models from the platform.

The Notification Manager receives notifications from mobile services and relays
them, together with the service’s latest interaction components (obtained from the
Reconfiguration Engine), to the Service Interaction Interface. This interface
displays the notifications to the user, employing suitable interaction components.

Finally, AdaptIO is extended with a Situation Specification Interface. This
interface allows users to expressively define their situations, utilizing the environment
context from the environment discovery and management layer. Situation definitions
are passed to the User Situation Inferencer. In Section 4.2, we elaborate on the UI.

The Reconfiguration Engine is based on MoRE [12], which was ported to Android
and is based on Autonomic Computing principles [17]. To query the knowledge
models at runtime, we rely on a ported version of the Eclipse Modeling Framework
Model Query7 plugin. The model-handling operations are described in [18].

7 http://www.eclipse.org/modeling/emf/

256 W. Van Woensel et al.

4 Methodology

In this section, we elaborate on the approach methodology and detail the tasks that
need to be performed by the two stakeholders: the service designer and user. The
designer is responsible for creating the knowledge models, which capture the
service’s desired behavior for adapting interaction obtrusiveness. On the other hand,
the user is in charge of specifying his situations across which the obtrusiveness of
interactions differ (e.g., in a meeting, in free-time). Service designers are not able to
specify these situations for all users, especially in a priori unknown environments,
without well-defined context or location models. To support this, our approach
provides a mobile interface (called the Situation Specification Interface), which
exploits environment context. Below, we elaborate on the designer’s tasks. Section
4.2 discusses the Situation Specification Interface.

4.1 Service Designer: Adaptation Behavior Specification

In order to model the interaction obtrusiveness of services, we use the conceptual
framework for implicit interactions presented in [19]. This framework defines two
dimensions to characterize interactions: initiative and attention. Regarding the
initiative factor, our approach focuses on proactive interactions (or notifications),
where the system takes initiative and the user is potentially interrupted. The attention
factor concerns an interaction’s attentional demand, which can be represented on an
axis. For the purpose of this paper, we divided the attention axis in three segments:
invisible (user does not perceive the interaction), slightly-appreciable (user does not
perceive the interaction, unless he makes an effort), and user-awareness (user is
completely aware of the interaction, even while performing other tasks).

In our approach, the service’s potential levels of interaction obtrusiveness
correspond to the attention axis segments. Depending on the user’s situation, the
service’s current (interaction) obtrusiveness level will vary. To capture this behavior,
the designer creates the first knowledge model, namely an obtrusiveness model, which
contains a state machine. Each state corresponds to an obtrusiveness level, and the
guard conditions of the state transitions reference a user situation. The services’
obtrusiveness models are checked by the Reconfiguration Engine (see Fig. 1)
whenever it receives a new user situation (see Section 3.3); if any transition matches
the new situation, it is fired, leading to a new obtrusiveness state for the service. In
Fig. 2, we show the state diagram of a service that displays incoming messages.

Fig. 2. Obtrusiveness state diagram for a messaging service

 Adapting the Obtrusiveness of Service Interactions 257

When the user arrives at work (@work situation), the messaging service passes to
the slightly-appreciable state, thus reducing notification obtrusiveness when the user
is working. When the system determines that the user is no longer working (@free-
time situation), the service goes back to the user-awareness state, increasing
notification obtrusiveness. In case the system determines the user is in a meeting
(@meeting), the service passes to the invisible obtrusiveness state, making sure the
user is not disturbed. In addition, if the user is in the company of others (@with-
company) while the service is at maximum notification obtrusiveness (i.e., user-
awareness), the messaging service transitions to the slightly-appreciable level, so the
user is not overly disturbed while socializing.

Furthermore, each of the obtrusiveness states is supported by the appropriate
interaction resources. In the second knowledge model, the interaction model, the
designer associates interaction resources with one or more obtrusiveness levels (e.g.,
slightly appreciable: status bar icon, vibration). A service’s interaction model is
consulted by the Reconfiguration Engine (see Fig. 1) in case a transition fires and
leads to a new state (see before); this way, the engine can retrieve interaction
resources suiting the new obtrusiveness level.

The knowledge models are represented in XML Metadata Interchange standard
(XMI)8. Examples of obtrusiveness and interaction models can be found on
http://wise.vub.ac.be/Mobiquitous2012.

4.2 Service User: Situation Specification

In order to guarantee accurate and unambiguous situation definitions, the user is put
in charge of defining his own situations. We developed a mobile interface that allows
users to specify their situations in a generic and fine-grained way, based on
environment context. To increase usability and support nomadic users in a wide range
of environments, the interface also supports directly capturing user situations. Below,
we first discuss how the user can manually specify situations, and then how he can
use the “capture” functionality.

4.2.1 Manually Defining Situations

In the first screen (see Fig. 3), the user can choose to define a still undefined situation
(referenced in a service obtrusiveness model), or edit an already defined one. In the
second screen (see Fig. 4), he can define the chosen situation using two aspects:
location and time. A third, more advanced “free-form” option allows the user to place
arbitrary constraints on his environment (see below). Using the location option, the
user describes the location(s) he is in while being in the chosen situation. For each
location (see Fig. 5), the user specifies whether he is inside or nearby a certain place,
person or thing (i.e. physical entity) in that situation, and provides a way to identify
that physical entity via its type and/or unique identification (URI). The user is aided
via auto-complete functions: the type field suggests terms from well-known
ontologies, as well as synonyms of the ontology terms (provided by WordNet); while

8 http://www.omg.org/spec/XMI

258 W. Van Woensel et al.

the URI field suggests URIs that identify physical entities the user has encountered
(this information is obtained from the environment discovery and management layer;
see Section 3.1). The user can also specify time intervals (i.e., days of the week and
time span) during which he is in the situation (see Fig. 6).

Fig. 3. Situation overview Fig. 4. Specification options Fig. 5. Define via location

The advanced, “free-form” option (see Fig. 7) allows defining situations in a more
powerful and expressive way, by placing arbitrary constraints on the user’s
environment context. A constraint consists of a property and a value field. A user may
arbitrarily constrain a property value, either by providing a concrete string or by
linking its connector to other constraints. This free-form option, with connectable
components, resembles the popular Yahoo! Pipes online mashup tool. In this
example, the user is inside his office during the @work situation. To describe this in
a generic way, the user specifies the inside property, and creates two constraints on
the place he should be inside of. The first constraint states the type of the place should
be “Office”, while the second specifies the place is the user’s office (via the
housesPerson property). Using the constraint’s connectors, the user connects the two
new constraints to the first constraint’s value field. The property and value fields are
respectively backed by the same auto-complete functions mentioned above.

4.2.2 Capturing Situations
The “capture” option exploits the user’s current environment to quickly and easily
specify situations. In this option, the user takes a snapshot of his environment, fine-
tunes it, and attaches it to a situation. For example, the user is sitting in a movie
theatre, and one of the services produces a loud notification. The obtrusiveness model,
defining the service’s adaptation behavior (see Section 4.1), makes sure notifications
are handled at the invisible obtrusiveness level in an @quiet-place situation (e.g.,
classroom). However, mobile users are typically nomadic and move in a wide range
of (previously unknown) environments, making it difficult even for them to foresee
every situation-relevant environment (e.g., movie theatre). After quickly (and
manually) turning off the device’s sound, the user selects the capture option. This
option re-uses the screens from the previous “define” option (see previous section)
and populates them, based on the user's current environment. The user selects the

 Adapting the Obtrusiveness of Service Interactions 259

location aspect (see Fig. 8), and sees that the “inside MovieTheatre” location is
present, as well as some other captured locations (e.g., “nearby Cafe”). He then
removes the irrelevant locations, and also unchecks the time and free-form option,
since they are not relevant in this case. In the final screen, the user attaches the fine-
tuned context to the @quiet-place situation, thus making sure the invisible
obtrusiveness level will be utilized in movie theatres as well.

Fig. 6. Define via time Fig. 7. Free-form option Fig. 8. Captured locations

5 Evaluation

We validated the usability and expressivity of the Situation Specification Interface by
means of a user evaluation, where users had to specify six situations of varying
complexity via the definition and capturing options (see Section 4.2). The final, most
complex situation required using the more advanced free-form option. For detailed
information on these situations, we refer to http://wise.vub.ac.be/Mobiquitous2012/.

In each user session, we took five minutes to shortly explain the interface, and then
let the user specify the described situations. We noted the required time, as well as
any encountered difficulties and errors during their task. After performing their task,
the users filled out the Post-Study System Usability Questionnaire (PSSUQ) [20].
This questionnaire is a 19-item instrument for assessing user satisfaction with system
usability. Specifically, it studies the following four dimensions: overall satisfaction
with the system, its usefulness, information quality, and interface quality. A total of 8
subjects participated in the experiment (5 male and 3 female), between the ages of 25
to 35. All of them had a strong background in computer science, being students or
researchers; they were also familiar with the use of a smartphone, and 4 out 8 owns an
Android-based smartphone similar to the one used in the experiment.

5.1 Evaluation Results

Fig. 9 shows a summary of the PSSUQ questionnaire results; the complete dataset can
be downloaded from http://wise.vub.ac.be/Mobiquitous2012/. Overall, users found
the interface simple to use (questions 1, 2) and very easy to learn (7), while they also
felt they could complete tasks effectively (3) and quickly become productive using

260 W. Van Woensel et a

the system (8). Users found
find (12) and understand (1
users found the interface
Averaging the questionnair
disagree); overall satisfacti
3, and interface quality was

Fig

On average, users took a
the first five situations prov
the capture option. One u
Section 4.2.1); but the oth
difficulty using the free-fo
hand, they found using this

In conclusion, the evalu
allowing users to specify no
capture option makes it ver
which allows for more gen
difficult to use and have a
much easier in the capture
specification instead of crea
preliminary evaluation, a
heterogeneous user group, a

6 Conclusion and

In this paper, we presented
obtrusiveness across dynam
The user represents a ma
knowledge to accurately an
the user with a mobile int
situations, based on expres
the mobile device, and does

Regarding future work,
on user feedback; more spe
free-form option. Further us

al.

d the provided information more or less clear (11), easy
13), and clearly organized (15). Overall, around 80% of

pleasant (16), and 75% liked using the interface (1
re results, on a scale from 1 (strongly agree) to 7 (stron
ion was 3.09, usefulness was 3.2, information quality w
s 3.04.

g. 9. Summarized questionnaire results

about 13 minutes to specify all situations; since “capturi
ved trivial, they were left out the remaining evaluations
user had initial difficulty with the location method (
her users had no problems. Six out of seven users

orm method while testing the define option; on the ot
method easier when “capturing” situations.
uations show the interface to be usable and express
on-trivial situations within a short time span. Moreover,
ry simple to specify most situations. The free-form meth
neric and complex situation definitions, proved to be m
steep learning curve. However, using this option becom
option, since users are able to fine-tune a given free-fo

ating one from scratch. We do note that this is
and additional experiments, with a larger and m
are needed to confirm and generalize these results.

Future Work

d an autonomous approach that adapts mobile interact
mically discovered, a priori unknown (smart) environme
ajor stakeholder, being the only one with the requi
nd unambiguously define his own situations. We prov
erface, where he can manually define or directly capt
ssive environment context. Our approach runs entirely
s not require orchestrating or adaptation middleware.
we are considering fine-tuning the mobile interface ba

ecifically, by improving the usability and learnability of
ser tests are still required to fully assess the usability of

y to
f the
17).
ngly
was

ing”
s of
(see
had
ther

ive,
 the

hod,
more
mes
orm
s a

more

tion
ents.
ired
vide
ture

y on

ased
f the
f the

 Adapting the Obtrusiveness of Service Interactions 261

interface, with a focus on users without computer science backgrounds. A major
challenge is to allow users to specify interaction adaptation behavior as well, a task
now exclusively reserved for the service designer. This way, the user could express
custom adaptation behavior not initially foreseen by the designer.

Acknowledgments. This work has been developed with the support of MICINN
under the project EVERYWARE TIN2010-18011 and co-financed with ERDF, in the
grants program FPU. Sven Casteleyn is supported by an EC Marie Curie Intra-
European Fellowship (IEF) for Career Development, FP7-PEOPLE-2009-IEF, N°
254383.

References

1. Chittaro, L.: Distinctive aspects of mobile interaction and their implications for the design
of multimodal interfaces. Multimodal User Interfaces 3, 157–165 (2010)

2. Ho, J., Intille, S.S.: Using context-aware computing to reduce the perceived burden of
interruptions from mobile devices. In: Proc. of CHI 2005, pp. 909–918. ACM (2005)

3. Valtonen, M., Vainio, A.-M., Vanhala, J.: Proactive and adaptive fuzzy profile control for
mobile phones. In: Proc. of PERCOM 2009, pp. 1–3. IEEE Computer Society (2009)

4. Chen, H., Black, J.P.: A quantitative approach to non-intrusive computing. In: Proc. of
Mobiquitous 2008, pp. 1–10 (2008)

5. Serral, E., Valderas, P., Pelechano, V.: Improving the cold-start problem in user task
automation by using models at runtime. In: Proc. of ISD 2010, pp. 648–659. Springer
(2010)

6. Siewiorek, D., Smailagic, A., Furukawa, J., Krause, A., Moraveji, N., Reiger, K., Shaffer,
J., Wong, F.L.: Sensay: A context-aware mobile phone. In: Proc. of ISWC 2003, p. 248
(2003)

7. Gil, M., Giner, P., Pelechano, V.: Personalization for unobtrusive service interaction.
Personal and Ubiquitous Computing 16(5), 543–561 (2012)

8. Van Woensel, W., Casteleyn, S., Paret, E., De Troyer, O.: Mobile Querying of Online
Semantic Web Data for Context-Aware Applications. IEEE Internet Comp. 15(6), 32–39
(2011)

9. Assad, M., Carmichael, D.J., Kay, J., Kummerfeld, B.: Personisad: distributed, active,
scrutable model framework for context-aware services. In: LaMarca, A., Langheinrich, M.,
Truong, K.N. (eds.) Pervasive 2007. LNCS, vol. 4480, pp. 55–72. Springer, Heidelberg
(2007)

10. Korpipaa, P., Malm, E.-J., Rantakokko, T., Kyllonen, V., Kela, J., Mantyjarvi, J., Hakkila,
J., Kansala, I.: Customizing user interaction in smart phones. IEEE Perv.Comp. 5, 82–90
(2006)

11. Ramchurn, S.D., Deitch, B., Thompson, M.K., Roure, D.C.D., Jennings, N.R., Luck, M.:
Minimising intrusiveness in pervasive computing environments using multi-agent
negotiation. In: Proc. of MobiQuitous 2004, Los Alamitos, CA, USA, pp. 364–372 (2004)

12. Toninelli, A., Pantsar-Syväniemi, S., Bellavista, P., Ovaska, E.: Supporting Context
Awareness in Smart Environments: a Scalable Approach to Information Interoperability.
In: International Workshop on Middleware for Pervasive Mobile and Embedded
Computing, pp. 5:1–5:4. ACM, New York (2009)

262 W. Van Woensel et al.

13. Retkowitz, D., Armac, I., Nagl, M.: Towards Mobility Support in Smart Environments. In:
21st International Conference on Software & Knowledge Engineering, pp. 603–608 (2009)

14. Hadim, S., Al-Jaroodi, J., Mohamed, N.: Trends in Middleware for Mobile Ad Hoc
Networks. Journal of Communications 1(4), 11–21 (2006)

15. Meier, R., Cahill, V.: STEAM: Event-Based Middleware for Wireless Ad Hoc Network.
In: 22nd International Conference on Distributed Computing Systems, pp. 639–644 (2002)

16. Van Woensel, W., Casteleyn, S., Paret, E., De Troyer, O.: Transparent Mobile Querying of
online RDF sources using Semantic Indexing and Caching. In: Bouguettaya, A.,
Hauswirth, M., Liu, L. (eds.) WISE 2011. LNCS, vol. 6997, pp. 185–198. Springer,
Heidelberg (2011)

17. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36, 41–50
(2003)

18. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic computing through reuse of
variability models at runtime: The case of smart homes. Computer 42(10), 37–43 (2009)

19. Ju, W., Leifer, L.: The design of implicit interactions: Making interactive systems less
obnoxious. Design Issues 24(3), 7–84 (2008)

20. Lewis, J.R.: Ibm computer usability satisfaction questionnaires: psychometric evaluation
and instructions for use. Int. J. Hum.-Comput. Interact. 7(1), 57–78 (1995)

	Adapting the Obtrusiveness of Service Interactions in Dynamically Discovered Environments
	1 Introduction
	2 Related Work
	3 Architecture Overview
	3.1 Environment Discovery and Management Layer
	3.2 Services Layer
	3.3 Obtrusiveness Adaptation Layer

	4 Methodology
	4.1 Service Designer: Adaptation Behavior Specification
	4.2 Service User: Situation Specification

	5 Evaluation
	5.1 Evaluation Results

	6 Conclusion and Future Work
	References

