
Honeybee: A Programming Framework
for Mobile Crowd Computing

Niroshinie Fernando, Seng W. Loke, and Wenny Rahayu

Department of Computer Science and Computer Engineering, La Trobe University,
Australia

tnfernando@students.latrobe.edu.au, {s.loke,w.rahayu}@latrobe.edu.au

Abstract. Although smartphones are increasingly becoming more and
more powerful, enabling pervasiveness is severely hindered by the re-
source limitations of mobile devices. The combination of social inter-
actions and mobile devices in the form of ‘crowd computing’ has the
potential to surpass these limitations. In this paper, we introduce Hon-
eybee; a crowd computing framework for mobile devices. Honeybee en-
ables mobile devices to share work, utilize local resources and human
collaboration in the mobile context. It employs ‘work stealing’ to effec-
tively load balance tasks across nodes that are a priori unknown. We
describe the design of Honeybee, and report initial experimental data
from applications implemented using Honeybee.

Keywords: mobile crowd computing, mobile cloud computing, remote
execution, offloading, crowd sourcing.

1 Introduction

Collaboration among mobile devices paves the way for greater computing oppor-
tunities in two ways; Firstly, it solves the inherent resource limitations of mobile
devices [19]. Secondly, a mobile device is usually accompanied by a human user,
who can use his/her ‘human expertise’ to crowd source problems that need a hu-
man element [12]. Increasing usage and capabilities of smartphones, combined
with the potential of crowd computing [17] can provide a collaborative oppor-
tunistic resource pool. This paper aims to provide Honeybee, a programming
framework that facilitates the development of mobile crowd computing applica-
tions exploiting such resources. We define ‘mobile crowd computing’ as a local
‘mobile resource cloud’ comprising a collection of mobile devices, and their users.

We build on previous work where we first investigated static job farming
among a heterogeneous cluster of mobile devices in [8], and a more load bal-
anced approach in [9] using ‘work stealing’ [5]. To our knowledge, no other work
has used work stealing in the mobile computing domain, although it has been
employed for job scheduling with load balancing in distributed environments
such as Cilk ([4], [14]), and Parallel XML processing [15].

There exists a number of proposed systems on mobile clouds [10] and crowd
computing [11,21,18]. The work on mobile clouds mainly focus on offloading

K. Zheng, M. Li, and H. Jiang (Eds.): MOBIQUITOUS 2012, LNICST 120, pp. 224–236, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Honeybee: A Programming Framework for Mobile Crowd Computing 225

machine computation to or with the support of a remote server, while crowd
computing systems focus on either collecting data or coordinating human intel-
ligence tasks, also using a remote server. To our knowledge, no single system
supports both kinds of ‘work sharing’ mentioned above, i.e, machine computa-
tion tasks, and human computation tasks, using local neighbourhood resources.

Typical grid/distributed computing solutions are not applicable in mobile
environments due to the following characteristics of mobile resources: less pro-
cessing power, finite energy, high volatility of the resource pool resulting in in-
consistent node availability, unknown devices a priori calling for opportunistic
behaviour, and heterogeneity. Therefore, mobile crowd computing requires a dy-
namic load balancing method that is decentralized, proactive and self-adaptive
instead of conventional master-slave static work farming.

The main contributions of this paper are, incorporating work stealing on a
mobile resource pool to achieve load balancing without a prior knowledge of
participating nodes, an API to support job sharing and crowd-sourcing among
mobile devices, and evaluation of Honeybee using three different applications.

Outline. Key related work are discussed in §2, and the concepts and design
principles of Honeybee in §3. An overview of implementation details are given
in §4, and experiments conducted on three different applications are described
in §5, with conclusions and future work outlined in §6.

2 Related Work

Opportunistic computing on mobile devices has been explored recently in a num-
ber of contexts. Job sharing via cyber foraging [20] in particular plays a main
role. At the other end of the spectrum, Crowd-sourcing [12] utilizes the collec-
tive power of human expertise to solve problems. In Honeybee, we focus on a
programming framework that provides an API to enable applications that cater
to both ends in a mobile context.

In a large number of cases concerning mobile task offloading, a central server
is essential to either co-ordinate the tasks among the mobile devices ([16]), or to
offload the processing on to [6]. However, our focus is on local and decentralized
job sharing owing to the issues in connecting to a remote server such as latency,
bandwidth issues [20], network unavailability, battery drain when connecting via
3G, and data costs.

Crowd Computing is introduced in [17] which shows the potential of using
mobile devices in a social context to perform large scaled distributed computa-
tions. They use message forwarding in opportunistic networks as basis and use a
static task farming approach. We, however, show that work stealing can give bet-
ter results compared to a static farming approach. In CrowdSearch, [21], image
search on mobile devices is performed with human validation via the Amazon
mechanical turk (AMT)[1]. CrowdSearch requires a backend server as well, since
the processing is done on both local and remote resources. [11] is a query process-
ing system that uses human expertise to answer queries that database systems
and search engines find difficult. In Medusa [18], a crowd sensing framework for

226 N. Fernando, S.W. Loke, and W. Rahayu

collecting sensor data from mobile phones, users are able to specify high level
abstractions for sensing tasks, using AMT. Our work is different from these in
terms of using only local mobile resources opportunistically. Furthermore, our
focus is on a framework that can be used to implement a variety of tasks, not lim-
ited to query processing, sensing, or human validation. However, previous work
showed us that user participation is at a considerable level, and ‘micro tasking’
is viable. WiFi or 3G has been the popular choice among many of these work,
except in cases such as the MMPI framework [7], which is a mobile version of
the standard MPI over Bluetooth, and in [3] where swarm intelligence techniques
has been adopted for message propagation. We have only used Bluetooth in this
implementation due to its widespread availability and low energy consumption.
However, other protocols shall be implemented in future work.

3 Honeybee: Concept and Design

The objective of the Honeybee framework is twofold:

1. In case of human aided computation such as qualitative classification tasks,
to enable collaboration of multiple human users using mobile devices. For
example, conducting surveys, asking for opinions, image identification and
comparison, audio transcribing, collecting data etc.

2. In case of machine computation, improve the efficiency of the execution
by either giving a speedup gain, and/or conserving resources (eg: battery).
For example, image processing, natural language processing, e-learning, and
multimedia search.

Honeybee’s work stealing algorithm for mobile devices was described in detail
in our previous work [9], which will be briefly explained here using an example
scenario that combines human and machine intelligence.

3.1 How Honeybee Works: Lost Child Scenario

Consider a carnival setting attended by hundreds of people. Among these at-
tendees, a toddler goes missing and the security officials are notified. Charged
with quickly locating the missing child among the throng of visitors, the au-
thorities decide to use crowd computing. They broadcast a request, notifying
the attendees of the situation, and send out a photograph of the child through
opportunistic forwarding. Here, the initial ‘task’ is the request containing de-
tails about the child, his photograph, and whom to contact if seen. Instead of
selecting a few worker nodes, the crowd computing system specifies that this
is a message needing to be propagated to all encountering devices. People who
receive the message go through their photo gallery and check if a child can be
spotted in their photographs taken on the carnival. However, it is common for
many of people to take many photographs at such an event. To go through all
of them requires time and patience. Let us say John is such an attendee. He has
taken over hundred photographs in the carnival and he chooses instead to first

Honeybee: A Programming Framework for Mobile Crowd Computing 227

filter out photographs containing faces. However, facial detection is an expensive
task. Therefore, he employs Honeybee to share the face detection work among
other people, possibly employing an app similar to our prototype in Section 5.1.
Here, John’s mobile device is the ‘delegator’ and Honeybee will first identify
available ‘worker nodes’ in the vicinity and then proceed to distribute the ‘job
pool’ containing the images to be processed among them. Since there is no way
to determine device capabilities a priori, Honeybee will initially distribute the
job pool equally. As time progresses, the nodes who complete running the face
detection on their share of jobs will attempt to ‘steal’ jobs from other nodes, en-
suring that ‘faster’ nodes will receive more jobs, contributing to a higher speedup.
John’s device, which is the delegator, continues to do a part of the work as well,
while listening for incoming ‘result transmissions’. Once all the jobs results are
collected, the delegator sends out a termination signal that notifies the work-
ers that task is done. Once the face detection is done, John checks the filtered
photographs manually to check for an appearance of the child.

There are several issues that arise considering such a scenario as above: What
kind of tasks can be ‘shared’ using a mobile resource pool? Where would the job
pool be stored? How does the delegator manage executing, stealing and distribut-
ing jobs? How does device mobility affect program execution? Why not distribute
jobs one by that would ensure load balancing? What will motivates users to par-
ticipate in such a scheme? These shall be addressed in the following section.

3.2 Design Considerations

We extensively focus on the concept of busyness, to keep participating devices
busy as much as possible and minimize idling. Honeybee is catered for tasks that
can be broken down into several independent jobs that can be executed in paral-
lel, so that the complete task J =

∑n
i=1 ji where there are a total of n jobs. The

delegator selects at random, a pool of f workers such that f≤n . The sub task
distribution is twofold: initial jobs and stolen jobs. Initial tasks are distributed
by the delegator at time t0 such that each participating device receives n/f jobs.
The delegator also starts executing its share of jobs at time t0, in parallel to the
job distribution. The workers read the job parameters, and start the execution as

Fig. 1. Four nodes working in collaboration using work stealing

228 N. Fernando, S.W. Loke, and W. Rahayu

soon as they receive them. So, worker n2 shall start execution at time t1, n3 at t2,
and so on. Depending on device capabilities, resources, start time of computation,
and job size/complexity, some nodes are likely to finish their jobs before others.
If this occurs, the finished nodes shall transmit their finished result back to the
delegator, and attempt to ‘steal’ some jobs from another node.

This scenario is illustrated in Figure 1 where four nodes are collaborating
together. In this example, the four nodes are of different capabilities. That is,
while n0 does 1 job in time t, n1 might do 3 jobs. As can be seen in the fig-
ure, the delegator n1 distributes the jobs in parallel with its own share of job
execution, until time t3, when it finishes transmitting. From thereon, n1 carries
out its computations until time t7. However, before it reaches t7, a couple of
communication incidents have occurred: at time t4, node n2 finishes its jobs,
and starts transmitting the results back to n1. This transmission occurs until t6.
Meanwhile, node n2 also steals some jobs from n1, since it has finished its queue.
This ‘stealing’ process occurs until t5, where n1 is seen transmitting some of its
jobs to n2. After finishing its jobs at t7, n1 also steals some jobs from the job
queue of n3. This cycle of job execution, result transmission and stealing contin-
ues until all jobs are finished, and collected, which occurs at time t14. Note that
the nodes are kept busy throughout.

Job Expiry. In a practical scenario, it is unrealistic to assume all nodes will
be static, or at least be relatively static during the execution. What happens
if a worker node moves out of proximity before it can transfer the results? To
overcome this problem, a ‘deadline’ needs to be set by the delegator n1. So if
the delegator does not receive any result from a particular worker within this
time, it will add those jobs back to its queue and either proceed to execute them
itself, or have them ‘stolen’ eventually to be done by another worker.

Device Mobility. Three constraints must be taken into consideration; (a)the
job distribution time must not exceed the time the devices are in contact with
the delegator, (b)to enable work stealing, at least several devices must be in
contact with each other for the duration of execution, and (c)worker devices
must transmit the result/s before an ‘expiration time’. It should be noted that
for different classes of applications, different settings apply. For example, if the
objective of using Honeybee is to gain a speedup, performance time is of great
importance. In that case, a low entropy setting where a group of people are
stationary relative to each other is most suitable. Some examples for this kind
of topology are, a group of passengers in a train, a hiking group, and a group
of people at a restaurant. A certain percentage of devices being out of range
at times is acceptable however, and these can be handled via fault tolerance
methods. If the objective is to conserve resources, or data collection, where the
expiration time is greater, higher entropy topologies can be considered, and in
some cases are even more suitable. In this setting, a larger number of nodes will
be available, and will be moving around, within a specific area. Examples are,
a shopping mall, a sporting event, and an airport. Worker nodes can pass their
results either through direct encounters, or opportunistic forwarding.

Honeybee: A Programming Framework for Mobile Crowd Computing 229

Bundle Size. Bundle size refers to the number of jobs assigned to a participat-
ing device at a given time. Rather than maintaining a central job queue at the
delegator, we have designed Honeybee to distribute the jobs among workers such
that bundle size is ≥ 1. In most cases, bundle size is n/f . Unlike in a typical
distributed system setting, a resource cloud of mobile devices need to be vary of
limited battery, mobility and communication. If bundle size is 1, load balancing
would be automatic, but worker devices would have to continuously poll the
delegator for new jobs, and the delegator would have to maintain many connec-
tions simultaneously, causing heavy communication costs. Furthermore, devices
are liable to move away from the delegator during the course of execution. By
setting a bundle size that is ≥ 1, we limit the probability of workers starving of
jobs if they are not in proximity to the delegator.

User Participation. As with all crowd sourcing apps, the success of Honeybee
depends on device participation, and participation depends on the incentives.
Experiences with other micro task frameworks such as AMT have given positive
indications on monetary incentives, and Wikipedia is a good example of human
collaboration for non-financial gain. Incentives could also be in the form of social
contract such as in a group of friends, or common goals such as in [13]. Since
users may hesitate to form connections with arbitrary devices due to privacy
and security concerns, a crowd computing framework must ensure secure com-
munications, possibly by granting anonymity as suggested in [18]. Although not
yet implemented in Honeybee, this is an essential part of our future work.

3.3 Upper Bound for Speedup

We now give a theoretical upper bound for speedup using Honeybee, versus
monolithic execution. It is useful to formulate an upper bound to evaluate and
understand the best possible result for our practical implementation. We define
a speedup as the time taken to complete a task using Honeybee divided by the
time taken to complete the task on the delegating device alone. We make the
following assumptions for the upper bound: a)the complete task is composed of
l equal jobs, and there are a total of f devices in the opportunistic network,
b)communication costs are not considered, and c)there are no restrictions on
number of connections per delegating device.

The delegating device shall be denoted as n1, and others as ni. The time to
complete m jobs (where m < l) on device ni is given as ti. Therefore, the time
to complete l jobs on n1, and therefore the time for monolithic execution, is
given as t1

m l. Let us say there exists a non negative constant ki for each ni device
such that ti

t1
= ki. Thus, total number of jobs done in t1 time in the network

is equal to m[1 + 1
k2

+ 1
k3

+ ... 1
ki
... + + 1

kf
]. Therefore, the Speedup S = t1l

m ×
m[1+ 1

k2
+ 1

k3
+... 1

ki
...++ 1

kf
]

t1l
, and so, S = 1+ 1

k2
+ 1

k3
+ ...+ 1

kf
. Due to non-negligible

communication in actual scenarios, the actual speedup would be less than S.

230 N. Fernando, S.W. Loke, and W. Rahayu

4 System Implementation

The Honeybee framework is implemented on Android, using Bluetooth as the
connection protocol. The framework contains interfaces and methods for devel-
oping mobile crowd applications. We have implemented three applications using
Honeybee, which will be explained in the Applications section. Figure 2 shows
the main components of the system from the delegator’s perspective.

Fig. 2. Main components of Honeybee

Application Parameters. As the starting point of execution, the application
passes app specific task parameters to the framework using interface AppRequest.
In Figure 3, we show a snippet from the Face detection app (5.1), where the com-
plete task is stored as a FaceRequest object, that has a list of subtasks (FaceInfo
objects). When Honeybee processes a FaceRequest, it knows the job parameters
are multiple files (from mode in FaceRequest), and each file is represented as a
FaceInfo object.

Fig. 3. Abstraction of jobs in the API

Honeybee: A Programming Framework for Mobile Crowd Computing 231

Resource Discovery and Worker Connections. Connecting to workers is
achieved by calling the ResourceDiscoveryActivity class, which looks for avail-
able devices, connects, and creates threads for handling each connection. Each
successful connection is registered with the system as a WorkerInfo instance.

Job Pool. The job pool is initiated by calling the initJobPool(AppRequest pReq)
method of factory class JobPool, using the information passed in AppRequest.
These jobs are then assigned to workers in individual threads. The ‘mode’ spec-
ified in AppRequest is needed when the delegator transmits the jobs to workers.
The transmitting thread first writes the ‘mode’ of the parameters (eg: string, file,
integer, etc), and then proceeds to transmit the actual parameters themselves.
Constants defined in class CommonConstants are used to specify the modes.

UI Updates. UI Updates to the application are handled through a Handler ob-
ject that notifies the application classes whenever a change occurs to the device
job list (i.e. completed/stolen/added), and the callback interface ResultsRead,
which receives notification when all the results are collected. It is up to the ap-
plication to provide the implementation of the processing of jobs and/or results.
For example, in the Face detection app, Honeybee notifies the application ac-
tivity whenever a new job is received, and this triggers the doWork() method
containing the program specific logic.

Job Scheduling. Job scheduling is closely associated with the worker thread
pool that was created in the resource discovery phase. Firstly, the job scheduler
must start on executing own share of jobs, while assigning each connected worker
their initial job list. As explained in Figure 1, stealing, or victim threads may also
be created and run. It should be noted that all the aforementioned threads need
to be carefully synchronized since (a)they all need access to the job pool, and
(b)same bluetooth connection is used for all communications between a worker-
delegator pair. An example of such a communication conflict is when a worker
device starts transmitting results, and steal from the delegator simultaneously.

5 Experimental Evaluation

Our testbed contains a total of five Android devices of varying capabilities, in-
cluding Nexus S1, Ideos2, and Galaxy SII3. We have implemented the following
three applications using Honeybee framework to evaluate its performance and
feasibility:(a)Distributed face detection, (b)Distributed mandelbrot set genera-
tion, and (c)Collaborative photography. We have selected these applications for
their different job characteristics, that are listed in Table 1.

1 http://www.google.com/nexus/#/galaxy/specs
2 http://www.huaweidevice.com/worldwide/
productFeatures.do?pinfoId=2831&directoryId=6001&treeId=3745&tab=0

3 http://www.samsung.com/global/microsite/galaxys2/html/specification.html

http://www.google.com/nexus/#/galaxy/specs
http://www.huaweidevice.com/worldwide/productFeatures.do?pinfoId=2831&directoryId=6001&treeId=3745&tab=0
http://www.huaweidevice.com/worldwide/productFeatures.do?pinfoId=2831&directoryId=6001&treeId=3745&tab=0
http://www.samsung.com/global/microsite/galaxys2/html/specification.html

232 N. Fernando, S.W. Loke, and W. Rahayu

Table 1. Job characteristics of applications used for evaluation

Application Job type Data size of I/O

Face detection Machine centric: CPU and memory intensive Big inputs/small outputs
Mandelbrot set generation Machine centric: CPU intensive Small inputs/big outputs
Collaborative photography Human centric processing Small inputs/big outputs

5.1 Distributed Face Detection

In this application, we run Android’s native face detection on a collection of
photographs. Face detection is heavy in terms of CPU cycles, and memory. The
main objective of using Honeybee to distribute the face detection computations
is to increase the performance in terms of speedup. Furthermore, because of its
heavy memory allocation requirements, running face detection on a collection
of images is difficult, and as we found, causes OutOfMemoryExceptions if we
executed on low powered devices such as Ideos. But via Honeybee, such an Ideos
device can achieve such resource intensive computations by offloading jobs to
other more powerful devices.

Here, the job pool contains thirty images that are stored on the delegator. On
a Nexus S, to run face detection takes around 74 seconds. We mainly focused
on two sets of experiments; share with similarly capable devices, and share with
more capable devices. In the first category, we used two other Nexus S devices
and a Galaxy S, since they can be considered equals in terms of CPU and memory
capabilities. In the second category, we used an Ideos as the delegating device,
to offload work with the aforementioned more powerful devices.

Evaluation Objectives:

– Examine how the performance varies with job size.
– Examine the performance results for jobs with parameters that are large

in terms of inputs. The outputs of this application is very small in terms
of size. We have already discussed findings of an application (Mandelbrot)
with opposite parameter characteristics (small inputs, large outputs) in our
earlier work [9].Compared to Mandelbrot generation, Face detection’s input
parameters are of considerable size (at least ≥ 8MB).

– Implement an application with different job and steal parameters than for
our previous work in [9]. We have extended Honeybee to implement appli-
cations with different types of jobs and job parameters.

Results and Discussion. The performance results are summarized in Figure 4
(a). In Figure 4 (a.1), where we show the ‘time gain’ versus the job size, using two
devices, it is evident that the performance increases with job size. For example,
for 30 images, the distributed implementation is only 4 seconds faster, but for
240 images, the shared version finished 63 seconds earlier. When comparing the

Honeybee: A Programming Framework for Mobile Crowd Computing 233

(a) Performance results for Face detection (b) Time breakdown for Face detection

Fig. 4. Results of Face detection app

theoretical upper bound for this case (which is 2 as explained in Section 3.3), and
the actual best result of 1.3 at 240 images, the effects of communication cost (of
Bluetooth in particular) is evident. Figure (a.2) shows the variation of speedup
results for a fixed job size (30 images) as number of connections are increased. In
theory, more devices in the resource pool should have yielded better speedups.
However the addition of devices seems to have degraded the performance.

Let us now examine the time breakdown that pertains to these results as shown
in 4 (b). It is evident that the data rate drops considerably with the addition of new
connections. The brunt of this communication time is spent on distributing the job
parameters, i.e the data, to the worker devices. Although in all three cases, the
amount of data transferred remains the same, managing additional connections
has slowed down the delegator’s throughput. Although the delegator’s computa-
tion time does drop with each addition, this does not improve the overall perfor-
mance. This is due to the fact that although the delegator steals jobs from workers,
it still has to wait a long period of time until the jobs are distributed. This suggests
using faster inter-device networking (e.g. WiFi-Direct which promises speeds up
to 250 Mbps and longer range [2]) in our future work.

As another solution, dynamic initial job assigning can be explored. Instead of
assigning equal jobs to all devices, the delegator is allowed to keep consuming
jobs from the head of job queue. Meanwhile, jobs are transferred from the tail of
the queue to workers, ensuring that the delegator’s computation thread will not
starve/wait till distribution is complete. In a sense, this is incorporating work
stealing to the job consuming threads, since the delegator’s worker thread and
communication threads are consuming jobs from the same queue.

5.2 Distributed Mandelbrot Set Generation and Collaborative
Photography

We have discussed the results of Mandelbrot set generation over a heteroge-
neous set of devices including Android and Nokia smartphones, and collabora-
tive photography using crowd sourcing in our previous work [9]. The results of
Mandelbrot experiments are summarized in Figure 5(a). By benchmarking each

234 N. Fernando, S.W. Loke, and W. Rahayu

device in the Mandelbrot algorithm, we were able to determine that Nexus S
and Nokia X6 performed the same, while both were around 6 times faster than
Ideos. We have depicted this in the graph in the horizontal axis as resources
in the distributed version relative to the monolith version. For example, when
Nexus S shares work with an Ideos, new resources are (1 + 0.2)x compared to
initial 1x amount of resources (thus a negligible increase). We also experimented
with adding a PC to the resource pool, and were able to gain speedups upto
23. These results show that even with communication overheads, Honeybee is
always able to give a speedup.

(a) Speedups for Mandelbrot set genera-
tion

(b) Screenshots from Collaborative pho-
tography

Fig. 5. Results of Mandelbrot set generation and Collaborative photography

Figure 5(b) illustrates main screens from the Collaborative photography app,
which illustrates using work stealing concept in human centric computation.
In this application, delegator specifies ‘photo jobs’ describing the requirements
for photographs via ‘interest points’. The faster photographers (talented/better
cameras/good vantage points etc) will be able to steal additional jobs from slower
workers, thus achieving load balancing.

6 Conclusions and Future Work

We present three main conclusions formed by our experiments: Firstly, results
from initial prototype apps, implemented on Honeybee is evidence that a gen-
eralized framework for work/resource/expertise sharing on mobile crowd com-
puting is viable. We have achieved this through abstracting jobs, and enabling
parameterization for different types of jobs mentioned in Table 1. Secondly, for
all three applications, load balancing has been achieved with work stealing, lim-
iting device idle time. Thirdly, adding computational resources can prove to be
ineffective in cases of large communication overheads. Therefore a small group
of powerful devices achieves a better performance speedup than a large group of
relatively weaker devices.

Honeybee: A Programming Framework for Mobile Crowd Computing 235

As future work incorporating stealing in initial job assignment should be ex-
plored to minimize the negative impacts of communication overheads. Handling
incentives (social/monetary/reciprocal) and providing a secure platform is also
essential for user participation. Although we have only used Bluetooth in this
initial implementation, we hope to enable communications in WiFi direct as
well. Furthermore, a degree of job redundancy needs to be supported to ensure
robustness.

References

1. Amazon mechanical turk, https://www.mturk.com/
2. Wi-fi direct, http://www.wi-fi.org/discover-and-learn/wi-fi-direct
3. Afridi, A.H.: Mobile social computing: Swarm intelligence based collaboration. Lec-

ture Notes in Engineering and Computer Science, vol. 2198 (2012)
4. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,

Y.: Cilk: an efficient multithreaded runtime system. SIGPLAN Not. 30, 207–216
(1995)

5. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720–748 (1999)

6. Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execu-
tion between mobile device and cloud. In: Proceedings of the Sixth Conference on
Computer Systems, EuroSys 2011, pp. 301–314. ACM, New York (2011)

7. Doolan, D.C., Tabirca, S., Yang, L.T.: Mmpi a message passing interface for the
mobile environment. In: Proceedings of the 6th International Conference on Ad-
vances in Mobile Computing and Multimedia, MoMM 2008, pp. 317–321. ACM,
New York (2008)

8. Fernando, N., Loke, S.W., Rahayu, W.: Dynamic mobile cloud computing: Ad hoc
and opportunistic job sharing. In: 2011 Fourth IEEE International Conference on
Utility and Cloud Computing (UCC), pp. 281–286 (December 2011)

9. Fernando, N., Loke, S.W., Rahayu, W.: Mobile crowd computing with work steal-
ing. In: Proceedings of the 15th International Workshop on Mobile Cloud Com-
puting Technologies and Applications (in NBiS) (September 2012)

10. Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: A survey. Future
Generation Computer Systems 29(1), 84–106 (2013)

11. Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: Crowddb: an-
swering queries with crowdsourcing. In: Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, SIGMOD 2011, pp. 61–72. ACM,
New York (2011)

12. Howe, J.: The rise of crowdsourcing (2006),
http://www.wired.com/wired/archive/14.06/crowds.html

13. Huerta-Canepa, G., Lee, D.: A virtual cloud computing provider for mobile devices.
In: Proceedings of the 1st ACM Workshop on Mobile Cloud Computing & Services:
Social Networks and Beyond, MCS 2010, pp. 6:1–6:5. ACM, New York (2010)

14. Jovanovic, N., Bender, M.A.: Task scheduling in distributed systems by work steal-
ing and mugging - a simulation study. In: Proceedings of the 24th International
Conference on Information Technology Interfaces, ITI 2002, vol. 1, pp. 259–264
(2002)

15. Lu, W., Gannon, D.: Parallel xml processing by work stealing. In: Proceedings of
the 2007 Workshop on Service-Oriented Computing Performance: Aspects, Issues,
and Approaches, SOCP 2007, pp. 31–38. ACM, New York (2007)

https://www.mturk.com/
http://www.wi-fi.org/discover-and-learn/wi-fi-direct
http://www.wired.com/wired/archive/14.06/crowds.html

236 N. Fernando, S.W. Loke, and W. Rahayu

16. Marinelli, E.E.: Hyrax: Cloud Computing on Mobile Devices using MapReduce.
Carnegie Mellon University, Masters thesis (2009)

17. Murray, D.G., Yoneki, E., Crowcroft, J., Hand, S.: The case for crowd computing.
In: Proceedings of the Second ACM SIGCOMM Workshop on Networking, Sys-
tems, and Applications on Mobile Handhelds, MobiHeld 2010, pp. 39–44. ACM,
New York (2010)

18. Ra, M.-R., Liu, B., Porta, T.F.L., Govindan, R.: Medusa: a programming frame-
work for crowd-sensing applications. In: Proceedings of the 10th International Con-
ference on Mobile Systems, Applications, and Services, MobiSys 2012, pp. 337–350.
ACM, New York (2012)

19. Satyanarayanan, M.: Fundamental challenges in mobile computing. In: Proceedings
of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing
PODC 1996, pp. 1–7. ACM, New York (1996)

20. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for vm-based
cloudlets in mobile computing. IEEE Pervasive Computing 8(4), 14–23 (2009)

21. Yan, T., Kumar, V., Ganesan, D.: CrowdSearch: exploiting crowds for accurate
real-time image search on mobile phones. In: Proceedings of the 8th Interna-
tional Conference on Mobile Systems, Applications, and Services, MobiSys 2010,
pp. 77–90. ACM, New York (2010)

	Honeybee: a Programming Framework for Mobile Crowd Computing
	1 Introduction
	2 Related Work
	3 Honeybee: Concept and Design
	3.1 How Honeybee Works: Lost Child Scenario
	3.2 Design Considerations
	3.3 Upper Bound for Speedup

	4 System Implementation
	5 Experimental Evaluation
	5.1 Distributed Face Detection
	5.2 Distributed Mandelbrot Set Generation and Collaborative Photography

	6 Conclusions and Future Work
	References

