
M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 58–65, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

On Improving Authorship Attribution of Source Code

Matthew F. Tennyson

Bradley University, Department of Computer Science & Information Systems, Peoria, IL, USA
mtennyson@bradley.edu

Abstract. Authorship attribution of source code is the task of deciding who
wrote a program, given its source code. Applications include software forensics,
plagiarism detection, and determining software ownership. A number of me-
thods for the authorship attribution of source code have been proposed. This
paper presents an overview and critique of the state of the art in the field. An
independent comparative study is presented using an unprecedented experimen-
tal design and data set, as well as proposals for improvements and future work.

Keywords: authorship attribution, software forensics, plagiarism detection.

1 Introduction

In 1993, the term "software forensics" was coined to refer to the process of analyzing
software – usually malicious remnants left after an attack – to identify the authors of
the software in question or to at least identify characteristics of the authors [1]. The
basic premise behind software forensics is that programmers generally apply a unique
style to the code they write. As a result, programmers often leave "fingerprints" by
embedding idiosyncratic features in their software. By identifying such features and
associating them with a particular programmer, the original author of software whose
author is otherwise unknown can be discovered.

The term "authorship attribution" refers simply to "the task of deciding who wrote
a document" [2]. Features are generally analyzed regarding the style in which the
document was written. These stylistic features might include the frequency or use of
certain words, word length, word patterns, etc. Typically, documents of known au-
thorship are used as training data, and the training results are then used to attribute an
author to documents of unknown authorship. Numerous methods for authorship attri-
bution have been proposed for natural language documents, including lexical me-
thods, grammatical methods, and language-model methods.

Recent surveys of authorship attribution methods include those of Patrick Juola [3]
and Efstathios Stamatatos [4]. Juola provides an historical context and analysis of
some state-of-the-art methods in order to ultimately offer a recommendation for best
practices. Stamatatos discusses the myriad applications of authorship attribution. An
analysis of authorship attribution methods is also provided, which is focused on tex-
tual representation and computational requirements, providing a perspective grounded
in information science.

 On Improving Authorship Attribution of Source Code 59

Authorship attribution of source code, specifically, refers to the task of deciding
who wrote a source code document. Authorship attribution is, therefore, a tenet of
software forensics. Applications of source code authorship attribution include not
only forensics investigations, but also plagiarism detection, software ownership dis-
putes, and other similar activities.

Many researchers have contributed to the depth of knowledge regarding source
code authorship attribution. Oman and Cook [5] were one of the first researchers to
present a method for identifying authorship of programs based on programming style.
Gray, Sallis, and MacDonell [6] introduced several metrics that can be used for au-
thorship attribution of source code, and developed a tool called IDENTIFIED capable
of extracting those metrics. Krsul and Spafford [7] performed one of the first in-depth
studies of source code authorship attribution, analyzing several methods for determin-
ing authorship including discriminant analysis and several classification techniques
using a tool called LNKnet. MacDonell, Gray, MacLennan, and Sallis [8] utilized
neural networks, multiple-discriminant analysis, and case-based reasoning. Ding and
Samadzadeh [9] utilized canonical discriminant analysis and 56 metrics to determine
authorship. Lange and Mancoridis [10] utilized the similarity of histogram distribu-
tions of 18 code metrics, which were selected using a genetic algorithm. Elenbogen
and Seliya [11] utilized a C4.5 decision tree. Frantzeskou, Stamatatos, Gritzalis,
Chaski, and Howald [12] utilized Source Code Author Profiles (SCAP) using n-grams
to represent programs and a similarity measure to determine authorship.

In 2010, Burrows [13] presented a comparative study that included most of the
aforementioned methods of source code authorship attribution. The study consisted of
a 10-class experiment (determining the author of a program from a set of ten candi-
date authors). A "leave-one-out cross validation" experimental design was used (each
program in the data set was selected, in turn, as a query program while the remaining
programs were used as training data). The results were measured in terms of accuracy
(as a percentage of programs whose authors were correctly identified). The most ef-
fective method was found to be the Frantzeskou method [12].

In addition to presenting the comparative study, Burrows also presented a new
method of source code authorship attribution. This new method was evaluated using
the same 10-class experiment used to evaluate the other methods. The Burrows me-
thod performed the best on 3 out of 4 segments of the data set, while Frantzeskou
performed the best on the remaining segment.

The Burrows and Frantzeskou methods are clearly state of the art in authorship
attribution of source code. This paper presents an overview and critique of these
methods, an independent comparative study of them using an unprecedented experi-
mental design and data set, as well as proposals for improvements and future work.

2 Overview

Both the Frantzeskou and Burrows methods utilize n-grams to represent programs,
and they both use a similarity measure to determine authorship. However, they are
significantly different in the way the n-grams are formed and the specific similarity

60 M.F. Tennyson

measures that are used. How the training programs are grouped is also a key differ-
ence. These differences will be delineated in the following sections.

2.1 The Frantzeskou Method

The Frantzeskou method uses source code author profiles to characterize the pro-
grams written by each author. The concept of author profiles is derived from the work
of Keselj [14]. The concept of an author profile is defined as the set of the most fre-
quent n-grams used in all sample works by that author with their normalized frequen-
cies. So, a profile is a set of ordered pairs (xi, fi), where xi is the ith most frequent
n-gram used by that author and fi is the normalized frequency of that n-gram. The
number of n-grams in the set is L, so the set contains the L most frequently-used
n-grams. Frantzeskou uses raw frequencies, rather than normalized frequencies, how-
ever. The contention is that the frequencies are not used except to sort the n-grams, so
normalization is not necessary.

The n-grams are extracted at the byte level for programs in the data set, which
means that all information stored in the source files are represented in the profiles –
no information is lost. Whitespace, comments, every single byte saved in the source
file is processed and included as n-grams in the author profiles.

The similarity measure used in the Frantzeskou method is the Simplified Profile In-
tersection (SPI). The SPI is simply a count of the number of n-grams that a profile and
a query program have in common: | PA ∩ Pp |, where PA represents the author profile
and Pp represents the program profile. This simple metric is used to determine which
author profile in the data set is most similar to a query program, and it is the author
whose profile is most similar that is attributed to be the author. So, in essence, it is the
author who frequently uses the sequences of characters that appear most frequently in
the query program that is attributed to be the author.

2.2 The Burrows Method

The Burrows method uses a lossy approach for representing programs. In this method,
n-grams are based on tokens. Tokens include selected operators, keywords, and white
space. Programs are scanned (such that information deemed irrelevant is lost), and the
token stream is broken into n-grams using a sliding window approach.

Based on empirical results, the authors of this method chose n=6 for the n-gram
size. The similarity measure used is Okapi BM25 [15]. This measure was selected
among five similarity measures that were evaluated: Okapi BM25, Cosine, Pivoted
Cosine, language modeling with Dirichlet smoothing, and a metric developed specifi-
cally for source code authorship attribution called Author1. Through empirical testing,
Okapi BM25 was found to be the most effective.

The actual approach for attributing authorship is typical for similarity-based au-
thorship attribution methods. To determine the author of a program, that program is
considered to be a query. The query is compared using a similarity measure to all of
the programs in the data set. The author of the most-similar program is considered the

 On Improving Authorship Attribution of Source Code 61

author of the query program. So, in essence, it is the author who wrote the program
that is most similar to the query program that is attributed to be the author.

3 The Comparative Study

Although both the Burrows and Frantzeskou methods have been shown to be state of
the art, this is the first independent comparative study that has been performed on
them. This study consisted of a 20-class experiment. A leave-one-out cross validation
experimental design was used. The results were measured as a percentage of pro-
grams correctly identified. The data set included both C++ and Java programs.

The collection of programs used in the study included a total of 7517 Java and C++
documents. The programs consisted of sample programs distributed with introductory
programming and data structures textbooks. The textbooks included twenty Java text-
books and twenty C++ textbooks. Among the Java textbooks, there were no duplicate
authors. Similarly, among the C++ textbooks, there were no duplicate authors. There
were, however, nine textbooks that overlapped between the two languages. That is,
nine textbooks were selected that had a Java edition and an equivalent C++ edition.
So, there were a total of 31 unique authors represented (11 unique to the Java collec-
tion, 11 unique to the C++ collection, and 9 that overlapped between the two languag-
es). There were 3906 documents in the C++ collection and 3611 documents in the
Java collection, meaning the C++ collection had an average of 195 documents per
author while the Java collection had an average of 181 documents per author.

Sample programs from programming textbooks were used, in part, to provide an
accessible analog to student-submitted programs. The programs are academic in na-
ture, varied according to the nature of the material being exemplified in each sample
program, and reasonably close to "perfect ground truth." Copyright laws and reputa-
tions would prohibit plagiarism. Consistency in approach and style would be self-
enforced for reasons related to both pedagogy and software engineering. Moreover,
sample programs from textbooks are generally feely available and easily accessible.

The study was conducted as a series of 20-class experiments, using a leave-one-out
cross validation experimental design, and the results were measured as a percentage
of programs correctly identified. A 20-class experiment means that the author of each
document was determined from a set of 20 candidate authors. A leave-one-out cross
validation experimental design means that each program in the data set was selected,
in turn, as a query program while the remaining programs were used as training data.
The results being measured in terms of accuracy means that the results were measured
as a percentage of programs whose authors were correctly identified.

Each experiment was conducted as follows: Every program in the data set was
represented as dictated by the method being evaluated. For the Burrows method, each
program was tokenized. For the Frantezkou method, a source code author profile
(SCAP) was created for each author. Each program in the data set was selected,
in turn, as a query program. The author of that program was attributed according to
the method being evaluated, using the remaining programs in the data set as the pro-
grams of known authorship. Each program was marked as either correctly attributed

62 M.F. Tennyson

or incorrectly attributed. T
percentage of the programs

The Frantzeskou method
Burrows method successfu
however, that this comparis
the data by removing all co
the Frantzeskou method has
lations information contain
anonymized documents. W
the methods were quite sim

In the end, a total of six
method was used to attribu
to attribute the Java docum
C++ documents, (4) the F
ments, (5) the Frantzeskou
C++ documents, and (6) th
versions of the Java docume

F

Frantzeskou successfully
even after they were anonym
the Java documents. Also, a
Java documents and C++ d
pancy could be explained b
different set of features we
further in the Analysis secti

The overall results of the experiment were measured a
correctly attributed.

d successfully attributed 94.3% of the documents, while
ully attributed 89.5% of the documents. One could arg
son is unfair. The Burrows method inherently anonymi
omments and string literals. By not anonymizing the d
s an intrinsic advantage of including in its similarity cal
ned therein. So, the methods were also compared us

When using anonymized documents, the overall results
milar.
x individual experiments were conducted: (1) the Burro
ute the C++ documents, (2) the Burrows method was u

ments, (3) the Frantzeskou method was used to attribute
Frantzeskou method was used to attribute the Java do

method was used to attribute anonymized versions of
he Frantzeskou method was used to attribute anonymi
ents. The results of the study are shown in Figure 1.

Fig. 1. Results of comparative study

y attributed a larger percentage of the C++ docume
mized. However, Burrows attributed a larger percentage
a relatively large discrepancy can be seen in the numbe

documents successfully attributed by Burrows. This disc
by the features selected for tokenization, because an utte
ere used for each language. Feature selection is discus
ion.

as a

the
gue,
izes

data,
lcu-
sing

for

ows
used

the
ocu-

the
ized

ents,
e of
r of
cre-
erly
ssed

 On Improving Authorship Attribution of Source Code 63

4 Analysis

The two methods evaluated are clearly state of the art in authorship attribution of
source code. In the worst case (the Burrows attribution of C++ documents), over 88%
of the documents were successfully attributed. Given the large nature of the data set,
these results are remarkable. However, opportunities to improve both methods clearly
exist. This section describes some of those opportunities.

4.1 The Burrows Method

Perhaps the most obvious improvement to be made to the Burrows method is that of
feature selection. The features were selected by creating six classes of features: opera-
tors, keywords, input/output tokens, function tokens, white space tokens, and literal
tokens. Selected features were categorized into these classes. Sets of features were
formed from all possible combinations of the classes, and empirical means were used
to select the most significant feature classes. In the end, the feature classes selected
were operators, keywords, and white space tokens.

An issue with this methodology is that the initial selection of features was some-
what arbitrary, as was the categorization into the six classes. Moreover, the fact that
features were grouped and evaluated thusly meant that individual features were not
evaluated – rather, somewhat arbitrary groupings of features were evaluated. In some
of these classes, obvious omissions were made. For example, the white space tokens
included carriage returns and new lines, but did not include line feeds. Furthermore,
commonly-used symbols that are often emphasized in regards to programming style –
such as semicolons and "curly braces" – were not even considered.

The Burrows method uses the "single best result" metric to assign authorship. That
is, the author of the top-ranked document returned by the search query is attributed to
be the author of said query document. This metric was selected based on an empirical
comparison over two other metrics that were also considered. Additional metrics
could certainly be considered. One possibility is to utilize an idea from the Frant-
zeskou method, and represent an author's entire corpus as a profile. If the work of
each author were represented as a single document, it would certainly make sense for
the author of the "single best result" to be attributed as the author.

In the Burrows experiments presented in this paper, the query documents were left
in the corpus when the indexes were created by the search engine. As a result, the
query document affects the Okapi similarity calculations. So, even though the query
document was omitted from the results returned by the search engine, the query doc-
ument still played a role in determining which results were returned in the first place.
Therefore, the results of the comparative study are thusly skewed in favor of the Bur-
rows method. For a better comparison, the query document itself should provide abso-
lutely no knowledge in determining the authorship of said document.

64 M.F. Tennyson

4.2 The Frantzeskou Method

One potential improvement to be made to the Frantzeskou method is that of the simi-
larity metric, the so-called SPI. The metric is used to determine which author profile
in the data set is most similar to a query program, simply by determining how many
n-grams the author profile and query program have in common. So, essentially, it is
the author who frequently uses the sequences of characters that appear most frequent-
ly in the query program that is attributed to be the author. This similarity metric is
quite simplistic, and a more sophisticated metric might be apropos.

In the Frantzeskou method, an author profile includes the L most frequently occur-
ring n-grams used by that author, where L is a parameter. Choosing the size of L is a
difficult task. Indeed, Frantzeskou leaves the determination of the optimal value for L
to future work. Burrows suggests that the optimal value of L is effectively infinity,
such that author profiles are not truncated at all, noting that this technique is equiva-
lent to coordinate matching [16-17].

5 Conclusion and Future Work

The two methods evaluated are clearly state of the art in authorship attribution of
source code. We've shown that the Frantzeskou method can successfully attribute
over 94% of documents in a 20-class experiment. When the data has been anony-
mized by stripping out all comments and string literals, the success rate still ap-
proaches an impressive 90%. Likewise, the Burrows method, which inherently ano-
nymizes data, successfully attributed nearly 90% of all documents.

Incremental improvements can likely be made to both methods. Selecting different
feature sets, tweaking Okapi parameters, selecting an altogether different similarity
measurement, utilizing a metric other than "single best result" to assign authorship,
and representing an author's entire set of work as a profile rather than as individual
documents would all be viable opportunities for improving the Burrows method. Po-
tential improvements to the Frantzeskou method might include utilizing other similar-
ity metrics and investigating the choice for the L parameter. When performing studies
utilizing the Burrows method, it is also imperative that the query document not be
included when generating the search engine indexes.

Future work also includes investigating ways of combining the two current state-
of-the-art methods to create a new, more-effective method. Perhaps a "confidence
level" could be applied to each document attribution. If the confidence is deemed low,
alternative factors and/or methods could be utilized to assist in the final determina-
tion. Perhaps "identifying" data such as comments and string literals could be handled
separately from the primary method of authorship attribution. If such information is
unavailable, it won't affect the primary means of attribution. If it is available, it could
be used in a secondary manner to supplement the primary method. This could make
sense, considering the data contained in comments and string literals are mostly free
from the confines of the programming language syntax and so, perhaps, should intrin-
sically be analyzed differently. Other factors such as identifiers and file names could
potentially be analyzed in a similar way.

 On Improving Authorship Attribution of Source Code 65

References

1. Spafford, E.H., Weeber, S.A.: Software Forensics: Can We Track Code to its Authors?
Computers & Security (COMPSEC) 12(6), 585–595 (1993)

2. Zhao, Y., Zobel, J.: Effective and Scalable Authorship Attribution Using Function Words.
In: Lee, G.G., Yamada, A., Meng, H., Myaeng, S.-H. (eds.) AIRS 2005. LNCS, vol. 3689,
pp. 174–189. Springer, Heidelberg (2005)

3. Juola, P.: Authorship attribution. Foundations and Trends in Information Retrieval 1(3),
233–334 (2007)

4. Stamatatos, E.: A Survey of Modern Authorship Attribution Methods. Journal of the
American Society for Information Science and Technology 60(3), 538–556 (2009)

5. Oman, P.W., Cook, C.R.: Programming Style Authorship Analysis. In: Proceedings of the
17th Conference on ACM Annual Computer Science Conference (CSC), pp. 320–326
(1989)

6. Gray, A., Sallis, P., MacDonell, S.: IDENTIFIED (Integrated Dictionary-based Extraction
of Non-language Dependent Token Information for Forensic Identification, Examination,
and Discrimination): A Dictionary-based System for Extracting Source Code Metrics for
Software Forensics. In: Proceedings of the International Conference on Software Engineer-
ing (ICSE), pp. 252–259 (1998)

7. Krsul, I., Spafford, E.H.: Authorship Analysis: Identifying the Author of a Program. Com-
puters & Security (COMPSEC) 16(3), 233–257 (1997)

8. MacDonell, S.G., Gray, A.R., MacLennan, G.,Sallis, P.J.: Software Forensics for Discri-
minating between Program Authors using Case-based Reasoning, Feedforward Neural
Networks and Multiple Discriminant Analysis. In: Proceedings of the 6th International
Conference on Neural Information Processing (ICONIP), pp. 66-71 (1999)

9. Ding, H., Samadzadeh, M.H.: Extraction of Java Program Fingerprints for Software
Authorship Identification. The Journal of Systems and Software 72, 49–57 (2004)

10. Lange, R., Mancoridis, S.: Using Code Metric Histograms and Genetic Algorithms to Per-
form Author Identification for Software Forensics. In: Proceedings of the 9th Annual Con-
ference on Genetic and Evolutionary Computation (GECCO), pp. 2082–2089 (2007)

11. Elenbogen, B.S., Seliya, N.: Detecting Outsourced Student Programming Assignments.
Journal of Computing Sciences in Colleges 23(3), 50–57 (2008)

12. Frantzeskou, G., Stamatatos, E., Gritzalis, S., Chaski, C.E., Howald, B.S.: Identifying
Authorship by Byte-Level N-Grams: The Source Code Author Profile (SCAP) Method.
International Journal of Digital Evidence 6(1), 1–18 (2007)

13. Burrows, S.D.: Source Code Authorship Attribution. Dissertation. RMIT University,
Melbourne, Australia (2010)

14. Keselj, V., Peng, F., Cercone, N., Thomas, C.: N-gram Based Author Profiles for Author-
ship Attribution. In: Proceedings of the Pacific Association for Computational Linguistics,
pp. 255–264 (2003)

15. Robertson, S.E., Walker, S.: Okapi/Keenbow at TREC-8. In: Voorhees, E., Harman, D.
(eds.) Proceedings of the Eighth Text Retrieval Conference, pp. 151–162. National Insti-
tute of Standards and Technology, Gaithersburg (1999)

16. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Indexing
Documents and Images. Morgan Kaufmann, San Francisco (1999)

17. Uitdenbogerd, A.L., Zobel, J.: Music ranking techniques evaluated. In: Oudshoorn, M.,
Pose, R. (eds.) Proceedings of the Twenty-Fifth Australasian Computer Science Confe-
rence, pp. 275–283. Australian Computer Society, Melbourne (2002)

	On Improving Authorship Attribution of Source Code
	1 Introduction
	2 Overview
	2.1 The Frantzeskou Method
	2.2 The Burrows Method

	3 The Comparative Study
	4 Analysis
	4.1 The Burrows Method
	4.2 The Frantzeskou Method

	5 Conclusion and Future Work
	References

