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Abstract. Mobile device users can now easily capture and socially share video
clips in a timely manner by uploading them wirelessly to a server. When attend-
ing crowded events, however, timely sharing of videos becomes difficult due to
choking bandwidth in the network infrastructure, preventing like-minded atten-
dees from easily sharing videos with each other through a server. One solution
to alleviate this problem is to use direct device-to-device communication to share
videos among nearby attendees. Contact capacity between two devices, however,
is limited, and thus a recommendation algorithm is needed to select and trans-
mit only videos of potential interest to an attendee. In this paper, we address the
question: which video clip should be transmitted to which user. We proposed
an video transmission scheduling algorithm, called CoFiGel, that runs in a dis-
tributed manner and aims to improve both the prediction coverage and preci-
sion of the recommendation algorithm. At each device, CoFiGel transmits the
video that would increase the estimated number of positive user-video ratings the
most if this video is transferred to the destination device. We evaluated CoFiGel
using real-world traces and show that substantial improvement can be achieved
compared to baseline schemes that do not consider rating or contact history.

Keywords: mobile-to-mobile communication, memory based collaborative
filtering, coverage.

1 Introduction

Mobile devices are increasingly capable in their abilities to sense, capture, and store
rich multimedia data. Multiple wireless interfaces facilitate users to upload and share
their experience with friends and public. In this work, we are interested in mobile video
sharing among attendees of an event. As an example, consider product exhibitions,
malls, museums, game events such as the Olympics, where people have to move around
in a large area and could benefit from receiving video clips of a small portion of the
event so that they can decide whether to attend it.

This information sharing paradigm emphasizes both spatial locality and timeliness
and is different from archived video sharing services such as those provided by
YouTube. A straight forward approach to enable such video sharing is to have users
upload the videos captured to a central server through 3G/HSPA networks. Users can
then search for or browse through the uploaded videos through the server. While this
approach can provide good performance in terms of delivering the right videos to the
right users, it has obvious drawbacks. First, when user density is high, there is likely to
be insufficient aggregate upload bandwidth for the combination of large amount of data
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and large number of users. Next, the use of 3G/HSPA network for upload is relatively
inefficient, since the network is optimized for download. Finally, videos stored in the
central server have to be downloaded to individual mobile phone for viewing and rating,
further straining the 3G/HSPA network.

The approach adopted in this work is to circumvent the cellular network infrastruc-
ture and transfer videos directly, from one mobile device to another mobile device, via
short range connection such as WiFi or Bluetooth. A user captures a video and indicates
the mobile application to share it. The video is pushed to nearby devices when connec-
tions to these devices becomes available. A user can choose to watch and rate videos
accumulated in the video inbox of the device. The device can also forward the videos
through a mobile-to-mobile network.

Besides alleviating the network infrastructure bottleneck, direct mobile-to-mobile
communication may also reduce power consumption [9]]. In addition, the much shorter
RTT for direct mobile-to-mobile transfer allows significantly higher throughput com-
pared to transferring large amount of data over the Internet through the 3G/HSPA
network, where the median ping latency has been observed to be almost 200ms [2]].

The use of short range communication among mobile devices results in intermittent
connectivity. These devices, in essence, form a delay-tolerant network (DTN). As mo-
bile devices have limited contact time, pushing the right video to a neighboring device
is especially important. Ideally, we want videos that a user is interested in to end up in
its inbox within a given time period. As such, our system uses a collaborative filtering
(CF) based recommender system to predict the user preference. The use of this algo-
rithm, however, requires collection of sufficient number of user-item ratings to work. In
other words, pushing a video to a user now has two purposes: for the user to watch and
for the user to rate. The decision to select which video to transfer should thus consider
the needs of the CF algorithm as well.

To address this challenge, we propose CoFiGel, a video transfer scheduler in the
DTN context that integrates CF-based recommender system. CoFiGel effectively uti-
lizes the limited contact capacity among mobile devices to filter and disseminate user-
generated videos published by mobile users to other mobile users. CoFiGel is designed
to (i) increase the prediction coverage, which is the ability of the algorithm to predict
ratings for items, and (ii) route videos in such a way that increases the item precision,
i.e., the percentage of items recommended to users that are rated positively.

We evaluate CoFiGel through trace-based simulation using RollerNet human mobil-
ity trace [6] and an user rating data set from MovieLend]. Our evaluation shows that
CoFiGel can provide 80% more prediction coverage in comparison to the baseline al-
gorithms, detecting at least 74% of positive ratings in the process, and delivers at least
59% more positive (liked by user) items in comparison to the baseline algorithms that
do not take into account either ratings or contact history.

The rest of the paper is organized as follow. Section 2] discusses related work. Sec-
tion[3describes our mobile-to-mobile video transfer application and motivates the need
for CoFiGel. CoFiGel is presented in Section 4] and is evaluated in Section[3 Finally,
Section[6 concludes.

! MovieLens Dataset, http: //www.grouplens.org/node/73
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2 Related Work

Collaborative Filtering (CF). The most prominent and popular recommendation tech-
nique that has seen extensive research and wide deployment is collaborative filtering
(CF) [3]]. CF techniques can be broadly categorized into memory-based or model-based.
Memory-based CF (MCF) utilizes rating history of users to identify neighbourhood
patterns among users or items. This pattern facilitates the prediction of ratings for hith-
erto unrated user-item pairs. Model-based CF uses the user ratings in conjunction with
standard statistical models such as Bayesian belief nets and latent semantic model to
identify patterns in the ratings of user-item pairs. The resultant model is then used to
make predictions for future ratings. There exists much research on using CF on peer-to-
peer (P2P) systems. PocketLens [[14] is a recommender system for portable devices that
uses item-item collaborative filtering for making recommendations. It proposes a rating
exchange protocol for both distributed P2P architecture and centralized server architec-
ture, where nodes rely on a central server for storing rating information. A probabilistic
model-based CF is proposed by Wang et al. [8]] for a P2P network. Other related work
focuses on the security and privacy aspect, including providing user incentive [5]], trust
of rating protocol and privacy [7].

DTN Content Dissemination. There are many unicast DTN routing schemes designed
to improve point-to-point delivery probability and/or minimize delay [15]]. These pro-
tocols, however, do not address the issue of information dissemination. A common
problem studied in DTN content dissemination is how to maximize the freshness of
dynamic content [[10]. A subset of mobile devices download internet content and ex-
change among themselves so as to maximize freshness. Caching schemes where nodes
refresh/reshuffle their cached content based on a voting process can also be exploited,
as done by Ioannidis et al. [10]. In [[L1]], predefined preferences are used to route items
to users. However, preferences are static and not predicted. Another approach for con-
tent discovery and dissemination in DTN uses tags [12]. Tag metadata is propagated in
the network and user interest is determined by matching tags.

Unlike previous work, CoFiGel provides a framework to integrate MCF and DTN
routing, focusing on utilizing limited contact capacities in DTN to improve rating cov-
erage and item recall. CoFiGel does not assume any specific MCF algorithm. Instead,
it defines an abstract model of how MCF works and how the MCF should interact with
the DTN routing protocol. We are not aware of any MCF that specifically takes into ac-
count the intermittent contact capacities of mobile nodes, nor any DTN mechanism that
takes into account usefulness of item transferred to improve coverage and item recall of
the MCF algorithm.

3 Mobile-to-Mobile Video Sharing

Motivation. We now motivate our work by demonstrating the efficacy and advantages
of mobile-to-mobile video transfer.
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Mobile data usage has outgrown available bandwidth in 3G/HSPA network, resulting
in severe congestion in the cellular network in some casedd. A popular approach to
reduce such congestion is to offload data traffic to the WiFi network whenever possibleﬁ.
Communication over WiFi also consumes less power than 3G/HSPA network (four to
six times less power for file transfer [9]). We further measure the performance of file
transfer between a mobile device and a central server using 3G/HSPA network and
between two mobile devices directly using WiFi.

To quantify the performance of mobile-to-server transfer, we upload and then down-
load a 14.3 MB video clip to YouTube using a HSPA network, which provides a max-
imum download and upload rate of 7.2 Mbps and 1.9 Mbps respectively. The average
download and upload throughputs measured (average of 5 trials) are 1125.2 kbps and
57 kbps respectively. To quantify the performance of mobile-to-mobile transfer, we use
two Samsung Nexus S phones that support IEEE 802.11n (link rate is 72.2 Mbps) to
exchange the same video file directly over a TCP connection. The measured through-
put is 22.6Mbps (average of 5 trials). The 20-fold difference in measured throughput
can be attributed to the differences in link rate and RTT observed (70ms for mobile-to-
server and 5.5ms for mobile-to-mobile). This superior throughput motivates our study
on mobile-to-mobile video sharing.

Mobile-to-Mobile Video Sharing. A user of mobile-to-mobile video sharing can share
video content either generated or already available on the mobile device through a video
outbox and watch and/or rate video available in a video inbox. When a device is within
communication range through WiFi or Bluetooth, the scheduler uses the MCF to choose
the subset of videos (interesting to the user) in the inbox to transfer within the limited
contact time. The scheduler also manages the limited inbox space. Each device main-
tains a user-video rating matrix, which is updated either when a video is rated on the
device, or when the device receives a rating matrix from another device. The rating
matrix is one of the two meta-data (the other is contact history among devices) be-
ing exchanged between two devices when devices make contact with each other. Upon
update of the matrix, predictions of interest-level of videos are recomputed and video
transfers are rescheduled accordingly.

Memory-Based Collaborative Filtering. We now detail how MCF works. MCF is a
class of recommender algorithms that is model independent and is able to capture the
abstract user preference on a set of items. Typical MCF techniques have the following
structure. A training data set is used to build a rating matrix consisting of ratings given
for items by users. The rating matrix is used to identify the similarities between users-
items and to predict the ratings of hitherto unrated items by a given user. Items that
are predicted to have high ratings are shown to the user; Feedback from the user on
these items is then used to update the rating matrix. The assumption is that users tend
to behave in the same way as they behaved in the past.

2http://www.fiercewireless.com/europe/story/oZ—germany—admits—
network-meltdown-smartphones-blamed/2011-11-23

3http://www.telecomasia.net/content/3g—wifi—offload—pipes—
singapore


http://www.fiercewireless.com/europe/story/o2-germany-admits-network-meltdown-smartphones-blamed/2011-11-23
http://www.fiercewireless.com/europe/story/o2-germany-admits-network-meltdown-smartphones-blamed/2011-11-23
http://www.telecomasia.net/content/3g-wifi-offload-pipes-singapore
http://www.telecomasia.net/content/3g-wifi-offload-pipes-singapore

M2M Recommendation 17

Table 1. Rating matrix for Cosine-based similarity metric, ¢ denotes ratings that could be pre-
dicted and * denotes unknown ratings
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For concreteness, we will use the Cosine-based similarity metric ([13]]) in the rest
of this paper to illustrate how CoFiGel works. Cosine-based similarity is a popular
item-based MCF and has been used in large scale real-world applications such as the
recommendation system used by Amazon.com. Note that CoFiGel can also work with
other MCF algorithms, such as Slope One [3]]. Since MCF works for recommendation
of any kind of items, we will use the term ifems in the rest of the discussions to refer to
videos in our application.

In general, ratings can be represented as integer values. For simplicity, we as-
sume that ratings are binary and are expressed as either 1 (positive/like) or 0 (nega-
tive/dislike). In computing Cosine-based similarity, unrated items are assigned ratings
of 0. After a user has rated an item, the item will not be recommended to the user again.

Let U and I be the set of all users and items respectively and ;" and I be the set
of items that are rated positive and unrated by a user v € U respectively. Let the actual
rating of an item ¢ € I for user u be r,, ;. Cosine-based similarity metric computes R, ;,
the rank of an unrated user-item pair (u, %), in the following way. First, the similarity

. . .. . . N D weu Tu,iTu,j
between two items ¢ and j is computed using Sim(i, j) = <\/Zu€U Y W‘i,j)
and R, ; = jerd Sim(i, j) Obviously, the rank of item ¢ for user « can be computed
only if there is at least one user who has rated both ¢ and another item that user u has
rated positively. If the rank cannot be computed, then we say that the particular user-
item pair is unpredictable.

Table [[] shows a rating matrix with items that are rated (positively and negatively),
predicted and unpredictable. Typically, the top-k items i € I’ with highest rank are
recommended to user u. We say that the prediction of i is positive for u if ¢ is among
the top-k items in I, and negative otherwise. A prediction of i is said to be correct, if
the predicted rating is consistent with the user rating eventually. Note that the notion of
whether a prediction is positive or not changes over time (and thus whether it is correct
or not changes over time as well).

The performance of MCF algorithm is measured by several standard metrics [3]]. For
instance, precision and recall are used to measure the classification performance of a
MCEF algorithm. Precision is a measure of recommended items that are relevant to the
users, and recall is a measure of the number of relevant items that are recommended to the
users. Another common performance measure used is prediction coverage, (or coverage
for short), defined as the percentage of the number of predictable user-item pair.
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MCF for Mobile-to-Mobile Recommendation. When two mobile devices meet, they
need to select which items to be transmitted over the intermittent contacts based on the
meta-data information available. As mentioned, since contact capacity is precious, items
that are likely to be liked by other users should be transfer and propagated with higher
priorities. Running MCF in the context of mobile-to-mobile video sharing, however,
leads to another issue: since each user is likely get a chance to rate only a small subset
of all videos available, selecting which items for users to rate is also important, to
increase the coverage.

For the rating matrix shown in Table [Tl item ¢; has three common user ratings
with items s, i5 and ¢¢. ¢3 has only one common user rating with ¢4. Using Equa-
tions for Sim(i, j) and R, ;, we can compute R,,, ;; and R, ;, as follows: R, i, =
Sim(1,2)+ Sim(1,4) + Sim(1,5)+ Sim(1,6) = \/51\/2 +0+ \/51\/2 + \/53\/4 ~ 1.30
and R, i, = Sim(3,2) + Sim(3,4) + Sim(3,5) + Sim(3,6) = 0+ mlm +0+0~
0.71. 41 has a higher rating than 73 with respect to ug4.

The coverage consideration, however, is different. It can be observed from Table [T]
that all users except u4 and us have already rated ¢;. Knowing the value of 74 ;, , allows
only at most one more rating, 2, i, , to be computed. The gain in rated and predictable
items is 2. On the other hand, ¢3 has been rated only by us. Knowing the value of r,, i,
allows the rating of 3 users (u3, ug and uy) for item i3 to be computed. The gain in rated
and predictable items is 4. Therefore, the rating of i3 by w4 has a higher gain in rated
and predictable items than rating ;.

This example illustrates the trade-off between improving user satisfaction and im-
proving coverage when not all data transfer can be completed within a contact. If user
satisfaction is more important, then ¢; will be chosen for transfer. If coverage has higher
priority, then 73 should be chosen. Note that when there is a centralized server with con-
tinuous connectivity to users and has access to all rating information and data items, the
impact of this trade-off is not significant. Such a trade-off, however, plays an important
role in a resource constraint environment where the contacts between mobile devices
are intermittent, contact capacities are limited and only subsets of data items can be
stored in the local buffers. The execution of MCF on mobile devices with intermittent
contacts presents a new challenge that is not present in traditional application of MCF
in a centralized or peer-to-peer environment where connectivities are not intermittent.

4 CoFiGel

The MCEF algorithm runs locally on each mobile device based on available meta-data
information, which consists of the user-item rating matrix and contact history. We de-
note the element m,, ; as the rating of item ¢ by user v at any given time. The status of
m,,; can be either rated, predicted or unpredictable. A rating m,, ; is rated if ¢ has
be transferred to and rated by w, and the rating can be either 1 or 0. A rating m,, ; is
predicted if it has not been rated yet, but the rank R, ; (see section[3)) can be computed.
The predicted rating is 1 if ¢ is among the top-% item according to R, ; for user u, and
0 otherwise. A rating m,, ; is said to be correct if the predicted rating matches the user
rating eventually.
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Recall that there are two naive methods to pick an item to transfer to another device.
The first method, considering only item recall, picks a predicted item that gives the
highest rank R, ; to maximize the probability that the rating m,, ; is correct and posi-
tive. The second method considers only the prediction coverage, and picks a predicted
item such that if the item is rated, then the number of unpredictable items becoming
predictable is maximal. To consider both recall and coverage, we consider the follow-
ing metric: for an item ¢, we are interested in the number of correct positive prediction
for ¢ eventually, i.e., when ¢ has been rated by all users. Before 7 is rated by all users,
this quantity is considered as a random variable, denoted as (2;. At any round ¢, we
know the current number of correct positive rating for ¢, denoted 7’?‘ . We also know is
the number of positive predictions for item ¢, gj . Ideally, we would like the following
inequality to be true: (2; > rj + gf , i.e., all the positive predictions for ¢ are correct,
and there are additional new positive ratings for 7. The key question is thus to estimate
the probability that the above condition is true if ¢ is transferred.

In the following, we present approximations on the potential positive ratings for an
item and the probability of delivery of items with positive ratings to the users. The goal
is to derive approximations that can be used as input to guide and motivate the design
of CoFiGel.

Let, n be number of users, g;“ number of positive prediction for item ¢ currently, r;r
number of correctly predicted positive ratings for item 4 currently, {2; random variable
for number of correct positive ratings for item ¢ when all users have rated 4, o4(3) the
queue position of item ¢ at node ¢, B average device contact capacity, A average device
contact rate, H; set of devices with item <.

First, we present an equation to bound P{{2; > g;“ + rj }, the probability that the
number of correct positive predictions for item ¢ would increase if ¢ is transferred, is
given as follows:

rF B2 s\ T e
Pr{; > r;r +gi+} < min {1,6 nerf (1 — i > } €))
n
For the ratings and items to be useful, the item should reach a user before some time
deadline. Estimated probability of delivery an item ¢ late after the time deadline ¢ is:

. | Vi

PriY; 2t} > 1-min{l, gy > o} )
vEH;

The proofs and discussions of Equations[fland 2] are available in [1].

We now present the workings of CoFiGel based on Equation[Iland2l At each device,
CoFiGel decides which item to transmit by computing a utility U;, which incorporates
the number of positive ratings (rated or predicted) for ¢, the probability of gain in rat-
ings, and the probability of delivery within the deadline: U; = (gj' + 1) G- D,
where G; is the right-hand-side of Equation[I] and D; is the right-hand-side of Equa-
tion[2l The utility increases if either (i) the total number of correctly predicted positive
ratings we get eventually (giJr + "), increases (ii) the likelihood of the number of cor-
rect predictions increases (G;), or (iii) the likelihood of delivering an item within the
deadline ¢ increases. Note that since the bounds provided are very loose, we do not ex-
pect these computed utilities to reflect the true value of the rating gain. For scheduling,
only relative ordering is important and we transfer items in decreasing order of utility.
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Parameter

Table 2. Simulation Parameters

Number of Publisher and Subscriber Nodes
(Item publisher rate)/publisher and item lifetime
Simulation duration, warmup and cool down time

Item size and Buffer size

RollerNet
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Fig. 1. RollerNet trace (total ratings = 11536)
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Simulation Setting

To evaluate CoFiGel, we use the MovieLens data sef] as the underlying user ratings. The
data set chosen has 100,000 ratings, 943 users and 1,682 items. We use the RollerNet
trace ([l6]) as the human mobility traces. It consists of about 60 Bluetooth devices carried

4 http://movielens.umn.edu
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by groups of roller bladers in a roller tour over three hours. The average contact duration
is 22 seconds, with an average of 501 contacts made per node over 3 hours.

Video size of user generated content such as those found in popular sites like
YouTube is 25MB or less (98% of videos are 25MB or less [4]]). We choose data size of
15MB. The buffer size and item generation rate are similarly adjusted to ensure suffi-
cient loading in the system. As some nodes in the trace have very limited contacts with
the rest of the trace, we avoid selecting these nodes as the publisher or subscriber nodes
(though they can still act as relay nodes). These nodes are identified as nodes which do
not have sufficient number of node contacts and contact bandwidth to support meaning-
ful data exchange. After removing these nodes, 10 publishers and 30 subscribers were
chosen. In order to reduce simulation time, we reduce the MovieLens data set selected
by randomly choosing 900 items (movies) and 500 users from the original data set. All
user-item ratings associated with these chosen user-item pairs from the original dataset
are also included. Finally, as the rating data set and the mobility trace are generated
independently, we map the rating data to the mobility trace in the following way: Every
item in the reduced data set is randomly assigned to a publisher node in the mobility
trace. This node will act as the publisher for the item. Every user in the reduced data
set is randomly mapped onto a mobile subscriber node. The actual user-item rating is
known only when the item reaches the given mobile node where the user is located.

TableRlare used as default unless otherwise specified. Each simulation point is run at
least 3 times with different random seeds. The performance objectives used are predic-
tion coverage, precision, recall and number of satisfied users and latency, as described
in Section[3l

We compare the performance of CoFiGel with four other algorithms, namely: (1)
A scheme that knows the ground-truth of data available. The ground-truth is available
from the MovieLens data set. This scheme provides the actual rating coverage and gives
an upper bound on the system performance. This scheme is used only in the coverage
comparison since ground-truth is not applicable in the user satisfaction evaluation. (2)
An epidemic-based algorithm that is similar to CoFiGel except that it does not take into
account contact history and time constraints. We called this algorithm NoDelivery-
Time. The performance difference between NoDeliveryTime and CoFiGel indicates
the improvement provided by exploiting contact history. (3) An algorithm that uses
only the rating information available. This is referred to as NoCoverage. The ratings of
the items are predicted using the MCEF, but the rating update and the potential coverage
increase is not considered. By using only limited rating information, NoCoverage is
expected to perform the worst. (4) An algorithm which tries to schedule an item so as to
acquire prediction coverage of hitherto unrated users and to satisfy as many more users
as possible. This is called the NoItemRecall. While this approach also uses contact
history, it does not perform multi-round predictions as in the case of CoFiGel. It only
acts using the current rating information. (5) CoFiGel3G is a modification of CoFiGel
such that it uses the cellular network to upload/download ratings and a central server to
run the MCF. However, the data are still sent over the DTN. By exploiting the cellular
network as control channel, ratings information propagate quickly among the nodes and
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is always up-to-date. However, it is important to note that faster rating propagation does
not always translate to higher rating coverage. This is because an actual rating can only
be discovered after an user has access to the actual video and provides the rating.

5.2 Coverage

We now evaluate the performance of CoFiGel and the other algorithms in terms of
prediction coverage, a commonly used metric for MCF. In addition, we also measured
the fraction of correctly predicted positive (or FCPP) items, which measure the ratio of
correctly predicted positive item to the total of number of positive ratings rather over
all ratings. Given that we are simulating a DTN environment, FCPP provides a better
gauge for what is achievable by good algorithms in more challenging environments.

Figures and show how positive ratings increase over time. The ac-
tual number of ratings for the items published so far (Ground-Truth) are shown
to illustrate the best possible outcomes. In terms of overall ratings, CoFiGel dis-
covers 45% of the ratings. In terms of FCPP, CoFiGel discovers 84% of the
positive ratings. In fact, the performance of CoFiGel measured using FCPP closely
matches the actual ratings in the first 15 minutes and the gap remains small throughout
the simulation. The results shows that CoFiGel has the best performance, followed by
CoFiGel3G.

This result can be somewhat surprising since CoFiGel3G uses the same algorithm
as CoFiGel but uses the control (3G) channel for centralized rating computation and
sharing. We explain the result as follows. Since CoFiGel3G performs centralized rating,
the rating matrix gets updated much faster. This fast rating update has the (unintended)
consequence that the variable G; in utility function approaches the value of 1.0 much
faster than the case for CoFiGel. As the value of G; gets close to 1 and saturates around
this value, this variable becomes useless in term of providing information for relative
ranking to decide which video data item is more important. However, since propagation
of video data item lags behind rating data, the loss of this rating information results in
CoFiGel3G performing worse than CoFiGel.



M2M Recommendation 23

The higher contact rate and capacity turn out to have adverse effect on NoDeliv-
eryTime, NoCoverage and NoltemRecall, since each algorithm only looks at one as-
pect of the problem. In terms of FCPP, NoDeliveryTime discovers 13% of the positive
ratings, while NoCoverage discovers 0.6% or less of the positive ratings and Noltem-
Recall discovers around 1%.

The coverage for the NoCoverage is very low, showing that it is important to take
into account additional information beyond ratings. Figures and show how
coverage varies with transmission rate. While increase in contact capacity results in in-
creased coverage because more items get rated, CoFiGel is able to exploit the increase
in transmission rate much better than NoDeliveryTime, NoCoverage and NoltemRe-
call. In the results shown, CoFiGel performs better than NoDeliveryTime by up to
105% and discovers at least 50 times more ratings than NoCoverage and NoltemRe-
call consistently. In general, more improvement comes from taking into account rating
coverage gain (from NoCoverage to NoDeliveryTime) than taking into account con-
tact history. The effort by NoItemRecall to increase the number of user ratings is also
ineffective due to the absence of rating gain which is capitalized by CoFiGel. Neverthe-
less, substantial improvement is still observed between NoDeliveryTime and CoFiGel.
The performance with respect to different buffer sizes is shown in Figures
There are two observations. First, for very small buffer size of less than 150MB, very
few items make it to the next hop and hence, the FCPP remains same for CoFiGel and
NoDeliveryTime. For larger buffer sizes, FCPP of CoFiGel is higher than NoDelivery-
Time by up to 36% and for NoCoverage by 50 to 60 times.

5.3 User Satisfaction

While coverage indicates the predictive power of the system, the actual user satisfac-
tion has to be measured by looking at how many items reach users that like them. In
order to ensure that the nodes have accumulated enough training data before making the
measurement, we consider items generated after first 1.5 hours and before the last half
hour. The first 1.5 hours serve as the training phase, while the last half hour is ignored
to make sure that items generated later in the trace do not bias the measurement.
Figure shows the results for precision of items reaching the users. It is clear
that CoFiGel performs very well, except for one case (350K), it has the highest pre-
cision. In addition, note that even though NoltemRecall has a higher precision, from
the results in the previous section, it has very low coverage. Due to the disconnected
nature of DTN and the large number of data items and users available, it is also useful
to look user utility in two other ways. First, we look at the average number of positively
rated items that reach any user. The result is shown in figure 3(b)} CoFiGel clearly out-
performs the other two algorithms by a very large margin once the bandwidth exceeds
some threshold required for data dissemination. At the highest transmission rate experi-
mented, improvements are 117% compared to NoDeliveryTime and 225% more useful
items than NoCoverage. Another way we measure recall is to look at the number of
users who have received at least one useful item. The result is shown in figure
Again, CoFiGel performs well, in particular, at higher bandwidth. At 4Mbps, CoFiGel
delivers twice as many useful items to users than NoCoverage and NoDeliveryTime.
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6 Conclusion

We have presented CoFiGel, a novel approach that combines collaborative filtering and
DTN routing in a distributed environment with intermittent connectivity. It is designed
for sharing of locally stored contents that have spatial and temporal relationships. Re-
sults show CoFiGel ensures timely deliver of items with higher prediction coverage
gain, discovers more ratings and delivers more items that are rated positively by users,
than baseline strategies.
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