
HealthyLife: An Activity Recognition System

with Smartphone Using Logic-Based Stream
Reasoning

Thang M. Do, Seng W. Loke, and Fei Liu

Department of CSCE La Trobe University, Bundoora, VIC, 3086, Australia

Abstract. This paper introduces a prototype we named HealthyLife
which uses Answer set programming based Stream Reasoning (ASR)
in combination with Artificial Neural Network (ANN) to automatically
recognize users activities. HealthyLife aims to provide statistics about
user habits and provide suggestions and alerts to the user to help the
user maintain a healthy lifestyle. The advantages of HealthyLife over
other projects are: (i) no restriction on how to carry the phone (such as
in hand bag), (ii) detect complex activities and give recommendations,
(iii) deal well with ambiguity when recognizing situations, and (iv) no
additional devices are required.

Keywords: health promotion, Answer Set Programming, stream rea-
soning, sensors, smart phone, activity recognition.

1 Introduction

Using smartphones for health support and health-associated activity recognition
has been receiving much attention from researchers and end users. However, most
projects have one or more of the following limitations.

The first limitation is the way users carry a smartphone. To maintain accuracy,
most projects require users to carry their phones at a fixed position on their
bodies or carry additional equipment. The most flexible prototype requires the
phone was put in users’ pants pocket [1]. This position may not be practical for
many women who often keep their phone in their hand bag. The second issue is
the automation; some commercial products (e.g., sports tracker of Nokia [2]) can
provide useful statistics information about fitness activities but requires users to
manually label start, stop times and name the activity.

The third issue is the usefulness of provided information; many projects can
automatically detect only users’ “basic” activities like walking, standing and
running and do not use this information to give further useful suggestions, or in-
fer higher level complex activities. Also, once activities are recognized, reasoning
is needed to then provide the right suggestions to users.

To fill the above gaps, we are working on HealthyLife, a prototype system
which focuses on using available smartphone sensors to automatically recognize
user’s basic, and complex activities, and give useful health-related suggestions

K. Zheng, M. Li, and H. Jiang (Eds.): MOBIQUITOUS 2012, LNICST 120, pp. 188–199, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

ASR HealthyLife Smartphone 189

and alerts. HealthyLife virtually requires no restriction on how users carry a
smartphone (users can put it in pants pockets, jacket pockets, belly belt, hand-
bag, shoulder bag, or backpack). We don’t require user to wear any additional
devices, and explore what is possible without such devices.

Our methodology is to use an ASR (Answer Set Programming based Stream
Reasoning) logic framework (first briefly introduced in [8], and will be extended
here) as the reasoning engine. ASR allows dealing with ambiguity in a logic-based
framework when reasoning about situations (or ambiguity reasoning (§3)), de-
composing complex activities into simpler ones, querying long-term data history
for inferring complex activities, as well as integration with different reasoning
techniques such as machine learning to process different types of sensor data
(e.g., accelerometer, sound, image, etc).

The rest of this paper is organized as follows: section 2 provides a brief review
of related work; section 3 introduces the concept of the ASR logic framework;
section 4 discusses the design and implementation of HealthyLife; section 5 eval-
uates the prototype; and section 6 concludes.

2 Related Work

In this section we review related work which focuses on using smartphone to
support users’ health, more compreihensive surveys can be found in [14,13].

The applications which were deployed commercially and obtained much at-
tention from users are the Nokia sports tracker. This application provide rich
statistics of users’ fitness information such as total running time, cycling time,
approximate energy burned, etc. However, users still have to manually label the
activity they are doing with start and stop times. Even with this limitation, the
number of users are very high across more than 200 countries [2]. This number
shows the huge market for this kind of application. Apple also has a similar
product name Run Keeper which keeps track of user workouts.

The project in [3] uses a special fitness equipment pedometer attached to the
user’s waistband to detect the number of steps of a user and transmit data to the
mobile phone wirelessly. The project in [4] requires users to wear a paper-sized
wearable sensing device on the waist for automatically detecting user activities.

In [5], a Nike+iPod kit was put in the shoes and an iPhone in a pants pocket.
This solution still has limitations as additional equipment is needed. Users in [6]
are required to wear many sensors at fixed positions on their body. The prototype
in [1] seems to be the most flexible in how users carry the phone but still requires
putting the mobile phone in the front pants pocket.

Projects surveyed above detect simple physical activities such as walking,
running, biking, lying down, or being stationary, and requires different levels of
restrictions in the way users carry the smart phone and may need additional
devices sometimes. Therefore, we see the necessity to have a prototype which
requires no additional equipment, no limitation in carrying the phone and auto-
matically recognize user activities (basic and complex).

190 T.M. Do, S.W. Loke, and F. Liu

3 The ASR Reasoning Framework

This section briefly introduces the ASR Programming Framework1 which is pro-
posed for stream reasoning [7] tailored for activity recognition.

An ASR program is a 7-tuple: Π = (α, β, γ, δ, ε, ζ, η) where: α is a set of facts,
β is a set of predicates to query external resources, γ is a set of basic activity
models which may use weak constraints (discussed later), δ is a set of complex
activity models, ε is a set of functional reasoners (such as an ambiguity reasoner,
discussed later), ζ is a set of control commands (loop control, registration), and
η are other auxiliary rules, such as converting data and performing calculations.

Among them, α, γ, δ, η components are built from the ASR Core Language
which is based on Answer Set Programming (ASP [9]) theory and the dlv solver2.
Other components facilitate stream reasoning (or continuous reasoning). In the
rest of this section, we introduce our definition of basic and complex activity
models, and discuss our ambiguity reasoning feature.

Activity Complexity. A data predicate is one which holds sensor data values.
If a rule r defining an activity and its body B(r) contains only data predi-

cate(s) then predicates in the head H(r) represent basic activities.
If a rule r defining an activity and its body B(r) do not contain any data

predicate(s) (but contain predicates representing basic or complex activities),
then predicates in the head H(r) represent complex activities.

(For well-defined semantics, at the moment, ASR assumes that the program
Π has only basic and complex models of activities and doesn’t have any model
in which the body has a mixture of basic activities and data predicates.)

For example, we have a model defining two activities: “running while late”
and “running while early”:

1. accelerometer(3). time(17). % 17 is 5PM

2. running :- accelerometer(X),#int(X), X > 2.

3. runningWhileLate :- running, time(T), #int(T), T > 18.

4. early :- time(T), #int(T), T < 8.

5. runningWhileEarly :- running, early.

In this program, accelerometer and time are data predicates as they hold
sensor data values (line 1). running and early are basic activities3 as there
are only data predicates in the rules’ body (lines 2 and 4). runningWhileEarly
is a complex activity as there is no data predicate in the rule body (line 5);
runningWhileLate have both a basic activity and data predicates in the body
(line 3) - which we call “middle complex” and will be considered further in future
work, but middle complex rules can be easily avoided by having a rule called
late as a basic activity.

1 ASR language was proposed by us in another paper which is under review process.
2 http://www.dlvsystem.com/dlvsystem/index.php/Home
3 We can think of being “early” as a situation rather than an activity, as we have in
mind the condition of the user getting there early.

http://www.dlvsystem.com/dlvsystem/index.php/Home

ASR HealthyLife Smartphone 191

Ambiguity Reasoning in ASR. Sensor data for activity recognition is nor-
mally ambiguous. Two activities (such as staying still and sitting on train) can
have similar sensor data patterns. Ambiguity reasoning is applying a process (as
below) in trying to find out the right activity in this situation.

Using normal rules and (strong) constraints (conditions which are not allowed
to happend) gives only the right answer which is 100 percent true, according to
the knowledge base of a logic program. However, using weak constraints (con-
ditions which can happend with a violation cost), besides the the right answer,
we keep potential answers (called the best models) with their violation degrees
(or costs). The right answer will have violation cost = 0.

Each weak constraint has a weight which is defined based on how important
the constraint is. In general, the more important a weak constraint is the more
weight it has. The violation cost of a best model is the sum of the weight of all
weak constraints which the best model violates.

ASR ambiguity reasoning observes sequences of the best models over a period
of time to discover which activity seems to be the most likely answer.

For example, a program (dlv syntax) uses weak constraints (marked with
“:~”, [1:1] is [violation cost:priority level]) to recognize activities based on ac-
celerometer data and GPS-acquired speeds as follows:

1. running :- acce(A), A >= 13.

2. walking :- acce(A), A < 13, A > 10.

3. :~ running, speed(S), S <= 2. [1:1] % 2m/s

4. :~ walking, speed(S), S > 2. [1:1]

5. talk :- noise(N), N >= 3.

6. quiet :- noise(N), N < 3.

This program processes a data window of sensor data (say, from t1 to t4) and
gives best models with costs as follows:

t1: A=13, S=3, N=3 -> Best model: {running, talking}, cost: 0

t2: A=12, S=2, N=4 -> Best model: {walking, talking}, cost: 1

t3: A=10, S=2, N=3 -> Best model: {walking, talking}, cost: 1

t4: A=11, S=2, N=2 -> Best model: {walking, quiet}, cost: 1

Among activities in this window, we see that running and walking (also talk and
quiet) can not happen at the same time (we say they are in a mutually exclusive
relationship) and we have to choose which activity is the more likely. The first
result is running with zero violation but all the others are walking with “small”
violation. This may imply that the real activity (over the period from t1 to t4)
can be walking.

We use a weight function to calculate how “right” a best model is in compar-
ison to all others. In other words, the bigger cost the less value weight function
has. For example, a weight function fw can be defined as: fw = (MinTop−Cost),
where MinTop is the smallest number which is greater than any cost that may
appear in a program Π . in the example above, we can set MinTop = 3 and
fw1 = 3−0 = 3, and fw2 = 3−1 = 2 and so on, where fwi is the weight function
value of best model at time ti.

192 T.M. Do, S.W. Loke, and F. Liu

The violation cost and weight function value (or weight) of a best model is
also the cost and weight of each activity in that model. In the above example,
the violation cost of the best model at time t1 is 0 and the weight is 3, and so,
each activity running and talking in that model has cost 0 and a weight of 3.

We then use a membership function to estimate which activity has the best
chance of being the right answer. For a given activity, the membership function
fm calculates the division of (i) the sum of the weights of the activity in every
best model, and (ii) the sum of the weights of all activities in every best model.
The activity having the highest membership value is chosen as the answer. For
example, fm(running) = 3/(3 + 2 + 2 + 2) = 0.33, fm(walking) = (2 + 2 +
2)/(3 + 2 + 2 + 2) = 0.67. So walking is the more likely activity over the time
period from t1 to t4. In similar way, talking is the more likely over quiet.

4 HealthyLife: Design and Implementation

HealthyLife automatically detect users’ daily activities for recording, making
statistics and providing useful suggestions. HealthyLife aims to support office
workers who normally work indoors and need to keep their life balance between
being stationary and physically active, between working and relaxing, between
spending time indoors and outdoors, and between being isolated and social.

Design. The architecture of HealthyLife is illustrated in Figure 1 and has four
main components: (i) Client, which is installed on users’ mobile phones, (ii) Web
Server, which manages data transmission between the mobile phone and server,
(iii) Data stream Manager System (DSMS), which stores and manages collected
data, and (iv) Reasoning Server, which performs logical inference.

Fig. 1. Components Diagram

ASR HealthyLife Smartphone 193

(i) Client: collects 3D accelerometer data, GPS data and performs pre-
processing to reduce the amount of data transmitted to the server over the
mobile network (and wifi in the next version). The pre-processor is a trained
Artificial Neural Network (ANN) to recognize basic activities such as walking,
running, driving, and staying still (when the phone is stationary).

(ii) WebServer: has a servlet for receiving data from the client and does reverse
geocoding with the Google API to find out the place and address where the user
is. After that, all the data is passed to the DSMS.

(iii) DSMS: stores data coming from the client through the WebServer and
prepares data as requested by the reasoner. DSMS also stores streams of results
from the reasoner.

(iv) Stream Reasoner: is an ASR program (§3) which has four main compo-
nents as follows:

– Data Querier β: gathers four possible basic activities detected by the pre-
processor and the GPS data from the DSMS stored in the form of data
predicates.

– Primary Reasoner γ: uses basic activity models and weak constraints to
detect all basic activities with violation cost, if any.

– Ambiguous Reasoners ε: perform ambiguity reasoning (§3) to choose the
most likely user activity, periodically, over predefined periods.

– Secondary Reasoner δ: uses detected basic activities with other data (GPS
at the moment) to recognize complex activities which normally happen over
a longer period of time such as “user is wondering around”. The secondary
reasoner also gives predictions and suggestions to the user such as “user
needs to exercise”.

At the moment, since there is no standard ontology for activities, the deci-
sion regarding which activities are basic and which are complex is application-
dependent. Also, in the set of rules used in the reasoner, we leave up to the
modeller to recognize which predicates are to model basic activities and which
are to model complex activities, and which predicates do not define activities.

Another component of the HealthyLife is the user terminal which users use to
review their lifestyle with a web browser. The user terminal can be a desktop,
laptop, tablet, or the smartphone itself.

Ambiguity Reasoning. We implement ambiguity reasoning in a Java package
named reasoner with main parameters as follows:
|W | = 5 (basic activities window size), and window slide is 2, this mean we
observe five consecutive best models and repeat ambiguity reasoning after having
every two new best models. fw = |W |−C is the weight function, where C is the
violation cost,
fm is the membership function, mentioned earlier, and more generally, it is:

fm(a) =

∑

P∈g(a)

P

∑

(q,r)∈F

(q ∗ r)

194 T.M. Do, S.W. Loke, and F. Liu

Where: BM t′ = ({at′i |1 ≤ i ≤ kt′}, f t′
w) = (At′ , f t′

w) is the best model at
time t′, a is an activity, BM = {({ati|1 ≤ i ≤ kt}, f t

w)|1 ≤ t ≤ |W |},
F = {(f t

w, |At|)|BM t = (At, f t
w), 1 ≤ t ≤ |W |}, g(a) = {f t

w|a ∈ At, BM t =
(At, f t

w), 1 ≤ t ≤ |W |}.

ANN. Because developing an ANN network is not a research goal of this paper,
we used sample structure in Encog4 as follows.

Input data: The features extracted from 3D accelerometer data is the mag-
nitude A [10] of the force vector of three values according to three directions
acceX, acceY, and acceZ: A =

√
acceX2 + acceY 2 + acceZ2. For every window

of five A, we calculate Min(A) and Max(A)−Min(A) to feed into the ANN.
ANN structure: The ANN we use has four layers which are input, output

and two hidden layers. The input layer has two inputs: Min(A) and Max(A)−
Min(A). The output layer has two bits which encode four activities: 00 - walking,
01 - running, 10 - driving, 11 - staying still. Each hidden layer has seven neurons.
The activation function for hidden and output layers is the TANH, and the input
layer is the Linear function.

Implementation. We developed the Client on a Samsung Galaxy S2 running
Android 2.3 and the Client Repository for buffering transmitted data is SQLite.
We use a HTTP client for Android to communicate with the WebServer. The
database server is MySQL 5.1 DBMS. The reasoner uses the ASR logic frame-
work. WebServer is the Apache Tomcat 7 and the reasoning server, WebServer,
and Database Server are installed in Ubuntu 11.10 running as a guest OS in Vir-
tual Box 4.1.6 (as software compatibility and quick experiment) on a Windows
7 x64 Desktop PC with Quad CPU Q9550 2.83 GHz and 4GB RAM.

5 Experimentation and Evaluation

In this section we describe how HealthyLife was used, and activities detected,
and discuss the accuracy, system performance and the feasibility of the proto-
type. After being started, the Client component runs on the user’s mobile phone
silently and doesn’t have obvious side effects on the usage of the phone. Every
time the user wants to check their lifestyle activities inferred they just need to
use any device having a web browser to view statistics (figure 2) and suggestions
about their life style (though it is quite feasible to give suggestions and alerts
on the users’ mobile phone automatically).

Data Set and Training Data. Data from the 3D accelerometer, in the mobile
phone, was taken at the sampling rate of 5Hz (this rate was chosen based on work
in [11,12]), and GPS data is refreshed at the rate of 0.2Hz. Data for training and
evaluating system was taken from 8 users with age from 6 to 67 (the app aims at
office workers but we still use a variety of users’ age, gender, and job to check the
precision and generality of our approach), and the phone was carried in different

4 http://www.heatonresearch.com/encog

http://www.heatonresearch.com/encog

ASR HealthyLife Smartphone 195

Fig. 2. Statistics information, x-axis is activities, y-axis is time in minutes

ways such as in tight/loose pants pocket, jacket high/low pocket, hand-held
bag, and shoulder bag. When the data was collected, each user was encouraged
to do different activities in different styles like walk with/without shoes, run
slowly/quickly, run with high/low steps. We have 4 long-term users who used
the prototype for 1 to 3 weeks and others used it for 20 minutes. Data collected
from each user is marked with a unique id and we call them original data. For
long term analysis where only short term data was available, the original data
from all users were combined to create new data which simulates virtual long-
term users. We used both original and simulated data to evaluate our prototype.
When data was collected, users were required to take note in their diaries for
labelling the data sets.

We selected, as ANN training data, a set of 6,850 “typical” accelerometer
data samples which was collected when users continuously performed four basic
activities walking, running, driving and putting the phone still on a table. The
accelerometer data are packed in windows of size 5 samples to be fed into the
trained ANN. The output of the ANN, which is recognized basic activities, is
further processed by a window sliding technique with a size of 7 and slides of
step size 5. The activity which appears most often in the window will be the final
result of the recognition phase using the ANN. This process has a recognition
rate of 0.2 Hz and was used in [15]. These window sizes are chosen based on
the assumption that: A user is said to perform a basic activity if it lasts for
more than 5 seconds; this time hurdle can vary with specific applications. We
also define the Activity time is the sampling time of the last sample of the data
window used for activity recognition.

In practice, our prototype can transmit all this data through a mobile network.
But because mobile phone signals may drop at some times, in some areas, and
optimizing transmission is not our goal here, to evaluate our prototype we store
data in files and stream them to our system for reasoning. In next version, we
will use compressed data such as in the approach in [15].

Recognized Activities and Accuracy. Basically, the human daily activities
which can be detected by using a single accelerometer are: walking, running,
driving (or in transportation), and staying still; so, we call them basic activities.

196 T.M. Do, S.W. Loke, and F. Liu

HealthyLife detects these basic activities and combine these with GPS data to
infer the users’ place (where users are) and to infer complex activities. To eval-
uate the accuracy, we compare the activities detected by HealthyLife with the
diary which user noted manually. Then for each activity, we divide the total time
HealthyLife detects correctly over the total time the real activities happen.

Basic Activities. Because one of the major design feature is to let users be
free in the way they carry their phone, this is a source of ambiguity in activity
recognition. For example, we say the user is softwalking when the user walks
barefoot or puts the phone in their suitcase or handbag. Figure 3 shows that
softwalking and driving have very similar sensor data patterns. To deal with this
ambiguity, we combine accelerometer data and GPS data via weak constraints
as follows and use ambiguity reasoning as implemented in section 4.

Fig. 3. Accelerometer patterns, x-axis is time, y-axis is A: force vector magnitude

:~ basicActivity(ActName), gps(GpsAccuracy, GpsSpeed),

ActName = driving, GpsSpeed <= 2. [4:1]

:~ basicActivity(underCover), basicAct(driving). [4:1]

:~ basicActivity(stayingStill), gps(GpsAccuracy, GpsSpeed),

#int(GpsSpeed), GpsSpeed > 1. [4:1]

In this code fragment, underCover means the user is staying indoor, or sur-
rounded by high trees or buildings. [4 : 1] is the [violation cost : priority level]
of the weak constraints which shouldn’t happend.

The result of recognition without ambiguity reasoning is shown in tables 1,
with ambiguity reasoning in table 2. Table 1 shows that, without ambiguity rea-
soning, when user was (soft) walking Healthy Life tends to recognize that user
was driving. This is understandable as shown in figure 3. With ambiguity rea-
soning, the accuracy increased significantly from � 50% to � 73% for detecting
(soft) walking. These two tables also show that ambiguity reasoning doesn’t ef-
fect the accuracy of detecting activities which are not ambiguous (or don’t have
similar sensor data pattern) such as running and staying still.

Users’ Current Place and Complex Activities. We detect users’ location (their
current place) and then combine that with detected basic activities to infer
complex activities. To detect user’s place (in a meaningful way as opposed to
numerical coordinates), we use the Google API to find places (or Points of Inter-
est) around the user and compare their addresses with the closest address from
the user’s position. The place which has a matching address is where the user is.

ASR HealthyLife Smartphone 197

Table 1. Result without ambigu-
ity reasoning

Recognized
walk run drive stay

still

walk 50% 0% 50% 0%

a
l

run 3% 97% 0% 0%

tu drive 23% 0% 70% 7%

A
c

stay 0% 0% 0% 100%
still

Table 2. Result with ambiguity
reasoning

Recognized
walk run drive stay

still

walk 73% 0% 27% 0%

a
l

run 2% 98% 0% 0%

tu drive 7% 0% 88% 5%

A
c

stay 0% 0% 0% 100%
still

We use GPS data with a precision of ≤ 30m for detecting user places; a detected
precision of > 30 implies that user is undercover like indoors or surrounded by
tall buildings. A set of places which can be detected in HealthyLife is found in
table 3. With big places (park, shopping mall) or well defined places (home, of-
fice), Healthy Life can recognize with high accuracy. For small area (bank, gym),
the accuracy reduce quickly as there may be many other small places around.
Note that with such knowledge, one can estimate how often the user goes to the
gym as health related information, and also, when the user is at the gym, how
active s/he was over that time s/he was there. We asked users to provide the
address of their home and office to detect when the user is at home and at work
and we realized the ability to detect these addresses automatically. The rules to
detect user places have form as follows:

userAt(Place) :- closestAddress(Adress1,UserPosition),

place(Place, Address1), Address1 = Address2.

userAt(underCover,Time) :- gpsData(accuracy,Time), accuracy > 30.

Table 3. Detected User Places

Places Accuracy

User at Home 100%

User at Work 100%

User at Gym 67%

User at Shop- 90%
ping mall 90%

User at Park 100%

User at bank 51%

Table 4. Complex Activities & User Preference

Complex Activities Users Preference
User active at work Like stay indoor
User working late Like stay at home
User working hard Like shopping
User may be tired Like nature
Need more workout Like fitness
At risky activity Driving much
Running at park Seems to be fit

We can predict users’ status based on a previous week’s data and users’ prefer-
ences (indicated in table 4) with rules of the form:

userWorkingHard :- userAtWork(Hours),avgWorkHours(AH),Hours > AH + 5.

userMayBeTired :- avgWorkHours(AH),userAtWork(Hours),Hours > AH + 10.

userWorkingLate :- userAtPlace(office,T),#int(T),lateWorkTime(T).

lateWorkTime(T) :- time(T), #int(T), T > 17. % 5pm.

runningAtPark :- userAtPlace(park), basicAct(running).

198 T.M. Do, S.W. Loke, and F. Liu

Transmission Feasibility. Optimizing bandwidth utilization was not our goal,
but we examined the feasibility (not to compare with other algorithms) of trans-
mitting HealthyLife data from the users’ smart phone to our server. Every data
record includes 2 characters of basic activity code, 10 of time stamp, 19x2 of
latitude and longitude, 4 for accuracy, 3 for speed, 10 for GPS time, and 6
separators. To sum up, we need 73 characters/bytes to represent a data record.

If the system runs 24/7 at the data rate of 0.2Hz (one data record every 5
seconds) , everyday, HealthyLife needs to transmit 73 bytes x 0.2 Hz x 86,400
s/day = 1.2 MB/day or about 36 MB/month. Transmitting this amount of
data is possible for a mobile phone network in Australia. For example, a $29
VirginMobile package has a quota of 250MB/month. If this amount of data
becomes an issue, we could use the algorithm in [15] to optimize the transmission.

System Speed. After getting data from the user’s smart phone (with the rate
0.2 Hz), our single ASR reasoner, as noted in 4, have a reasoning speed of 1Hz
and so can service 5 users at the same time (this is easily scaled by having more
reasoners and more machines).

Potential Applications. HealthyLife has potential for many applications for
single users and groups of users - to infer group or collective activities from single
users’ activities. Single users can have statistics about their fitness status and
daily activities automatically to organize their time and lifestyle better. This
prototype also has the ability to connect to other smart systems such as smart
house, smart office or a social network. If more users share their data (without
any id information), people can become aware of community events (e.g., a
community marathon) and friends’ activities. For example, a user who wants to
find a quiet area can avoid the park where there is a public event. HealthyLife can
provides statistics data for health promotion bodies, a city council and businesses
to service citizens and customers better. For example, local governments can
invest more on sports infrastructure if there are more people doing exercise.
More generally, companies can send advertisement messages to users, if allowed
to, when users are stationary (say in a bus or train) where they are more likely
to give attention.

6 Conclusion

HealthyLife differs from other work by automatically detecting users’ basic and
complex activities and also does ambiguity reasoning. We combine accelerometer
data, GPS data (reverse geocoded into meaningful places) and weak constraints
to perform ambiguity reasoning, and showed how this can improve real-life ac-
tivity recognition performance. Besides detecting basic activities, HealthyLife is
able to detect complex activities, which can be tracked for statistics for health-
related purposes and rules can be used to map inferred activities and activity
histories to suggestions for users, all within a logic-based rule framework.

ASR HealthyLife Smartphone 199

References

1. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone
accelerometers. In: SIGKDD Explor. Newsl., vol. 12(2), pp. 74–82. ACM, New
York (2010)

2. Sport-Tracker, http://www.sports-tracker.com/blog/about/
3. Mattila, E., Parkka, J., Hermersdorf, M., Kaasinen, J., Vainio, J., Samposalo, K.,

Merilahti, J., Kolari, J., Kulju, M., Lappalainen, R., Korhonen, I.: Mobile Diary for
Wellness Management–Results on Usage and Usability in Two User Studies. IEEE
Transactions on Information Technology in Biomedicine 12(4), 501–512 (2008)

4. Sunny, C., David, W.M., Tammy, T., Mike, Y.C., Jon, F., Beverly, H., Predrag, K.,
Anthony, L., Louis, L., Ryan, L., Ian, S., James, A.L.: Activity sensing in the wild:
a field trial of ubifit garden. In: Proceedings of the Twenty-Sixth Annual SIGCHI
Conference on Human Factors in Computing Systems (CHI 2008), pp. 1797–1806.
ACM, New York (2008)

5. Washington Education, https://dada.cs.washington.edu/research/
projects/aiweb/main/media/papers/UW-CSE-08-04-02.pdf

6. Alhamid, M.F., Saboune, J., Alamri, A., El Saddik, A.: Hamon: An activity recog-
nition framework for health monitoring support at home. In: 2011 IEEE Instru-
mentation and Measurement Technology Conference (I2MTC), pp. 1–5 (May 2011)

7. Della Valle, E., Ceri, S., Barbieri, D.F., Braga, D., Campi, A.: A first step towards
stream reasoning. In: Domingue, J., Fensel, D., Traverso, P. (eds.) FIS 2008. LNCS,
vol. 5468, pp. 72–81. Springer, Heidelberg (2009)

8. Do, T.M., Loke, S.W., Liu, F.: Answer set programming for stream reasoning.
In: Butz, C., Lingras, P. (eds.) Canadian AI 2011. LNCS, vol. 6657, pp. 104–109.
Springer, Heidelberg (2011)

9. Michael, G., Vladimir, L.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming
Conference and Symposium, pp. 1070–1080 (1988)

10. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile
phones to determine transportation modes. ACM Trans. Sen. Netw. 6, 13:1–13:27
(2010)

11. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data.
In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17.
Springer, Heidelberg (2004)

12. Huynh, T., Schiele, B.: Analyzing features for activity recognition. In: Proceed-
ings of the 2005 Joint Conference on Smart Objects and Ambient Intelligence:
Innovative Context-Aware Services: Usages and Technologies, pp. 159–163. ACM
(2005)

13. Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive
computing: A review. Pervasive and Mobile Computing 8, 36–66 (2012)

14. Predrag, K., Wanda, P.: Healthcare in the pocket: Mapping the space of mobile-
phone health interventions. Journal of Biomedical Informatics 45(1), 184–198
(2012)

15. Jayaraman, P.P., Sinha, A., Sherchan, W., Krishnaswamy, S., Zaslavsky, A.,
Haghighi, P.D., Loke, S., Do, M.T.: Here-n-Now: A Framework for Context-Aware
Mobile Crowdsensing. In: Proceedings of the Tenth International Conference on
Pervasive Computing, UK (June 2012)

http://www.sports-tracker.com/blog/about/
https://dada.cs.washington.edu/research/projects/aiweb/main/media/papers/UW-CSE-08-04-02.pdf
https://dada.cs.washington.edu/research/projects/aiweb/main/media/papers/UW-CSE-08-04-02.pdf

	HealthyLife: An Activity Recognition Systemwith Smartphone Using Logic-Based StreamReasoning
	1 Introduction
	2 Related Work
	3 The ASR Reasoning Framework
	4 HealthyLife: Design and Implementation
	5 Experimentation and Evaluation
	6 Conclusion
	References

