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Abstract. Authorship attribution of source code is the task of deciding who 
wrote a program, given its source code. Applications include software forensics, 
plagiarism detection, and determining software ownership. A number of me-
thods for the authorship attribution of source code have been proposed. This 
paper presents an overview and critique of the state of the art in the field. An 
independent comparative study is presented using an unprecedented experimen-
tal design and data set, as well as proposals for improvements and future work. 
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1 Introduction 

In 1993, the term "software forensics" was coined to refer to the process of analyzing 
software – usually malicious remnants left after an attack – to identify the authors of 
the software in question or to at least identify characteristics of the authors [1]. The 
basic premise behind software forensics is that programmers generally apply a unique 
style to the code they write. As a result, programmers often leave "fingerprints" by 
embedding idiosyncratic features in their software. By identifying such features and 
associating them with a particular programmer, the original author of software whose 
author is otherwise unknown can be discovered. 

The term "authorship attribution" refers simply to "the task of deciding who wrote 
a document" [2]. Features are generally analyzed regarding the style in which the 
document was written. These stylistic features might include the frequency or use of 
certain words, word length, word patterns, etc. Typically, documents of known au-
thorship are used as training data, and the training results are then used to attribute an 
author to documents of unknown authorship. Numerous methods for authorship attri-
bution have been proposed for natural language documents, including lexical me-
thods, grammatical methods, and language-model methods. 

Recent surveys of authorship attribution methods include those of Patrick Juola [3] 
and Efstathios Stamatatos [4]. Juola provides an historical context and analysis of 
some state-of-the-art methods in order to ultimately offer a recommendation for best 
practices. Stamatatos discusses the myriad applications of authorship attribution. An 
analysis of authorship attribution methods is also provided, which is focused on tex-
tual representation and computational requirements, providing a perspective grounded 
in information science. 
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Authorship attribution of source code, specifically, refers to the task of deciding 
who wrote a source code document. Authorship attribution is, therefore, a tenet of 
software forensics. Applications of source code authorship attribution include not 
only forensics investigations, but also plagiarism detection, software ownership dis-
putes, and other similar activities. 

Many researchers have contributed to the depth of knowledge regarding source 
code authorship attribution. Oman and Cook [5] were one of the first researchers to 
present a method for identifying authorship of programs based on programming style. 
Gray, Sallis, and MacDonell [6] introduced several metrics that can be used for au-
thorship attribution of source code, and developed a tool called IDENTIFIED capable 
of extracting those metrics. Krsul and Spafford [7] performed one of the first in-depth 
studies of source code authorship attribution, analyzing several methods for determin-
ing authorship including discriminant analysis and several classification techniques 
using a tool called LNKnet. MacDonell, Gray, MacLennan, and Sallis [8] utilized 
neural networks, multiple-discriminant analysis, and case-based reasoning. Ding and 
Samadzadeh [9] utilized canonical discriminant analysis and 56 metrics to determine 
authorship. Lange and Mancoridis [10] utilized the similarity of histogram distribu-
tions of 18 code metrics, which were selected using a genetic algorithm. Elenbogen 
and Seliya [11] utilized a C4.5 decision tree. Frantzeskou, Stamatatos, Gritzalis, 
Chaski, and Howald [12] utilized Source Code Author Profiles (SCAP) using n-grams 
to represent programs and a similarity measure to determine authorship. 

In 2010, Burrows [13] presented a comparative study that included most of the 
aforementioned methods of source code authorship attribution. The study consisted of 
a 10-class experiment (determining the author of a program from a set of ten candi-
date authors). A "leave-one-out cross validation" experimental design was used (each 
program in the data set was selected, in turn, as a query program while the remaining 
programs were used as training data). The results were measured in terms of accuracy 
(as a percentage of programs whose authors were correctly identified). The most ef-
fective method was found to be the Frantzeskou method [12]. 

In addition to presenting the comparative study, Burrows also presented a new  
method of source code authorship attribution. This new method was evaluated using 
the same 10-class experiment used to evaluate the other methods. The Burrows me-
thod performed the best on 3 out of 4 segments of the data set, while Frantzeskou 
performed the best on the remaining segment. 

The Burrows and Frantzeskou methods are clearly state of the art in authorship  
attribution of source code. This paper presents an overview and critique of these  
methods, an independent comparative study of them using an unprecedented experi-
mental design and data set, as well as proposals for improvements and future work. 

2 Overview 

Both the Frantzeskou and Burrows methods utilize n-grams to represent programs, 
and they both use a similarity measure to determine authorship. However, they are 
significantly different in the way the n-grams are formed and the specific similarity 
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measures that are used. How the training programs are grouped is also a key differ-
ence. These differences will be delineated in the following sections. 

2.1 The Frantzeskou Method 

The Frantzeskou method uses source code author profiles to characterize the pro-
grams written by each author. The concept of author profiles is derived from the work 
of Keselj [14]. The concept of an author profile is defined as the set of the most fre-
quent n-grams used in all sample works by that author with their normalized frequen-
cies. So, a profile is a set of ordered pairs (xi, fi), where xi is the ith most frequent  
n-gram used by that author and fi is the normalized frequency of that n-gram. The 
number of n-grams in the set is L, so the set contains the L most frequently-used  
n-grams. Frantzeskou uses raw frequencies, rather than normalized frequencies, how-
ever. The contention is that the frequencies are not used except to sort the n-grams, so 
normalization is not necessary. 

The n-grams are extracted at the byte level for programs in the data set, which 
means that all information stored in the source files are represented in the profiles – 
no information is lost. Whitespace, comments, every single byte saved in the source 
file is processed and included as n-grams in the author profiles. 

The similarity measure used in the Frantzeskou method is the Simplified Profile In-
tersection (SPI). The SPI is simply a count of the number of n-grams that a profile and 
a query program have in common: | PA ∩ Pp |, where PA represents the author profile 
and Pp represents the program profile. This simple metric is used to determine which 
author profile in the data set is most similar to a query program, and it is the author 
whose profile is most similar that is attributed to be the author. So, in essence, it is the 
author who frequently uses the sequences of characters that appear most frequently in 
the query program that is attributed to be the author. 

2.2 The Burrows Method 

The Burrows method uses a lossy approach for representing programs. In this method, 
n-grams are based on tokens. Tokens include selected operators, keywords, and white 
space. Programs are scanned (such that information deemed irrelevant is lost), and the 
token stream is broken into n-grams using a sliding window approach. 

Based on empirical results, the authors of this method chose n=6 for the n-gram 
size. The similarity measure used is Okapi BM25 [15]. This measure was selected 
among five similarity measures that were evaluated: Okapi BM25, Cosine, Pivoted 
Cosine, language modeling with Dirichlet smoothing, and a metric developed specifi-
cally for source code authorship attribution called Author1. Through empirical testing, 
Okapi BM25 was found to be the most effective. 

The actual approach for attributing authorship is typical for similarity-based au-
thorship attribution methods. To determine the author of a program, that program is 
considered to be a query. The query is compared using a similarity measure to all of 
the programs in the data set. The author of the most-similar program is considered the 
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author of the query program. So, in essence, it is the author who wrote the program 
that is most similar to the query program that is attributed to be the author. 

3 The Comparative Study 

Although both the Burrows and Frantzeskou methods have been shown to be state of 
the art, this is the first independent comparative study that has been performed on 
them. This study consisted of a 20-class experiment. A leave-one-out cross validation 
experimental design was used. The results were measured as a percentage of pro-
grams correctly identified. The data set included both C++ and Java programs. 

The collection of programs used in the study included a total of 7517 Java and C++ 
documents. The programs consisted of sample programs distributed with introductory 
programming and data structures textbooks. The textbooks included twenty Java text-
books and twenty C++ textbooks. Among the Java textbooks, there were no duplicate 
authors. Similarly, among the C++ textbooks, there were no duplicate authors. There 
were, however, nine textbooks that overlapped between the two languages. That is, 
nine textbooks were selected that had a Java edition and an equivalent C++ edition. 
So, there were a total of 31 unique authors represented (11 unique to the Java collec-
tion, 11 unique to the C++ collection, and 9 that overlapped between the two languag-
es). There were 3906 documents in the C++ collection and 3611 documents in the 
Java collection, meaning the C++ collection had an average of 195 documents per 
author while the Java collection had an average of 181 documents per author. 

Sample programs from programming textbooks were used, in part, to provide an 
accessible analog to student-submitted programs. The programs are academic in na-
ture, varied according to the nature of the material being exemplified in each sample 
program, and reasonably close to "perfect ground truth." Copyright laws and reputa-
tions would prohibit plagiarism. Consistency in approach and style would be self-
enforced for reasons related to both pedagogy and software engineering. Moreover, 
sample programs from textbooks are generally feely available and easily accessible. 

The study was conducted as a series of 20-class experiments, using a leave-one-out 
cross validation experimental design, and the results were measured as a percentage 
of programs correctly identified. A 20-class experiment means that the author of each 
document was determined from a set of 20 candidate authors. A leave-one-out cross 
validation experimental design means that each program in the data set was selected, 
in turn, as a query program while the remaining programs were used as training data. 
The results being measured in terms of accuracy means that the results were measured 
as a percentage of programs whose authors were correctly identified. 

Each experiment was conducted as follows: Every program in the data set was 
represented as dictated by the method being evaluated. For the Burrows method, each 
program was tokenized. For the Frantezkou method, a source code author profile 
(SCAP) was created for each author. Each program in the data set was selected,  
in turn, as a query program. The author of that program was attributed according to 
the method being evaluated, using the remaining programs in the data set as the pro-
grams of known authorship. Each program was marked as either correctly attributed 
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Fig. 1. Results of comparative study 
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4 Analysis 

The two methods evaluated are clearly state of the art in authorship attribution of 
source code. In the worst case (the Burrows attribution of C++ documents), over 88% 
of the documents were successfully attributed. Given the large nature of the data set, 
these results are remarkable. However, opportunities to improve both methods clearly 
exist. This section describes some of those opportunities. 

4.1 The Burrows Method 

Perhaps the most obvious improvement to be made to the Burrows method is that of 
feature selection. The features were selected by creating six classes of features: opera-
tors, keywords, input/output tokens, function tokens, white space tokens, and literal 
tokens. Selected features were categorized into these classes. Sets of features were 
formed from all possible combinations of the classes, and empirical means were used 
to select the most significant feature classes. In the end, the feature classes selected 
were operators, keywords, and white space tokens. 

An issue with this methodology is that the initial selection of features was some-
what arbitrary, as was the categorization into the six classes. Moreover, the fact that 
features were grouped and evaluated thusly meant that individual features were not 
evaluated – rather, somewhat arbitrary groupings of features were evaluated. In some 
of these classes, obvious omissions were made. For example, the white space tokens 
included carriage returns and new lines, but did not include line feeds. Furthermore, 
commonly-used symbols that are often emphasized in regards to programming style – 
such as semicolons and "curly braces" – were not even considered. 

The Burrows method uses the "single best result" metric to assign authorship. That 
is, the author of the top-ranked document returned by the search query is attributed to 
be the author of said query document. This metric was selected based on an empirical 
comparison over two other metrics that were also considered. Additional metrics 
could certainly be considered. One possibility is to utilize an idea from the Frant-
zeskou method, and represent an author's entire corpus as a profile. If the work of 
each author were represented as a single document, it would certainly make sense for 
the author of the "single best result" to be attributed as the author. 

In the Burrows experiments presented in this paper, the query documents were left 
in the corpus when the indexes were created by the search engine. As a result, the 
query document affects the Okapi similarity calculations. So, even though the query 
document was omitted from the results returned by the search engine, the query doc-
ument still played a role in determining which results were returned in the first place. 
Therefore, the results of the comparative study are thusly skewed in favor of the Bur-
rows method. For a better comparison, the query document itself should provide abso-
lutely no knowledge in determining the authorship of said document. 
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4.2 The Frantzeskou Method 

One potential improvement to be made to the Frantzeskou method is that of the simi-
larity metric, the so-called SPI. The metric is used to determine which author profile 
in the data set is most similar to a query program, simply by determining how many 
n-grams the author profile and query program have in common. So, essentially, it is 
the author who frequently uses the sequences of characters that appear most frequent-
ly in the query program that is attributed to be the author. This similarity metric is 
quite simplistic, and a more sophisticated metric might be apropos. 

In the Frantzeskou method, an author profile includes the L most frequently occur-
ring n-grams used by that author, where L is a parameter. Choosing the size of L is a 
difficult task. Indeed, Frantzeskou leaves the determination of the optimal value for L 
to future work. Burrows suggests that the optimal value of L is effectively infinity, 
such that author profiles are not truncated at all, noting that this technique is equiva-
lent to coordinate matching [16-17]. 

5 Conclusion and Future Work 

The two methods evaluated are clearly state of the art in authorship attribution of 
source code. We've shown that the Frantzeskou method can successfully attribute 
over 94% of documents in a 20-class experiment. When the data has been anony-
mized by stripping out all comments and string literals, the success rate still ap-
proaches an impressive 90%. Likewise, the Burrows method, which inherently ano-
nymizes data, successfully attributed nearly 90% of all documents. 

Incremental improvements can likely be made to both methods. Selecting different 
feature sets, tweaking Okapi parameters, selecting an altogether different similarity 
measurement, utilizing a metric other than "single best result" to assign authorship, 
and representing an author's entire set of work as a profile rather than as individual 
documents would all be viable opportunities for improving the Burrows method. Po-
tential improvements to the Frantzeskou method might include utilizing other similar-
ity metrics and investigating the choice for the L parameter. When performing studies 
utilizing the Burrows method, it is also imperative that the query document not be 
included when generating the search engine indexes. 

Future work also includes investigating ways of combining the two current state-
of-the-art methods to create a new, more-effective method. Perhaps a "confidence 
level" could be applied to each document attribution. If the confidence is deemed low, 
alternative factors and/or methods could be utilized to assist in the final determina-
tion. Perhaps "identifying" data such as comments and string literals could be handled 
separately from the primary method of authorship attribution. If such information is 
unavailable, it won't affect the primary means of attribution. If it is available, it could 
be used in a secondary manner to supplement the primary method. This could make 
sense, considering the data contained in comments and string literals are mostly free 
from the confines of the programming language syntax and so, perhaps, should intrin-
sically be analyzed differently. Other factors such as identifiers and file names could 
potentially be analyzed in a similar way. 



 On Improving Authorship Attribution of Source Code 65 

References 

1. Spafford, E.H., Weeber, S.A.: Software Forensics: Can We Track Code to its Authors? 
Computers & Security (COMPSEC) 12(6), 585–595 (1993) 

2. Zhao, Y., Zobel, J.: Effective and Scalable Authorship Attribution Using Function Words. 
In: Lee, G.G., Yamada, A., Meng, H., Myaeng, S.-H. (eds.) AIRS 2005. LNCS, vol. 3689, 
pp. 174–189. Springer, Heidelberg (2005) 

3. Juola, P.: Authorship attribution. Foundations and Trends in Information Retrieval 1(3), 
233–334 (2007) 

4. Stamatatos, E.: A Survey of Modern Authorship Attribution Methods. Journal of the 
American Society for Information Science and Technology 60(3), 538–556 (2009) 

5. Oman, P.W., Cook, C.R.: Programming Style Authorship Analysis. In: Proceedings of the 
17th Conference on ACM Annual Computer Science Conference (CSC), pp. 320–326 
(1989) 

6. Gray, A., Sallis, P., MacDonell, S.: IDENTIFIED (Integrated Dictionary-based Extraction 
of Non-language Dependent Token Information for Forensic Identification, Examination, 
and Discrimination): A Dictionary-based System for Extracting Source Code Metrics for 
Software Forensics. In: Proceedings of the International Conference on Software Engineer-
ing (ICSE), pp. 252–259 (1998) 

7. Krsul, I., Spafford, E.H.: Authorship Analysis: Identifying the Author of a Program. Com-
puters & Security (COMPSEC) 16(3), 233–257 (1997) 

8. MacDonell, S.G., Gray, A.R., MacLennan, G.,Sallis, P.J.: Software Forensics for Discri-
minating between Program Authors using Case-based Reasoning, Feedforward Neural 
Networks and Multiple Discriminant Analysis. In: Proceedings of the 6th International 
Conference on Neural Information Processing (ICONIP), pp. 66-71 (1999)  

9. Ding, H., Samadzadeh, M.H.: Extraction of Java Program Fingerprints for Software  
Authorship Identification. The Journal of Systems and Software 72, 49–57 (2004) 

10. Lange, R., Mancoridis, S.: Using Code Metric Histograms and Genetic Algorithms to Per-
form Author Identification for Software Forensics. In: Proceedings of the 9th Annual Con-
ference on Genetic and Evolutionary Computation (GECCO), pp. 2082–2089 (2007) 

11. Elenbogen, B.S., Seliya, N.: Detecting Outsourced Student Programming Assignments. 
Journal of Computing Sciences in Colleges 23(3), 50–57 (2008) 

12. Frantzeskou, G., Stamatatos, E., Gritzalis, S., Chaski, C.E., Howald, B.S.: Identifying  
Authorship by Byte-Level N-Grams: The Source Code Author Profile (SCAP) Method.  
International Journal of Digital Evidence 6(1), 1–18 (2007) 

13. Burrows, S.D.: Source Code Authorship Attribution. Dissertation. RMIT University,  
Melbourne, Australia (2010) 

14. Keselj, V., Peng, F., Cercone, N., Thomas, C.: N-gram Based Author Profiles for Author-
ship Attribution. In: Proceedings of the Pacific Association for Computational Linguistics, 
pp. 255–264 (2003) 

15. Robertson, S.E., Walker, S.: Okapi/Keenbow at TREC-8. In: Voorhees, E., Harman, D. 
(eds.) Proceedings of the Eighth Text Retrieval Conference, pp. 151–162. National Insti-
tute of Standards and Technology, Gaithersburg (1999) 

16. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Indexing 
Documents and Images. Morgan Kaufmann, San Francisco (1999) 

17. Uitdenbogerd, A.L., Zobel, J.: Music ranking techniques evaluated. In: Oudshoorn, M., 
Pose, R. (eds.) Proceedings of the Twenty-Fifth Australasian Computer Science Confe-
rence, pp. 275–283. Australian Computer Society, Melbourne (2002) 
 


	On Improving Authorship Attribution of Source Code
	1 Introduction
	2 Overview
	2.1 The Frantzeskou Method
	2.2 The Burrows Method

	3 The Comparative Study
	4 Analysis
	4.1 The Burrows Method
	4.2 The Frantzeskou Method

	5 Conclusion and Future Work
	References




