

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 66–80, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Towards Automated Malware Behavioral Analysis
and Profiling for Digital Forensic Investigation Purposes

Ahmed F. Shosha, Joshua I. James, Alan Hannaway,
Chen-Ching Liu, and Pavel Gladyshev

UCD School of Computer Science and Informatics,
University College Dublin, Dublin, Ireland

{Ahmed.Shosha,Alan.Hannaway}@ucdconnect.ie,
{Joshua.James,Liu,Pavel.Gladyshev}@ucd.ie

Abstract. Digital forensic investigators commonly use dynamic malware
analysis methods to analyze a suspect executable found during a post-mortem
analysis of the victim’s computer. Unfortunately, currently proposed dynamic
malware analysis methods and sandbox solutions have a number of limitations
that may lead the investigators to ambiguous conclusions. In this research, the
limitations of the use of current dynamic malware analysis methods in digital
forensic investigations are highlighted. In addition, a method to profile dynamic
kernel memory to complement currently proposed dynamic profiling techniques
is, then, proposed. The proposed method will allow investigators to automate
the identification of malicious kernel objects during a post-mortem analysis of
the victim’s acquired memory. The method is implemented in a prototype
malware analysis environment to automate the process of profiling malicious
kernel objects and assist malware forensic investigation. Finally, a case study is
given to demonstrate the efficacy of the proposed approach.

Keywords: Dynamic Malware Analysis, Kernel Object Profiling, Malware
Investigation, Memory Forensics, Post-Mortem Analysis.

1 Introduction

Malware, or malicious software, has become a commonly used tool to commit crimes on
the Internet, and poses significant threat to the security of computer systems and privacy
of computer users. To defend against malware, a large body of computer security
research has resulted in various techniques to analyze, detect and eliminate malware
[1-8]. Although proposed approaches assist malware analysts in accomplishing their
mission, advanced malware countermeasure techniques have been developed to generate
variants of the malicious code in an attempt to elude detection from traditional methods.
Further, the substantial increase in discovered malware samples every day negatively
impacts the effectiveness of traditional static analysis approaches. As such, highly
automated dynamic techniques have been called for [9]. A variety of automated dynamic
malware analysis approaches have been proposed to cope with the large number of
discovered malware samples. These dynamic methods were implemented in various

 Towards Automated Malware Behavioral Analysis and Profiling 67

sandbox solutions to provide the required process automation, and assist malware
analysts in acquiring required knowledge about the malicious code’s behavior [10]. A
sandbox, in this work, refers to a managed virtual environment with a pre-determined
software configuration used to implement proposed methods and to observe a behavior of
a malicious binary through its execution process [10].

From a digital forensic investigation perspective, when investigators are confronted
with an investigation involving a suspect executable, different incident response
procedures are followed to analyze and investigate the suspect binary. Dynamic
malware analysis methods proposed in computer security research are commonly
used to allow an investigator to understand the behavior of a suspect executable.
Analysis of extracted traces, correlating evidence and artifacts to the suspect
executables’ behavior, however, is manually conducted by the investigator, and solely
relies on his or her expertise. This manual process is time consuming, error prone and
allows for inconsistent interpretation of malicious evidence which threatens the
integrity of the investigation [11]. Moreover, the use of dynamic malware analysis
methods for forensic investigation purposes has a number of limitations. Currently
proposed methods are designed to assess the behavior of malicious code for signature
development purposes, and have not been designed specifically considering the
concepts and principles of digital forensic investigations. Thus, employing these
methods in malware forensic investigations may result inaccurate conclusion.

This work highlights the limitations of the use of currently proposed dynamic
malware analysis methods applied to digital forensic investigations, and proposes a
set of improvements to utilize these methods for forensic investigation purposes. To
this end, a method for dynamically profiling the kernel memory of malware objects is
proposed. The proposed method allows for automated identification and extraction of
malicious kernel objects from a victim’s acquired forensic memory image during a
post-mortem forensic analysis. In addition, it can be extended to profile different
behavioral aspects of malware execution, and allow an investigator to automate the
process of malware traces detection in a post-mortem forensic analysis of the victim’s
computer system. To demonstrate the applicability of the proposed method, a
prototype forensic-specific dynamic analysis sandbox solution has been developed
and implements the proposed profiling technique. Developed sandbox is evaluated
through a case study involving profiling a commonly used malware tool-kit that
emerged over the last few years to commit financial crimes on the Internet.
Developed profiles are, then, used to automate the analysis of dynamic kernel
memory during post-mortem forensic analysis and automatically identify malware
related kernel objects.

To summarize, the contribution of this paper is as follows:
• This work highlights the limitations of the use of currently proposed

dynamic analysis methods in malware forensic investigations, and outlines
required improvements to utilize the capabilities of these methods for digital
forensic investigation purposes.

• This work proposes a dynamic profiling method applied to dynamic kernel
memory to automate the process of identification and extraction of malicious

68 A.F. Shosha et al.

kernel objects in acquired forensic memory images during a post-mortem
forensic analysis.

• This work present a prototype dynamic malware analysis sandbox for digital
forensic investigation purpose based on the proposed dynamic kernel
memory profiling method.

Paper Organization. In section 2, limitations of currently proposed dynamic
malware analysis methods in forensic investigations are described. In section 3,
profiling of dynamic kernel memory for digital forensic investigation purposes is
presented and described in details. Section 4 describes the prototype implementation
of the proposed approach, and gives a case study. Section 5 gives a discussion about
the proposed method and outlines future research work. Finally, section 6 concludes
the paper.

2 Limitations of Dynamic Analysis Methods from Digital
Forensic Investigation Perspective

Dynamic analysis of malware is an automated approach to identify a behavior of
malicious program through observation of the program’s execution in a managed
environment [12]. Typically, malicious programs are automatically loaded into a
managed virtual machine environment and executed. Interactions between the
malicious program and an operating system are observed to provide human analysts
an overview about the sample’s behavior and whether further analysis is required or
not. Observed interactions of the malicious program in monitored operating systems
include which system calls are invoked, and arguments used to interact with the
operating system kernel. Finally, a detailed report about the program’s activities, i.e.
file activities, Windows Registry activities, and networking activities, are provided to
the analyst. Such information allows a human analyst to identify if a program subject
to analysis is a new malware sample, a variant sample or a benign program. Based on
the analyst’s decision, proper detection signature is developed. In contrast, a number
of anti-analysis techniques have been developed by malware authors to disrupt
malware analysis process, and impede further investigations [13, 14].

Although currently proposed dynamic analysis methods substantially automate and
improve the process of malware analysis and malicious code signature development
in computer security research, the use of these methods is limited in digital forensic
investigations. Thus, a part of malware analysis for digital forensic investigations is
accomplished manually despite the fact that it can be automated, if digital forensic
investigation objectives were initially considered and integrated into the design of
these methods. More important, relying on results of currently proposed methods may
contribute in resulting inaccurate forensic investigation conclusions.

This section highlights a number of limitations that hinder utilization of currently
proposed dynamic malware analysis methods in digital forensic investigations, and
proposes a set of improvements that, if considered, assist in automating malware
investigation and preserve the integrity forensic analysis.

 Towards Automated Malware Behavioral Analysis and Profiling 69

2.1 Multiple Malicious Execution Paths

Malware developers employ different methods to impede dynamic analysis of
malware and malicious code investigation [14]. A prevalent feature in malware is the
frequent collection of intelligence about the surrounding environment and attempting
to detect whether it is an analysis or debugging environment. If an analysis
environment is detected, malware may suppress its execution and terminate malicious
payload installation, or may execute a different execution path that results in benign
traces in an attempt to evade the human analyst. This behavior is termed “malware’s
evasion personalities” [15]. To defend against evasion personalities, various
approaches have been proposed to disguise the analysis environment, so that, it
becomes transparent to a malware. Although proposed disguising methods to defend
against evasion personalities substantially contribute to the intended analysis goal, a
possibility of existence of multiple execution paths is still valid. Malware may have
different malicious payloads or have different behaviors based on certain properties of
the compromised environment: the existence of a predetermined Internet browser
version, or installation of specific software or hardware, for example. Since currently
implemented dynamic analysis methods do not consider tracking multiple execution
paths [16] and developed sandbox solutions cannot consider all possible environment
configurations, analysis may result in an execution path that has never been executed
on the victim system subject of forensics investigation. This incomplete analysis
could lead digital forensic investigators to reach an invalid conclusion based on
incomplete knowledge of the behavior of the malware.

To overcome multiple execution paths in computer security research, paths
tracking techniques have been proposed to execute all possible paths in malicious
programs [16]. Unfortunately, proposed techniques are computationally expensive
when applied to thousands of malware samples collected every day.

Investigation of all possible malware execution paths can be associated with
observations of the state of the system to determine possible explanations that could
have resulted in observed system state. Formal theories have been proposed to
provide required explanations in the context of multiple execution paths, and to
reconstruct events related to a certain execution path [17, 18]. Although these theories
have applications in different forensic investigation domains, an application to
malware evasion personality detection is still missing. Thus, inclusion of these
approaches to malware analysis provides more information to assist investigators in
deriving reasonable conclusions.

2.2 Interrelation between Observed Objects

Dynamic malware analysis methods monitor the interactions between a malware
sample and an operating system kernel [19, 20], e.g. invoked system calls and its
arguments. Other methods, such as those proposed in [21, 22] not only observe
objects interactions, but also, profile the interaction patterns such as evolving pattern
of a malicious object’s data structure in dynamic kernel memory. Profiled patterns are
further used to derive a malware detection signature. In digital forensic investigations

70 A.F. Shosha et al.

of malware, interrelations between observed objects are essential to deduction of
further actions invoked by a malicious object [23]. If relations between observed
objects are not properly defined, it may not be possible to infer an instance of an
action. That is, investigators are required to manually define the relations between
observed objects. Currently proposed dynamic malware analysis methods do not
observe and define the mutual relation between malicious objects, although, there are
various extensions that can provide necessary information about malicious objects
interrelationships [24].

Different methods allow tracking information flow between objects, denoted as
dynamic taint analysis, which is considered a complementary approach to dynamic
analysis approaches [25]. In dynamic taint tracking, information is labeled and
tracked throughout program execution for different purposes. More precisely,
propagation of labeled information in dynamic tainting systems is tracked in the
context of a malicious objects’ execution. Currently proposed dynamic tainting and
tracking systems focus on tracking data between objects; however, data propagation
paths can be used to derive the interrelations between observed objects. Such derived
information allows automation of the process of object interrelation construction, and
allows investigators to infer further actions based on defined objects relationships.
That is, extending dynamic taint tracking to consider dynamic identification of
interrelationships between observed malicious objects and integration of such
methods in dynamic analysis approaches is essential for digital forensic investigation,
and assists investigators in automating the forensic analysis processes based on object
relationships.

2.3 Profiling Dynamic Kernel Objects

Memory forensics is an important portion of digital forensic investigation process
when malware is concerned. Various signature-based approaches have been proposed
to extract kernel data structures from dynamic kernel memory [26]. These methods
scan the dynamic kernel memory to detect and extract different kernel data structure
types such as processes, threads, network or VAD objects in Windows operating
system kernel [27, 28]. Forensic analysis of extracted objects, and determining if an
object belongs to a malware, is a manual process that relies on the investigator’s
expertise. Forensic analysis of kernel data structure objects requires, as well, deep
knowledge of the operating system internals and techniques employed by malware to
disrupt investigation through the manipulation of the kernel object characteristics.
Moreover, specification of the kernel data structures are likely to change with new
builds of the operating system kernel. Thus, manual investigation of the kernel data
structure in acquired memory is a significant challenge for forensic investigators.

In computer security research, different approaches have been proposed for
automated profiling of kernel objects characteristics in dynamic kernel memory, to
assist malware signature development process [22]. Proposed methods are designed to
identify the evolving patterns of kernel data structures in memory and profile such
pattern. However, these methods are insufficient for forensic analysis of kernel data

 Towards Automated Malware Behavioral Analysis and Profiling 71

structure, as they do not allow for automated identification of malicious objects in
post-mortem forensic investigations based on developed profiles.

Profiling for digital forensic investigation purposes has been proposed in different
investigative domains [29]. However, profiling malware behavior for digital forensic
investigation is still missing. A profiling method to automate forensic identification
and extraction of malicious objects will, significantly, assist the process of malware
forensic investigation and memory forensic analysis.

3 Profiling Dynamic Kernel Memory

In this section, a method for profiling dynamic kernel memory for digital forensic
investigation purposes is presented. The proposed method allows for automated
identification of malicious kernel objects in post-mortem forensic analysis of acquired
memory.

Dynamic kernel memory is a memory portion where dynamically allocated kernel
data structure objects are present. Dynamic kernel memory recently became a target
of an increasing amount of kernel level malware such as rootkit attacks [30]. These
attacks employ advanced stealth techniques to control and manipulate an operating
system kernel. For example, Direct Kernel Object Manipulation (DKOM) attack
allows rootkits to hide malicious kernel objects in the operating system kernel through
manipulation of malicious kernel object’s characteristics [30]. Other attacks such as
hijacking kernel execution – denoted as Kernel Object Hooking attack (KOH) [31]–
allow kernel level malware to execute compromised code after hijacking the kernel
code control flow.

Digital forensic investigators of dynamic memory are required to investigate
various kernel level data structure types to identify a presence of rootkits, and
existence of malicious kernel objects. As previously discussed, this investigative
process has limitations that may compromise the investigation’s integrity. Thus, an
approach for automated forensic investigation of dynamic kernel objects is required.

In the proposed method, a procedure to monitor kernel object’s characteristics is
proposed and utilized to develop a profile for malicious kernel objects. Developed
profiles will allow investigators to automatically determine kernel objects related to
malware in an acquired forensic memory image during post-mortem forensic analysis
based on Object-To-Profiles matching procedure.

3.1 Profiling Malicious Kernel Objects for Forensic Investigation Purposes

Program execution process in the operating system requires allocation of memory
regions to the program to execute its instructions, and creation of kernel objects in
dynamic kernel memory to manage the program execution. These kernel objects
control every aspect of the program’s execution in the operating system kernel. For
example, EPROCESS in Windows operating systems [32] or task_struct in
UNIX based systems represent and manage running program’s processes and threads
in the operating system kernel.

72 A.F. Shosha et al.

Since kernel object data structures are formally defined by the operating system
code, and instances of these objects are allocated in dynamic kernel memory,
investigators attempt to differentiate between benign kernel objects and malicious
kernel objects. This process is essential to determine which memory regions are
allocated to malware, and which regions are suspicious but non-conclusive and
require further analysis.

Fig. 1. Kernel Object Profiler Process Model

To automate the process of malicious kernel object identification in post-mortem
memory analysis, the proposed method profiles the characteristics of a malicious
kernel objects in dynamic kernel memory. When a program is being executed in, there
exist a unique set of characteristics of kernel object’s properties that identifies the
program. Determining such characteristics and monitoring its values, while program
code is being executed, allows for development of an object profile that can be used
to assist kernel objects investigation. To determine characteristics of malicious kernel
objects, memory monitoring and introspection technique are employed to observe
memory regions allocated to the dynamic kernel objects.

The proposed profiling process model is shown in Figure 1. A malicious code
executed instructions are monitored through a dynamic analysis method in a managed
virtual environment. Through malicious code execution, snapshots of memory
allocated to the kernel objects that represent malware execution is acquired at
each executed instruction, and are added to the object profile for further use in a
digital forensic investigation. Acquired memory snapshots are automatically matched
to the kernel object’s definition to identify kernel object property values and
determine values that have changed as a result of instructions execution. Finally, at
post-mortem memory investigation, developed profiles are used to automate
malicious kernel object identification. This is accomplished by extracting dynamic
kernel objects from acquired memory and automatically match extracted objects with
developed profiles.

 Towards Automated Malware Behavioral Analysis and Profiling 73

3.2 Kernel Object Memory Profiling Formalization

This section presents a formalization used in profiling memory allocated to malicious
kernel objects, and determining object properties at different execution states. A
malicious kernel object ܱ௠ represents a malicious code execution in an operating
system kernel. Memory region ߤ is a dynamic kernel memory space allocated to ܱ௠.
A kernel object ܱ௠ holds a set of properties ߩ௡ that used by the operating system
kernel to manage the program execution, such that:

Fig. 2. An Example of Kernel Object Profile

Ox= ቄρ1,… ρkቚ ρj is allocated at memory offset μj }

A Forensic Kernel Object Profile (OP) is a set of elements that represent memory
snapshots for memory allocated to the kernel object ௫ܱ through execution of a
program represented by ௫ܱ. An element in the set is called kernel object’s memory
snapshot ሺߙሻ at an executed instruction ߯, and is defined as a set of 2-tuples ሺߤఘ, ,ఘሻߥ
where ߤఘ represents a memory offset for a kernel object property ߩ௫ א ܱ and ߭௣
represents a value assigned to property ߩ௫ as a result of an execution state ߯, such
that:

χcur ሺαሻ={(μ1:=υ1)ר (μ2:=υ2)… ר…(μn:=υn)}

Figure 2 presents an example of forensic kernel object profiling of the EPROCESS
dynamic kernel object in Windows operating system kernel. The rounded boxes in
Figure 2 show various kernel object’s memory snapshot ሺߙሻ at different executed
instructions. For example, at the initialization state, the operating system initializes
properties of a kernel object through assigning a process name, unique process id,
initializing the process kernel information, determining control flags and assigning
proper access security token at offsets, +0x154, +0x084, +0x000, +0x248 and
+0x0c8, respectively [32]. Through program execution, properties of the kernel object
are changed to allow the program to execute intended code, i.e. new security flags are
assigned and existing control flags are updated, etc.

{
+0x000:=
+0x084:=
+0x154:=
+0x248:=
+0x0c8:=
}

{
+0x000:=
+0x084:=
+0x154:=
+0x248:=
+0x0c8:=
}

{
+0x000:=
+0x084:=
+0x154:=
+0x248:=
+0x0c8:=
}

{
+0x000:=
+0x084:=
+0x154:=
+0x248:=
+0x0c8:=
}

74 A.F. Shosha et al.

Thus, according to presented profiling method, different kernel object snapshots ሺߙሻ for dynamic memory allocated to the object are acquired. For example, at
instruction execution state ߯௖௨௥ାଵ, characteristics of profiled kernel object are defined
as:

χcur+1 ሺαሻ={(0x000:=υcur+1)ר(0x084:=υinit)ר ..ሺ0x0c8:=υcur+1ሻ…}

and the Forensic Kernel Object Profile (OP), is defined as:

OP(EPROCESSmalware)={χinitሺαሻ , χcurሺαሻ , χcur+1ሺαሻ, …,χlst(α)}

Fundamentally, profiled memory snapshots encode changes in the object properties at
different execution states, and determine characteristics of profiled object at every
execution state. The observed changes in monitored object properties, results in a
unique property updates pattern that allows for development of a malicious kernel
object profile and assists in differentiating malicious kernel objects from benign
kernel objects.

To accurately profile properties of a specific kernel object, some properties in
kernel object definition may include host or user specific data, e.g. timestamp of the
object creation or user directory of downloaded malicious programs, etc. Such
information is specific to the analysis environment configuration and may contribute
to inaccurate profiles. Thus, kernel object properties of interest – and that are
considered in profiling process – are properties that affect program execution in the
operating system kernel and, if tampered with, monitored program may produce
unpredictable behavior [33, 38]. Thus, user or host specific information is defined as a
set of properties ߩ௘௫ and are excluded from profiling process. Hence, a final profile
denoted as OPሺObj୶ሻ is formalized as follow:

 OP(Objx) = ራ χmሺαሻ- ሩ ρex
ρexאρ

a

a

This formula represents the process of profiling a memory snapshot of a kernel object
of interest at different instruction execution states. To generalize developed profiles
and exclude properties that may produce false negative results, user specific
information such as, process id, user timestamps or an executable location, are
eliminated from profiling process and kernel specific properties are only considered in
the profiling procedure.

3.3 From Malicious Code Execution to Object Profiles

As previously illustrated, memory regions allocated to a malicious kernel objects are
profiled to determine the object characteristics in different execution states. This
section presents a formalization of code execution states that stimulate presented
profiling process. A malicious executable P is modeled as a binary program that holds
a set of assembly language instructions ߇ ൌ ሼܫଵ, ଶܫ … . ௡ሽ. The execution of theܫ

 Towards Automated Malware Behavioral Analysis and Profiling 75

malicious program P possesses a sequential execution of instruction set I in P with an
exception to instructions that change program control-flow, e.g. jump instructions.

Consequently, malicious program execution can be presented as a control flow
graph (CFG) [34, 39]. CFG (P) can be defined as 2-tuple ሺܵ, א ሻ, where Sܧ is an ߑ
execution state presented as assembly instructions, and E is a set of edges ܧ ك ܵ ൈ ܵ,
where E represents a transition corresponding to execution of a malicious instruction
in memory.

The kernel object memory profiling procedure based on presented formalization is
defined as 3-tuple, ܲ ൌ ൳ܫ, ,ܧ :൷, whereۄ௚ܫۃܴܲ

• I is a set of execution states, each representing an instruction in
determined malicious executable.

• E is a set of edges corresponds to transition to an instruction.
 is the profiling procedure that acquire a snapshot of memory ۄ௚ܫۃܴܲ •

allocated to malicious kernel object at execution of an instruction ܫ௚.

Fig. 3. Executed Code CFG to Memory Profiles Snapshots CFG

Figure 3 presents a practical example of modeling a malicious executable, and
creating a profile of memory allocated to kernel objects in dynamic kernel memory.
Code in Figure 3 is modeled as a CFG graph. Each instruction is modeled as an
execution state, and execution of next instruction is represented as a transition in the
CFG graph. Instructions similar to those presented in line 4 represents a branching
transition of the CFG graph to instructions located at Loc_30902E in memory.
Through execution of the malware CFG modeled graph, malicious kernel objects are
profiled using presented method, and added to the malicious kernel object profiling
space.

Intuitively, the object profile space can, as well, be modeled as CFG of profiles
analogy to code CFG. Profile CFG illustrated in Figure 3 represents an EPROCESS

INS Argument
1 push dwDesiredAccess
2 call ds:openMutex
3 cmp [ebp+var_4] , eax
4 Jz Short loc_30902E
5 push offset Name
6 push 0
7 push 0
8 call ds:createMutex
loc_30902E
9 push 0
10 call ds:exit
loc_30903A
11 mov esp , ebp
12 pop esp
13 retn

76 A.F. Shosha et al.

object of a running malicious process in Windows operating system kernel.
Consecutive memory snapshots are acquired for malicious object through malicious
code execution in a managed environment. Acquired memory profiles are, then, used
to determine malicious EPROCESS kernel objects in a digital forensic investigation of
memory images that infected with profiled malware sample.

4 Implementation and Case Study

Implementing a prototype dynamic kernel object profiler for digital forensic
investigation purpose requires dynamic access to memory regions allocated to
malicious kernel objects and monitoring executed instructions by malicious code.
That is, QEMU [35], an open source processor emulator was used to accomplish
aforementioned requirements. QEMU was customized to allow instruction emulation
to stimulate proposed kernel object profiling procedure. Note that, in this research,
Windows operating system kernel is approached for presented profiling process,
specifically dynamic kernel objects that represent running process in Windows, such
as, EPROCESS and its substructures: _KPROCESS and _KTHREAD. This is because
EPROCESS kernel object is a common target for forensic investigators of malware
and references different types of kernel objects that are essential to the investigation.
For example, EPROCESS keeps track of memory allocated to a program through the
Virtual Address Descriptor data structure, and files mapped in memory [36].
Determining memory regions allocated to a program in QEMU is accomplished
through monitoring the value loaded into CR3 processer registers. This value
represents the page-directory base register (PDBR) of physical memory address of
current program’s process loaded into QEMU processor [32]. Monitoring the
aforementioned register enables determining the physical memory address of
currently loaded EPROCESS into the emulation processer. Once memory region for
an EPROCESS is determined, the memory region is mapped to the formal definition
of EPROCESS as described in Windows operating system kernel specification to
identify the offset of each property in monitored object and its value. Finally, the
proposed profiling procedure snapshots identified memory offsets, as previously
described, at invocation of emulated instructions in QEMU processor. Acquired
malicious EPROCSS profiles are, then, used to automate identifying if a kernel
objects is malicious or not in post-mortem analysis of a memory.

To automate the process of malicious EPROCESS extraction and identification, a
plugin to Volatility Memory Forensic Framework [26] developed to automatically
extract kernel objects and match extracted objects with developed malware profiles. If
an extracted object matches a profile, memory regions allocated to the suspect
program and referenced by the suspect EPROCESS are automatically extracted for
further forensic analysis.

4.1 Zeus Toolkit Profiling Case Study

To evaluate the efficacy of the proposed method, a forensic profile for Zeus malware [37]
was developed. Zeus is a toolkit that is commonly used to commit financial crimes on the

 Towards Automated Malware Behavioral Analysis and Profiling 77

Internet [37]. In the last few years, Zeus toolkit has become a dominant tool for cyber
criminals since it allows to, easily, configure a malicious binaries to commit a variety of
cybercrimes, such as stealing the users’ Internet baking accounts and credit card
information and leaking user-sensitive financial information to a black market.

To verify developed Zeus’s profiles, four Windows 7 virtual machines infected
with Zeus malware were deployed. Dynamic kernel memory of each infected VM
acquired for analysis, and matched with developed Zeus profiles. Kernel objects in
each forensic memory image have been processed using Volatility with developed
extraction and identification plugin.

Table 1. Results of Profiling the CFG Graphs Corresponds to Zeus’s Executable

Zeus

Variants

Acquired
memory

Snapshots

Benign
Kernel Objects

False
Detections

ntos.exe 4511 64 -
oembios.exe 4009 52 -
Sdra64.exe 3794 52 -
PP08.exe 3401 43 -

This allows automatic identification of malicious kernel objects related to Zeus,
and also automatically extracted memory regions referenced by Zeus’s EPROCESS
kernel object.

Table 1 shows the results of Zeus’s profiling process and characteristics of each
acquired forensic memory image for investigation. As shown in Table 1, Zeus’s
Kernel Object Profile (OP) is consists of up-to 4500 object memory snapshots.

In essence, acquired memory snapshots of Zeus’s kernel object correspond to
emulated instructions of Zeus’s executable and executed states in Zeus’s modeled
CFG graph, as previously described. In addition, each acquired memory image has
up-to 60 EPROCESS kernel objects for commonly-used benign software e.g.
Microsoft Internet Explorer, MS Media Player, and MS Office.

Matching extracted kernel objects with acquired profiles resulted in identification
of Zeus’s EPROCESS objects in all memory images without producing false positives
with benign EPROCESS objects. Furthermore, to verify the preciseness of acquired
profiles, Zeus’s profiles have been used to investigate freely available [26] seven
different Windows XP SP2 forensic memory images infected with different malware
samples. Developed profiles, however, did not produce false results with other
malicious kernel objects.

5 Discussion and Future Work

Although presented profiling method shows promising results in determining
characteristics of malicious kernel objects and automating malicious kernel object
identification in post-mortem memory analysis, some improvements are required.

78 A.F. Shosha et al.

The proposed method is considered a complementary approach for dynamic
analysis techniques; thus, challenges to dynamic analysis approaches may, also, affect
the proposed method. For example, to develop a complete object profile, all execution
paths in malicious code’s CFG graph have to be considered. Otherwise, if a malicious
code has multiple execution paths, proposed method may results in incomplete
profiles and may produce false results. Thus, the proposed method has to be assisted
with proposed improvements to dynamic analysis approaches for digital forensic
investigation.

Hence, our future work plan includes approaching proposed dynamic analysis
improvements and implementing improved approaches in a forensic-specific malware
investigation platform.

6 Conclusion

This research highlighted the limitations of employing dynamic malware analysis
approaches in digital forensic investigations of malware, and proposed a set of
improvements to presented limitations. Based on highlighted limitations, a method
proposed to profile malicious kernel objects in dynamic kernel memory. Developed
malware profiles allow investigators to automatically identify malicious kernel
objects during post-mortem memory analysis of acquired dynamic kernel memory of
the victim’s computer. To allow an automated profiling of malicious kernel objects, a
prototype malware sandbox solution developed and used to profile a malware family
that is commonly used to commit finical crime on the Internet.

References

1. Yin, H., et al.: Panorama: Capturing System-wide Information Flow for Malware
Detection and Analysis. In: Proceedings of the 14th ACM Conference on Computer and
Communications Security (2007)

2. Yin, H., Liang, Z., Song, D.: HookFinder: Identifying and Understanding Malware
Hooking Behaviors. In: Proceedings of Distributed System Security Symposium (2008)

3. Kolbitsch, C., et al.: Effective and Efficient Malware Detection at the End Host. In:
Proceedings of the 18th Conference on USENIX Security Symposium (2009)

4. Vasudevan, A., Yerraballi, R.: Cobra: Fine-grained Malware Analysis using Stealth
Localized-Executions. In: Proceedings of IEEE Symposium on Security and Privacy
(2006)

5. Dinaburg, A., et al.: Ether: Malware Analysis Via Hardware Virtualization Extensions. In:
Proceedings of the 15th ACM Conference on Computer and Communications Security
(2008)

6. Lanzi, A., Sharif, M., Lee, W.: K-Tracer: A System for Extracting Kernel Malware
Behavior. In: Proceedings of the 16th Annual Network and Distributed System Security
Symposium (2009)

7. Bayer, U., et al.: Dynamic Analysis of Malicious Code. Journal in Computer
Virology 2(1), 67–77 (2006)

 Towards Automated Malware Behavioral Analysis and Profiling 79

8. Christodorescu, M., Jha, S.: Static Analysis of Executables to Detect Malicious Patterns.
In: Proceedings of the 12th USENIX Security Symposium (2003)

9. Moser, A., Kruegel, C., Kirda, E.: Limits of Static Analysis for Malware Detection.
In: Proceedings of Computer Security Applications Conference (2007)

10. Egele, M., et al.: A Survey on Automated Dynamic Malware Analysis Techniques and
Tools. ACM Comput. Surv. 44(2), 1–42 (2012)

11. Farmer, D., Venema, W.: Forensic Discovery. Addison-Wesley (2005)
12. Nance, K., Bishop, M., Hay, B.: Virtual Machine Introspection: Observation or

Interference? In: IEEE Security and Privacy (2008)
13. Sharif, M., et al.: Impeding Malware Analysis Using Conditional Code Obfuscation.

In: Proceedings of the Network and Distributed System Security Symposium (2008)
14. You, I., Yim, K.: Malware Obfuscation Techniques: A Brief Survey. In: Proceedings of

the Int. Conf. on Broadband, Wireless Company (2010)
15. Balzarotti, D., et al.: Efficient Detection of Split Personalities in Malware. In: Symposium

on Network and Distributed System Security (NDSS) (2010)
16. Moser, A., Kruegel, C., Kirda, E.: Exploring Multiple Execution Paths for Malware

Analysis. In: IEEE Symposium on Security and Privacy (2007)
17. Shosha, A.F., James, J.I., Gladyshev, P.: A Novel Methodology for Malware Intrusion

Attack Path Reconstruction. In: Gladyshev, P., Rogers, M.K. (eds.) ICDF2C 2011.
LNICST, vol. 88, pp. 131–140. Springer, Heidelberg (2012)

18. Gladyshev, P., Patel, A.: Finite State Machine Approach to Digital Event Reconstruction.
In: Digital Investigation (2004)

19. Forrest, S., Hofmeyr, S., Somayaji, A.: The Evolution of System-Call Monitoring.
In: Proceedings of the Annual Computer Security Applications Conference (2008)

20. Mutz, D., et al.: Anomalous System Call Detection. ACM Trans. Information System
Security (2006)

21. Riley, R., Jiang, X., Xu, D.: Multi-Aspect Profiling of Kernel Rootkit Behavior.
In: Proceedings of the 4th ACM European Conference on Computer Systems (2009)

22. Rhee, J., Lin, Z., Xu, D.: Characterizing Kernel Malware Behavior With Kernel Data
Access Patterns. In: Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security (2011)

23. Malin, C., Casey, E., Aquilina, J.: Malware Forensics: Investigating and Analyzing
Malicious Code. Syngress (2008)

24. Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity Software. In: Proceedings of Network
and Distributed System Security Symposium (NDSS) (2005)

25. Schwartz, E., Avgerinos, T., Brumley, D.: All You Ever Wanted to Know About Dynamic
Taint Analysis and Forward Symbolic Execution. In: IEEE Symposium on Security and
Privacy (Oakland 2010) (2010)

26. Volatility.: An Advanced Memory Forensics Framework (2012),
https://www.volatilesystems.com/default/volatility

27. Dolan-Gavitt, B.: The VAD Tree: A Process-Eye View of Physical Memory. In: Digital
Investigation (2007)

28. Schuster, A.: Searching for Processes and Threads in Microsoft Windows Memory Dumps.
In: Proceedings of the 6th Annual Digital Forensic Research Workshop (2006)

29. Marrington, A., et al.: A Model for Computer Profiling. In: The Third International
Workshop on Digital Forensics (2010)

30. Hoglund, G.: Rootkits: Subverting the Windows Kernel. Addison-Wesley (2005)

80 A.F. Shosha et al.

31. Wang, Z., et al.: Countering Kernel Rootkits With Lightweight Hook Protection.
In: Proceedings of the 16th ACM Conference on Computer and Communications Security
(2009)

32. Russinovich, M.: Windows Internals. Microsoft Press (2009)
33. Dolan-Gavitt, B., et al.: Robust Signatures for Kernel Data Structures. In: Proceedings of

the 16th ACM Conference on Computer and Communications Security (2009)
34. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
35. Bellard, F.: QEMU, A Fast and Portable Dynamic Translator. In: Proceedings of the

Annual Conference on USENIX Annual Technical Conference (2005)
36. Van Baar, R.B., Alink, W., Van Ballegooij, A.R.: Forensic Memory Analysis: Files

Mapped in Memory. Digital Investigation (2008)
37. Binsalleeh, H., et al.: On the Analysis of the Zeus Botnet Crimeware Toolkit.

In: Proceedings of the Eighth Annual International Conference on Privacy Security and
Trust (2010)

38. Shosha, F.A., James, J., Chen-Ching, L., Gladyshev, P.: Evasion-Resistant Malware
Signature Based on Profiling Kernel Data Structure Objects. In: Proceedings of the 7th
Intl. Conference on Risks and Security of Internet Systems (CRiSIS) (2012)

39. Shosha, A.F., James, J.I., Liu, C.-C., Gladyshev, P.: Towards Automated Forensic
Event Reconstruction of Malicious Code (Poster abstract). In: Balzarotti, D., Stolfo, S.J.,
Cova, M. (eds.) RAID 2012. LNCS, vol. 7462, pp. 388–389. Springer, Heidelberg (2012)

	Towards Automated Malware Behavioral Analysis and Profiling for Digital Forensic Investigation Purposes
	1 Introduction
	2 Limitations of Dynamic Analysis Methods from Digital Forensic Investigation Perspective
	2.1 Multiple Malicious Execution Paths
	2.2 Interrelation between Observed Objects
	2.3 Profiling Dynamic Kernel Objects

	3 Profiling Dynamic Kernel Memory
	3.1 Profiling Malicious Kernel Objects for Forensic Investigation Purposes
	3.2 Kernel Object Memory Profiling Formalization
	3.3 From Malicious Code Execution to Object Profiles

	4 Implementation and Case Study
	4.1 Zeus Toolkit Profiling Case Study

	5 Discussion and Future Work
	6 Conclusion
	References

