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Abstract. With increasing reliance on the location and orientation sen-
sors in smartphones for not only augmented reality applications, but also
for meeting government-mandated emergency response requirements, the
reliability of these sensors is a matter of great importance. Previous
studies measure the accuracy of the location sensing, typically GPS, in
handheld devices including smartphones, but few studies do the same
for the compass or gyroscope (gyro) sensors, especially in real-world
augmented reality situations. In this study, we measure the reliability
of both the location and orientation capabilities of three current gener-
ation smartphones: Apple iPhone 4 and iPhone 4s (iOS) phones, as well
as a Samsung Galaxy Nexus (Android). Each is tested in three different
orientation/body position combinations, and in varying environmental
conditions, in order to obtain quantifiable information useful for under-
standing the practical limits of these sensors when designing applications
that rely on them. Results show mean location errors of 10–30 m and
mean compass errors around 10–30◦, but with high standard deviations
for both making them unreliable in many settings.

Keywords: GPS, location, compass, magnetometer, augmented reality,
sensor fusion, smartphones.

1 Introduction

Smartphone augmented reality applications typically require the user’s location
(latitude, longitude) and orientation (relative to north) within certain bounds of
accuracy. Some applications may require only relative device orientation, such
as that produced by a gyroscope, which can determine changes in device ori-
entation, albeit not relative to north. For example, our In Situ Audio Services
application [2], which renders points of interest via spatialized audio to blind
users, relies on both the location of the device and its orientation relative to
north. Due to the unreliability of the sensors, the scene was frequently mis-
rendered, with points of interest in the wrong direction and/or at the incorrect
distance. The study described in this paper was motivated by these issues arising
from smartphone sensor unreliability. Specifically, we needed to determine when
and by how much these sensors failed to provide accurate GPS, orientation, and
gyro data. To do so, we walked two separate areas in Montreal 18 times each,
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with three smartphones in different body position and device orientation combi-
nations, resulting in a total of 108 device logs for analysis. Based on the results,
we are able to offer several recommendations for designers of other augmented
reality smartphone applications. By way of example, we describe how we revised
one of the rendering techniques of our application to take into account the high
degree of sensor unreliability.

2 Previous Work

Accuracy has significant impact on real-world usability of mobile devices, e.g.,
for transit tracking systems [12], and there has thus been considerable work in
evaluating the accuracy of smartphone sensors. Most such studies find that the
GPS accuracy of a smartphone is considerably less than that of a dedicated
GPS device designed solely for navigation purposes. These findings hold true for
devices such as the Apple iPhone, which augments the standard GPS with WiFi
and cellular tower information, as well as an online database of satellite locations,
to implement augmented GPS (A-GPS) [16]. Accuracy is often measured by
maintaining the device in a stationary position over a given sampling duration.
This scenario is common in domains such as forestry, where the GPS unit can
be left in position for an extended period to obtain a better fix, but is of limited
relevance to an augmented reality application. For such tests in ideal open-sky
conditions in a forest, even the best consumer-grade dedicated GPS systems
yield average errors on the order of 2 m [15]. In more typical augmented reality
application conditions, on-body location of the GPS receiver has been found to
impact accuracy [13], as does the manner in which a smartphone is held [3].
Studies that examine the accuracy of various location sensors while the device is
in motion often use one, presumably more accurate, device, such as a higher-end
GPS unit, as the reference, although this can only establish relative error. This
may be a reasonable approach in areas without tall buildings in good weather
conditions, and when evaluating devices and approaches that are expected to
have significantly higher error than the “reference” unit [4]. Other reports do not
appear to use ground truth measurements, but instead rely solely on location
accuracy estimates reported by the device itself [14]. To save power, the GPS
sensor can be turned off between readings, although this may further decrease
accuracy [7].

A tradeoff between cost of components, power and accuracy is also evident
for the three-axis magnetometers, commonly used to determine the orientation
of a device relative to north [6]. Again, the often poor accuracy of the compass
headings produced by the magnetometer can be a critical issue for augmented re-
ality (AR) applications [1]. Body position, how the phone is held, and the effects
of device movement when carried while walking can all impact compass read-
ings [4]. Filtering the raw magnetometer data in order to remove sensor noise has
been proposed [5,8], but such solutions do not measure or improve the accuracy
of the compass when it is subjected to distortions of the local magnetic field.
One measure of the compass accuracy of a Nokia phone, taken while walking in
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an indoor corridor, found a mean error of 18.1◦, with a standard deviation of
12.3◦ [10]. In such indoor spaces, attempts to use a built-in smartphone camera
to better detect motion or location have been tried, coupled with sensor fusion
via a Kalman filter [11]. However, such camera-based solutions have the practical
problem of greatly reduced battery life due to their power requirements. In ad-
dition, they require maintaining the device in a position that provides sufficient
viewing area to compute optical flow, which is impossible, for example, if the
smartphone is kept in a pocket. Another effort to overcome limitations of the
compass sensor involves indoor uses of ultrasound signals with multiple receivers
on the device to determine orientation. However, this solution requires the intro-
duction of new infrastructure in the environment [9], which may be impractical
for general deployment.

The results of the previous studies notwithstanding, there exists very limited
quantitative data on the performance of current smartphone location and ori-
entation sensors. In particular, there is a notable lack of such data for dynamic
urban environments and under realistic conditions relevant to augmented reality
applications. For these reasons, we undertook the experiment described in the
remainder of this paper.

3 Experiment Design

An undergraduate student (the walker) walked the same path repeatedly under
different conditions to log compass, orientation (particularly yaw) and location
data under a variety of conditions. Each of two different paths, termed Down-
town and Commercial, was walked half the time in a clockwise (CW) direction,
and half in a counterclockwise (CCW) direction. Three smartphones (iPhone 4,
iPhone 4s and Google Galaxy Nexus) were carried on each walk, each in one of
three body positions: attached to a belt, hanging on the chest, or resting flat on
the head, as shown in Figure 1. Each combination was repeated three times. This
resulted in 2 walking locations × 2 directions × 3 carrying positions/orientations
× 3 repetitions = 36 data logs for each of the three devices.

The first two body positions were chosen to test the devices in the most
practical carrying positions in real-world situations. The head position was in-
cluded, regardless of practicality, since this exposes the device maximally to the
sky, which we expected to result in the best location performance. In this case,
we could determine whether the other two body positions further compromise
location accuracy.

3.1 Walking Locations

The two areas walked are described in Figure 2. Each leg of each walk is analyzed
independently in Section 4 to provide a comparison of the different conditions.
Before each walk, the walker noted the weather conditions for the upcoming walk,
shut down and restarted the application, and recalibrated the system to start
with reasonably good initial sensor readings. Data plans and WiFi were enabled
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(a) Walker with
three phones

(b) Chest position (c) Belt position (d) Head position,
under hat

Fig. 1. The three device positions/orientations. To avoid magnetic interference, the
only metal used in the carriers was a belt buckle on the opposite side of the waist from
the belt position.

(a) Reported data from one down-
town walk, including McGill campus
and downtown skyscrapers. Error es-
timates are shown in purple.

(b) Commercial walk, outside downtown
Montreal, with mostly with mostly sub-
three story buildings nearby. Orange circles
are ground truth points.

Fig. 2. The two areas walked during testing

on all phones used in this study, and were thus using A-GPS and potentially
WiFi triangulation. This implies that we were not testing the GPS in isolation,
but rather, the full location hardware and software stack of each device.

3.2 Ground Truth

To facilitate data analysis, the walker clicked a button on the headphone ca-
ble upon reaching each of the location ground truth waypoints, and at the start
and end of each leg. This helped exclude corners and intersections, which require
head movement to cross safely. All three device clocks were tightly synchronized,
which allows us to capture these clicks on one device as an accurate timestamp
reference for all three. With the system’s clock synchronization setting enabled
on each device, the log files generated during a laboratory test indicated that
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the timestamps associated with simultaneous button presses on the two iPhones
occurred within 250 ms. When verifying manually before each walk in the Com-
mercial set, we did not see differences greater than 1 s between any of the devices.

Compass ground truth was established by using a map screenshot of the area
being walked and measuring the angle of each straight-line leg relative to north.
For all of the data gathering and analysis, true north, as corrected from magnetic
north via the magnetic declination, was used.

Distance error was calculated by comparing the most recently reported GPS
location to the ground truth value at each waypoint. We used commercial online
mapping systems to determine the ground truth waypoint locations along the
path. Comparison against known survey points yielded accuracy for the manually
selected map locations of within 1 m. This avoids experimental bias that could
be introduced by comparing one GPS against another, especially knowing that
even high-end units can have difficulty with limited view of the sky.

3.3 Sources of Error

There are several sources of potential error that result from our choice of us-
ing real-world conditions for these tests. First, the walker could not hit every
waypoint exactly, but reported being within approximately 1 m of the ground
truth targets. Second, as the walker moves, he sways from side-to-side. Simi-
larly, to avoid other pedestrians and maintain his safety around traffic, some
changes in direction were inevitable, although he endeavoured to keep his body
as straight as possible. Judging from the local minimum and maximum gyro
values manually measured from the graphs of several iPhone walks, it appears
that the walker typically swayed by roughly 8-17◦to each side for the Belt and
Chest positions, but only roughly 5◦for the Head position. Third, especially in
the chest position, where the phone is hanging in a pouch around the neck, we
expect more motion due to the device swaying on its lanyard. In the Head and
Belt positions as well, we expect some error in the manual alignment process
at the beginning of the walk. A cursory examination of the data indicated that
compass error can be consistently positive in one leg, and consistently negative
in the next. This precludes the possibility of estimating device alignment error
from an assumption of a zero-mean error distribution. A more rigid apparatus
for holding the devices may reduce these errors, but would also make the test
significantly less realistic.

4 Results

4.1 Individual Log Results

Before discussing the aggregate data across all walks, an explanation of the data
from a single walk, illustrated in Figure 2a, may prove helpful.1

1 Our data, along with additional figures not shown here for space reasons, are available
for review from isas.cim.mcgill.ca/Sensors/.

isas.cim.mcgill.ca/Sensors/
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In addition to the location path, we can also plot various heading values over
time, visualizing where the sensors deteriorate, and how they perform relative
to each other. Figure 3 indicates compass values (cyan) against ground truth
(black), the latter of which is constant (horizontal) for each straight-line leg
of the walk. Actual compass error (red) is calculated as the absolute difference
between these two, whereas reported compass error (grey) is an estimate of error
magnitude by the sensor itself. As can be seen, the actual error fluctuates above
and below the estimate. Gaps in the plot represent transitions between legs of
the walk, during which we have no ground truth heading information.

Yaw (green), obtained from the gyro sensor, is not calibrated to north, so
only represents relative variation. This data is generally expected to be flat,
excepting body sway while walking. Slope in yaw indicates drift, observed in all
legs of this walk. The reported course (purple) is derived from the direction of
travel based on previous location updates. Both the iPhone and Android devices
report course and speed based on location changes, but these appear to be of
limited use even in the constrained straight-line testing we performed.

Fig. 3. Sensor values over time for a single device log file. Values are compass heading
(cyan), heading ground truth (black), compass error estimate reported by the system
(grey), yaw (green), course (purple), and |ground truth - compass reading| (red).

Aggregating the data across walks and segmenting it into the legs (for head-
ings) or individual measured ground truth waypoints (for locations), allows us
to discern general trends in the sensor performance.

4.2 Heading Accuracy

The only sensor on a smartphone with any knowledge of north is the magnetome-
ter. However, large metal objects such as cars, electric power lines, and other
interference can cause distorted readings. In early testing, we noted a 30◦change
in an iPhone 4’s heading information when walking near a large vehicle.

To summarize our data, we pooled all of the values for a given condition,
then calculated the mean and sample standard deviation, shown as error bars.
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For heading data, since the samples did not arrive on a regular period, we re-
sampled the data at 25 samples/sec to make the sets consistently sampled per
unit time. Without this, a single sample, valid for more than a second due to
lack of device motion, would be weighted far less in the analysis than a series of
samples within the same second on another device. Due to differences in walking
speed across walks, we also subsampled the compass updates in order to balance
the number of samples in each set for analysis. On Android, we simply regis-
tered for TYPE ROTATION VECTOR updates, which is north aligned, with
no parameter for their frequency. Separate yaw values are not provided. On both
platforms, compass or yaw changes greater than 0.2◦were logged, which resulted
in anywhere from less than one to over 30 unique samples/s, depending on the
amount of motion. Most notably, the Head position appears to be more stable
than Chest or Belt, and on the iPhone devices has dramatically fewer compass
values, in some cases, well under one sample / second. For the two iPhone de-
vices, the yaw value was updated on a timer, at a maximum of 10 samples/s in
the Downtown walks, and 20 samples/s in the Commercial walks.

Aggregate data for the Downtown walks (omitted for space) indicate compass
errors with a mean near 10◦in the open area in the middle of McGill’s campus,
rising to nearly 30◦near large skyscrapers. Compass errors in the Commercial
walk (Figure 4) had means more consistently around or below 15◦.

Fig. 4. Commercial walks compass error

Given natural body sway and alignment deviations from a straight-line path,
these error means may seem tolerable for many purposes. However, the standard
deviations raise questions as to their reliability. Thus, it is useful to determine
whether the devices’ estimates of their own accuracy are generally correct, as
this would allow us to warn the user when values should not be trusted.

Reported Error Estimate Accuracy. iPhone devices provide an estimate of
compass error in degrees, whereas Android devices only provide coarse levels of
sensor reliability and are thus excluded from this evaluation. Figure 5 allows us
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to comment on the accuracy of the error estimates, e.g., if the compass indicates
it is within 30◦of the actual value, is the reading actually within 30◦? If not,
how often does this happen, and how far off is it? Bar values represent the
mean number of degrees by which the actual error exceeds (positive bars) or is
within (negative bars) the estimated error. The numbers below each set of bars
represent the percentage of samples within the reported error. For example, in
the first bar, 83% of the samples were within the reported error estimate, and
under that estimated error by a mean of approximately 13◦. The remaining 17%
of the samples exceeded the estimated error by a mean of approximately 9◦.

Fig. 5. Commercial walks: compass ground truth accuracy vs. reported error estimates

Although the 10-20◦by which the actual error is seen to exceed the estimates
may well be within the achievable tolerance of our experimental setup, the large
standard deviations in some areas imply that there will be frequent cases with
larger errors. Note that in some legs (e.g., leg 3), the compass error exceeds its
estimate 25% or more of the time. The Downtown walks (not shown for reasons
of space) performed more poorly outside of the central campus location, with
periods where less than 50% of the samples were within the reported error, as
well as error exceeding the estimate by more than 50◦in some cases.

Yaw Drift. We had originally hoped that we could use the orientation sensors,
primarily the gyro, to obtain better heading estimates by fusing them with the
compass (magnetometer) data. We thus implemented a sensor fusion algorithm
that recalibrated the gyro to north whenever a compass update was received with
reported accuracy at 30◦or less. When the compass error exceeded this threshold,
we simply ignored further compass readings until the reported error returned
below 30◦. The hope was that the gyro would be sufficiently accurate to provide
interim values. However, the observed yaw drift, which seems to accelerate in
each leg, as seen in Figure 6, makes this futile. Downtown drifts range up to
almost 3◦/s, and up to over 4◦in the Commercial walks. Downtown walks were
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roughly 6.5 minutes each, and Commercial walks were approximately 9 minutes
from the time the walker clicked the button to begin the walk, up until the
final click at the end. Due to initial calibration time, the sensors may have been
started earlier. Even worse, Figure 7a illustrates that gyro drift progressively
increases with time. At least on iPhone, shutting down the application allows
the gyro to be turned off, and we speculate that it recalibrates on restart. We
believe that as a result, yaw drift is typically minimal in the first leg.

(a) Downtown (b) Commercial

Fig. 6. Histogram of yaw drifts for the two iPhone devices, calculated by a linear
regression of the yaw values within each leg. If the yaw sensor behaved perfectly, the
drift would always be zero. Note that in both sets, drifts tend to be biased in a clockwise
direction (to the right of zero), for which we have no explanation.

We suspect that Google’s Android API only provides device orientation data
fused with the magnetometer to better correct for gyro drift. Since the Nexus
heading does not seem to perform appreciably better than the iPhones, the
benefit of this fusion may be marginal when trying to find a north-calibrated
reading. However, such fusion may indeed stabilize the gyro values significantly,
useful for applications where only a relative yaw value is needed, not calibrated to
north. Apple offers the same option of a fused gyro/compass orientation relative
to north starting in iOS5, possibly because they came to the same realization.

4.3 Location Accuracy

Unlike heading, location data (Figure 8) was only sampled at 11 and 15 specific
ground truth locations for the Downtown and Commercial walks respectively.
In good conditions, we generally received updates separated by 1–3 m once
the values had stabilized, although they sometimes rise higher. We also noted
a “caterpillaring” effect in which an iPhone device would deliver a series of
sparser location updates, then cluster a number more closely together, despite
the walker moving at a consistent speed. These may be due to some sort of
smoothing algorithm, with the system giving a series of more sparse points as
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(a) Downtown (b) Commercial

Fig. 7. Yaw drift for the two iPhones. Note that these graphs are arranged by leg
in the order walked instead of by physical location, since the primary effect of yaw
drift is associated with time rather than location. Thus, leg 1 is the first location
walked in either CW or CCW direction, with the results averaged over the different
corresponding segments. Interestingly, head position performs worse than the other
positions/orientations, for which we do not have an explanation.

Fig. 8. Downtown walks: location ground truth errors

it tries to “catch up” to a new position, since we see this frequently with the
reported location often lagging behind the walker’s actual position.

As with heading, areas with taller buildings unsurprisingly cause the most
difficulty for location accuracy. In these cases, locations may exhibit mean errors
in the 30 m range, with maximum error values beyond 60 m in the vicinity
of tall skyscrapers. The Commercial walks (not shown for reasons of space),
with buildings generally no taller than three stories, exhibit mean error more
consistently around 10–15 m, apart from location 10, which was particularly
troublesome for all of the devices. As expected, the Head position tended to
outperform the Chest and Belt positions.

Given the relatively large standard deviations, it is crucial to inform the user
when the location sensors are having difficulty. Alternatively, such knowledge
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would allow the application to render information in a more appropriate man-
ner. As before, we evaluate reliability of the location sensing by comparing actual
ground truth error with the reported error estimate from the device. Disappoint-
ingly, the actual error frequently exceeds the estimated error. For the Downtown
walks, the location was within the reported error only 20.4% of the time, and
still less than half the time at 46.3% for the Commercial walks.

5 Conclusions

The results of our experiment demonstrate important accuracy issues for the
location and orientation sensors found in current smartphones. Their location
sensors (using A-GPS) exhibit errors with means of 10–30 m, depending on the
surrounding buildings. Compass error frequently exhibits a mean around 10◦of
ground truth, which is quite good given the other sources of error in our exper-
iment, but in some areas, increases to approximately 30◦. The relatively large
standard deviations around these means will result in frequently poorer perfor-
mance experienced by users, e.g., with location errors of 60 m within the stan-
dard deviation when walking near skyscrapers. Compounding these problems,
reported error is frequently underestimated, reducing trustworthiness. Improving
the results with sensor fusion, e.g., by leveraging the gyro to improve heading es-
timates, is problematic due to difficulty in determining a “good” initial compass
reading. In addition, we observed significant gyro drift over time, accelerating
to over 4◦/s in some cases. Practically, we conclude that augmented reality ap-
plications that rely on better location or heading accuracy than indicated by
these results will be difficult at best to realize on current smartphone hardware
if relying on raw sensor values. Further mining across our data set may also
reveal additional correlations that would help point to the specific conditions
under which the sensors are inaccurate.

Until smartphone sensors improve, we are exploring alternative rendering
methods that can cope with poor accuracy and error estimation, as well as
algorithms such as “snapping” the user to a nearest street to overcome location
errors. In many cases, these subjectively appear to improve accuracy, but formal
testing is required. Although such methods show promise, they also generate new
failure cases, such as worsening the location error by snapping to an incorrect
street when nearing an intersection. Snapping can be effective for those location
errors lateral to the street, but not for errors in the direction of travel, which
appear to occur more frequently, often with the reported location lagging the
user’s actual position. In terms of implications to our own research we are now
aware of the importance of carefully picking the areas in which we test our ap-
plication, and treat the error estimates for both orientation and location sensors
with a dose of skepticism.
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