
On the Completeness of Reconstructed Data

for Database Forensics

Oluwasola Mary Adedayo and Martin S. Olivier

ICSA, Department of Computer Science,
University of Pretoria, South Africa
{mfasan,molivier}@cs.up.ac.za

Abstract. Databases are often used to store critical and sensitive in-
formation in various organizations and this has led to an increase in the
rate at which databases are exploited in computer crimes. Even though
various investigations involving databases have been explored, very lit-
tle amount of research has been done on database forensics. This paper
briefly describes a database reconstruction algorithm presented in an
earlier work and shows the limitation that can be encountered when the
algorithm has to deal with partially reconstructed relations or the dele-
tion of tuples in a relation. Since reconstructed data can often be used
as the evidence to support or refute claims about the data in a database,
the inability to reconstruct necessary data may imply the absence of ev-
idence. However, according to an axiom from forensic science, this does
not mean an evidence of absence. As such, this paper presents two dif-
ferent techniques that can be used in reconstructing more tuples in a
relation and provide corroborating evidence to claims about the data
on a database. A typical example is used to describe the limitation of
the database reconstruction algorithm and how the limitation can be
overcomed by using the techniques described in the paper.

Keywords: Digital forensics, Database forensics, Database reconstruc-
tion algorithm, Digital evidence, Forensic science.

1 Introduction

The use of databases in todays commercial systems cannot be over-emphasized
as databases have become a core component of many computing systems and
are often used to store critical and sensitive information to an organization or
her clients. Unfortunately, the increased usage of databases in storing volumes of
information together with the increased relevance of the data on many databases
in solving various crimes have led to an increase in the number of attacks directed
towards databases and interests investigating databases for artifacts that may
assist in solving various different crimes.

Database forensics is an emerging branch of digital forensics [16,1] that deals
with the identification, preservation, analysis and presentation of evidence from
databases [7]. Even though digital forensics has grown over the last decade from a

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 220–238, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



On the Completeness of Reconstructed Data for Database Forensics 221

relatively obscure trade-craft to an important part of many investigations [8], the
same cannot be said of database forensics, despite the importance of databases.
Although a large amount of research has been done on digital forensics, database
theory and database security, very little has been done on database forensics [15]
even though investigations involving databases have been explored in theory
and in practice. Similar to other branches of digital forensics, database forensics
helps in determining the root cause of an attack and finds out what was done.
An important aspect of database forensics deals with the ability to revert data
manipulation operations and determine values contained in a database at an
earlier time.

Although various data restoration techniques such as rollback and incremen-
tal backups have been explored over the years, these techniques are sometimes
inadequate for database forensics. For example, a rollback operation can only be
used provided that the transaction has not been committed and the use of in-
cremental backups is dependent on the availability of viable backups from which
data can be restored. Database forensics requires the ability to revert data ma-
nipulation operations even when a transaction has been long committed or when
there are no viable backups.

In our earlier work [6], we presented an algorithm that can be used for re-
constructing the information in a database at an earlier time of interest. The
algorithm makes use of the inverse functions of the relational algebra [4] and in-
corporates the notion of value blocks (a group of queries whose evaluation does
not change the information in a particular relation). The inverse of a query is
found by taking the database schema and the log of modifying queries performed
on the database into consideration. In another work [5], we prove that the re-
lation generated from the algorithm is always correct. That is, even though the
reconstructed relation may be incomplete if compared with the original relation,
it is at least a subset of the original relation.

The generation of incomplete relations or inability to reconstruct values of in-
terest in a relation when using the database reconstruction algorithm [6] stems
from the fact that the inverse generated from some of the inverse operators of the
relational algebra may be missing one or more tuples or values in a column of the
original relations. It also implies that the evidence needed from a database dur-
ing an investigation may not be found. However, this does not imply that such
evidence does not exist. The objective of this paper is to discuss the limitation
of the database reconstruction algorithm and describe some of the techniques
that can be applied in conjunction with the algorithm in order to generate more
complete relations or tuples of a relations as well as provide corroborating evi-
dence regarding claims about the information on a database at an earlier time.
The paper describes a typical application of the reconstruction algorithm that
reflects its limitation. It also discusses two different techniques of reconstructing
more information from a database using the reconstruction algorithm.



222 O.M. Adedayo and M.S. Olivier

2 Background and Notation

This section gives a brief background on database forensics and introduces the
relational model of database management systems (DBMS) and its operators. It
also describes the notation used in the rest of the paper.

2.1 Database Forensics

As earlier mentioned, database forensics often requires the determination of the
information in a database at an earlier time. Although the information in a
database at any instance can be determined by querying the database, much
more effort is required in order to determine the information contained at an
earlier time since various modifications might have occurred. Some of the little
work that has been done in database forensics include the series of papers by
Litchfield [9,10,11,12,13,14] all of which focus on Oracle forensics. Wright [18]
published a book that also explains Oracle forensics and investigates the possi-
bility of using Oracle LogMiner as a forensics tool [17]. Another book by Fowler
[7] focuses on SQL server database forensics and discusses the effect of rootk-
its on data collection and analysis during the forensics investigation of an SQL
server database. None of these works describes the process of reconstructing the
information in a database at an earlier time.

The ability to reconstruct the information on a database at earlier time is
an important aspect of database forensics. An illustration of this fact, which re-
quires forensics investigation is a situation where a sales representative claims to
have sold a large quantity of a certain good at the selling price on the database
at a particular date even though the price presents a huge loss to the organi-
zation. Verifying the representative’s claim requires that the selling price of the
good at that particular date can be determined even though several modifica-
tions/updates might have been performed on the database which might have
affected the price of the good since the date of interest.

In our earlier work, we present an algorithm [6] that can be used to deter-
mine the information contained in a database at an earlier time. Although our
focus in this paper is to discuss the completeness of the result generated from
the algorithm and how this can be improved, it is important to introduce the
notion of inverse relational algebra and value blocks which are a major compo-
nent of the algorithm. The relational algebra [4] is employed since it represents
a fundamental aspect of databases and gives a formal description of how the
information stored in a database relate with each other.

2.2 Inverse Relational Algebra

The relational model for DBMS was developed by Codd [4] and works on the
relational theory of mathematics. The model is composed of one type of com-
pound data known as a relation. Given a set of domains, D = D1, D2, . . . , Dn

over which attributes A = A1, A2, . . . , An are defined respectively, a relation
R (also called an R-table or R(A)) is a subset of the Cartesian product of the



On the Completeness of Reconstructed Data for Database Forensics 223

Table 1. Inverse Operators of the Relational Algebra

Operators Query Inverse Operators

Rename (ρ) R← ρAi=Bj (R) ρ−1(R) = ρBj=Ai(R)

Cartesian
product (×)

T ← R(A)× S(B) ×−1(T ) = (R,S) where
R = πA(T ) and S = πB(T )

Union (∪) T ← R ∪ S ∪−1(T ) = (R∗, S) where
R∗ = T − S provided that S
is known and vice versa

Intersection
(∩)

T ← R ∩ S ∩−1(T ) = (R∗, S∗) where
R∗ = S∗ = T

Difference (−) T ← R − S −−1(T ) = R∗ = T . If R is
known, S∗ = R− T .

Division (/) T ← R/S /−1(T ) = (R∗, S∗) where
R∗ = RM and RM is the re-
mainder of the division

Join (�) T ← R(A) �p(A,B) S(B)
T ← R �p(A,B) S

�−1 (T ) = (R∗, S∗) where
R∗ = πA(T ) and S∗ = πB(T )

Projection (π)
T ← πA1,A2,A3(R)

π−1(T ) = S∗ = T
T ← R[A1, A2, A3]

Selection (σ)
T ← σp(A)(R)

σ−1
p(A)

(T ) = S∗ = T
T ← R[p(A)]

domains. A relation can be conceived as a table where the columns are the at-
tributes, the rows are referred to as tuples and the domains define the data types
of the attributes.

The relational algebra consists of basic operators used to manipulate relations
and a relational assignment operator ←. The basic operators transform either
one or two relations into a new relation. Such transformations are known as
relation-valued expressions (rve). A query is defined in the form T ← rve, where
T is the name of the relation obtained when the rve is evaluated. The basic
operators as defined by Codd [4] and the corresponding notation often used are
shown in the second column of table 1, where R, S, and T are relations and
A, B and C are attributes of these relations. The notation p(attributes) is a
logical predicate on one or more attributes representing a condition that must
be satisfied by a row before the specified operation can be performed on it.

The inverse operators of the relational algebra work on the assumption that
the database schema is known. The aim of the inverse operators is to find the
value of one or more attributes of a relation at a specific time t by finding the
inverse of the most recent query performed on the current relationRt sequentially
until the desired time ti is reached. The output generated by an inverse operator
may either be partial or complete when compared to the original relation. That
is, the inverse of a query Q can be defined as Q−1 such that,

Q−1(Q(Rt)) = R∗t



224 O.M. Adedayo and M.S. Olivier

where R∗t is a subset of Rt. That is, some tuples or values that should be in
some columns of R∗t may be missing1. In cases where R∗t = Rt, we refer to the
inverse found as a complete inverse. Otherwise, we refer to the inverse found as a
partial inverse. A partial inverse can be a partial tuples inverse and/or a partial
columns inverse depending on whether some of the tuples or values in some
columns of the original relation are missing, respectively. However, regardless
of the classification of the inverse operators, there are often instances where a
complete inverse can be found with some of the operators grouped as partial
inverse. A summary of the inverse operators of the relational algebra and how
inverses are computed is given in table 1. More details about relational algebra,
the inverse operators and instances where a complete inverse can be generated
from the inverse operators classified as partial inverses can be found in earlier
works [6,5].

2.3 Relational Algebra Log and Value Blocks

A relational algebra log (RA log) is a log of queries expressed as relational algebra
operations instead of the traditional SQL notation. The use of the RA log allows
us to easily determine when a relation has been modified. Using the relational
algebra notation, a relation is changed only when a new assignment operation is
made into the relation. This knowledge allows us to group the RA log into a set
of overlapping value blocks. Another advantage of using the RA log instead of the
usual SQL log file is that relational algebra allows queries to be represented as a
sequence of unary and binary operations involving relational algebra operators.
Thus, the log file is more readable. For example, a typical select statement in a
SQL log file can take several forms; however, the use of the RA log eliminates
ambiguities that may arise in defining an inverse for select statements since any
select statement can be expressed with relational algebra operators.

A value block is defined as a set of queries within which a particular relation
remains unchanged. Value blocks are named based on the relation that remains
the same in the block and subscripts are used to signify which value block occurs
first. A value block starts with an assignment operation into the relation and ends
just before another assignment operation into the relation is encountered. For
example, the value block of a relation R is denoted as VRi where i = 1, 2, 3, . . . .
The relation R remains the same throughout the execution of block VR1 until it
is updated by the execution of the first query of block VR2 . Thus, the value block
of a relation can be contained in or overlap that of another relation, so that VR1

and VS2 can have a number of queries in common. However, two value blocks of
the same relation, VR1 and VR2 cannot overlap or be a subset of the other [6].
The time stamps usually associated with the traditional query log is preserved
in the RA log in order to group the value blocks into appropriate sequences. An
example of a RA log generated from a traditional log file and divided into value
blocks is shown in figure 1. Subsequent examples in the paper will refer to this
RA log.

1 The mapping generated by queries are not usually a bijection. However, this does
not mean that some inverses cannot be found.



On the Completeness of Reconstructed Data for Database Forensics 225

t0 : R← {tuple1, tuple2}

t1 : S ← {tuple1, tuple2}

t2 : H ← R ∩ S

t3 : S ← Fupdate(word=six)(σnumber=5(S))

t4 : I ← R ∪ S

t5 : J ← H ∩ I

t6 : H ← ∅

t7 : H ← I − J

t8 : R← ρnumber = numeral(R)

t9 : J ← ∅

VR1

VR2

VS1

VS2

VH1

VH2

VH3

VI1

VJ1

VJ2

Fig. 1. A Relational Algebra Log Grouped into Value Blocks

2.4 Database Reconstruction Algorithm

The database reconstruction algorithm employs the notion of RA logs and value
blocks as well as the inverse operators of the relational algebra. In this section, we
give a brief description of the reconstruction algorithm necessary to understand
the content of this paper, a more detailed explanation of the algorithm can be
found in [6].

01: INVERSE(Relation D, RA Query VDi
[1]) {

02: OUTPUT: Inverse of the assignment into D from query q
03: Let q = the query at VDi

[1];
04: switch(q) {
05: case (D ← ∅):
06: T = ∅; return T;
07: case (D ← op D):
08: T = op−1(D); return T;
09: case (D ← A op D):
10: case (D ← D op A): //Assume A is in VAi
11: if (op = ∩): T = D; return T;
12: if ((op = ∪) and (∃ VAi+1

)): T = ∅; return T;
13: else:
14: A← SOLVE(A, VAi

, log, S);

15: T = op−1(D)|A; return T;
16: }
17: }

Fig. 2. The INVERSE(Relation D, RA Query VDi [1]) function



226 O.M. Adedayo and M.S. Olivier

Although the algorithm is aimed at reconstructing specific values in a relation
on a database at some earlier time, it can also be applied to generate tables in
a database. The algorithm assumes that the query log exists, and contains the
complete set of modifying queries that have been performed on the database
from at least the particular time of interest (or earlier) to the present time.

The reconstruction algorithm consists mainly of two functions: the inverse

and the solve functions. The solve function makes use of the inverse function
(shown in figure 2) which takes as input the name of the relation to be recon-
structed (D) together with a query, specifically the first line of a value block of
D (denoted as VDi [1]) and finds the inverse of the query in order to determine

SOLVE(Relation D, Value Block VDi
, RA Log log, Set S)

OUTPUT: Reconstructed relation D in value block VDi
(RD)

01: Let Q = Set of queries involving relation D in value block VDi
;

02: Let R = Set to reconstructed D from different approaches;
03: If (D, VDi

, RD) ∈ S: return RD
04: else:
05: S = S ∪ (D, VDi

, RD); //RD is initialized as an empty relation
06: for each element e in Q:
07: switch(e) {
08: case (D ← op D):
09: if (� VDi+1

): return D;
10: else:
11: D ← SOLVE(D, VDi+1

, log, S); T ← INVERSE(D, VDi+1
[1]);

12: Insert T into R
13: OR
14: D ← SOLVE(D, VDi−1

, log, S); T ← op D;

15: Insert T into R
16: case (D ← op A): //Assume is in VAi
17: if (� VDi+1

): return D;
18: else:
19: if (� VAi+1

):

20: D ← op A; return D;
21: else:
22: A← SOLVE(A, VAi+1

, log, S); A ← INVERSE(A, VAi+1
[1]);

23: D ← op A; return D;
24: case (D ← A op D):
25: case (D ← D op A): //Assume A is in VAi
26: if (� VDi+1

): return D;
27: else:
28: D ← SOLVE(D, VDi+1

, log, S); T ← INVERSE(D, VDi+1
[1]);

29: Insert T into R;
30: if (� VAi+1

):

31: D ← SOLVE(D, VDi−1
, log, S);

32: T ← A op D or (D op A); //depending on case
33: Insert T into R;
34: else:
35: D ← SOLVE(D, VDi−1

, log, S);

36: A← SOLVE(A, VAi
, log, S);

37: T ← A op D or (D op A) //depending on case
38: Insert T into R;
39: OR
40: D ← SOLVE(D, VDi−1

, log, S);

41: A← SOLVE(A, VAi+1
, log, S); A← INVERSE(A, VAi+1

[1]);

42: T ← A op D or (D op A); //depending on case
43: Insert T into R;

Fig. 3. The SOLVE function



On the Completeness of Reconstructed Data for Database Forensics 227

44: case (G← op D): //Assume G is in VGi
45: if (� VDi+1

): return D;
46: else:
47: if (� VGi+1

):

48: T ← op−1(G); Insert T into R;
49: else:
50: D ← SOLVE(D, VDi+1

, log, S); T ← INVERSE(D, VDi+1
[1]);

51: Insert T into R;
52: OR
53: G← SOLVE(G, VGi+1

, log, S); G← INVERSE(G, VGi+1
[1]);

54: T ← op−1(G); Insert T into R;
55: case (G← D op A):
56: case (G← A op D): //Assume G and A are in VGi

and VAi
respectively

57: if (� VDi+1
): return D;

58: else:
59: if (� VGi+1

):

60: if (op = ∩):
61: Insert G into R;
62: if (op 
= ∪):
63: T ← op−1(G)[1]; //D is at index 1 in the output of op−1(G)
64: Insert T into R;
65: if (� VAi+1

):

66: T ← op−1(G)|A; Insert T into R;
67: else:
68: A← SOLVE(A, VAi+1

, log, S); A← INVERSE(A, VAi+1
[1]);

69: T ← op−1(G)|A; Insert T into R;
70: else:
71: if (� VAi+1

):

72: G← SOLVE(G, VGi+1
, log, S); G← INVERSE(G, VGi+1

[1]);

73: T ← op−1(G)|A; Insert T into R;
74: else:
75: G← SOLVE(G, VGi+1

, log, S); G← INVERSE(G, VGi+1
[1]);

76: if (op = ∩): Insert G into R;
77: else:
78: A← SOLVE(A, VAi+1

, log, S); A← INVERSE(A, VAi+1
[1]);

79: T ← op−1(G)|A; Insert T into R;
80: }
81: RD ← union of all the relations in R; //Reconstructed D
82: return RD;

Fig. 3. (Continued.)

D in its previous value block (VDi−1). The solve function takes as input the
name of the relation to be reconstructed D, its value block in which it is to
be reconstructed VDi , a relational algebra log log, and a set S which is used
to store tuples of relation and value block (and the corresponding result) which
have been considered during the reconstruction. The reconstructed relation D in
the specified value block is returned from the algorithm. A listing of the solve

function is shown in figure 3.

3 Limitation of the Reconstruction Algorithm

In section 2.2, we mentioned that the output generated from the inverse opera-
tors of the relational algebra may either be complete or partial when compared
with the original relation. Even though every reconstructed relation is always
correct, that is, it is at least a subset of the original relation [5], partial inverses



228 O.M. Adedayo and M.S. Olivier

sometimes affects the amount of information that can be reconstructed using the
database reconstruction algorithm. Since the algorithm depends on the inverse
operators of the relational algebra, the generation of partial inverses from some
of these operators sometimes result in the generation of significantly incomplete
(or empty) relation when using the algorithm.

This section gives a brief description of how the values in a relation at an earlier
time can be reconstructed using the database reconstruction algorithmand reveals
the limitation of the algorithm when dealing with inverse operators that generate
partial inverses. In figure 1, we show a typical example of a RA log generated from
a traditional SQL log file. For simplicity and further explanations in subsequent
sections of the paper, we assume that the content of each relation after executing
the queries in the RA log at each timestamp are as computed in figure 4.

Our aim is to reconstruct the tuples in relation H at time t3 since several
modifications of the relation has occurred. The relations R ans S both have
attributes word and number and contains two tuples each, which are assigned at
time t0 and t1, respectively.

The relation H at time t3 in figure 1 is the same as H at any time between
t2 and t5 inclusively, since the queries executed between these times are in the
same value block of H , that is, VH1 . Using the reconstruction algorithm, there
are three different ways in which the relation H at t3 can be reconstructed:

1. By reversing the query performed on the first line of value block VH2 at time
t6. Unfortunately, this cannot be achieved since the relation H was dropped
(or all its contents were deleted) at this point.

2. Another alternative is to find the inverse of the intersection operation per-
formed at time t5 in order to obtain a partial reconstruction of H . However,
since the relation J was also subsequently deleted at time t9, this inverse
cannot be found since the inverse of the intersection operation is given as
∩−1(J) = (H∗, I∗) where H∗ = I∗ = J .

3. The last possible way of reconstructing H at t3 is to re-execute the query
at time t2. This requires that the relations R an S at time t2 are known
(or reconstructed first). Since relations R and S are in value blocks VR1 and
VS1 , respectively at time t2 and they both have subsequent value blocks, the
relations must first be reconstructed in their respective value blocks at t2
before the query at t2 can be re-executed. The relation R at time t2 (or in
VR1) can be found by finding the inverse of the rename operation performed
at time t8, which is given as ρ−1(R) = ρnumeral = number(R). Since an inverse
rename operation always generates a complete relation, the relation R at t2
is successfully reconstructed from the inverse rename operation. The relation
S at time t2 (or in VS1) can be found by getting the inverse of the update
operation performed on S at t3. The inverse of the update can be represented
as:

F
−1
update(word=six)(σ

−1
number=5(S)) = Fupdate(word=null)(σnumber=5(S)).

This generates the partial relation S∗ shown in table 2. Since relations R
and S at t3 are now known, the query at t3 (H ← R∩ S)can be re-executed



On the Completeness of Reconstructed Data for Database Forensics 229

t0 : R ← {tuple1, tuple2} R
Word Number
five 5
six 6

t1 : S ← {tuple1, tuple2} S
Word Number
four 4
five 5

t2 : H ← R ∩ S H
Word Number
five 5

t3 : S ← Fupdate(word=seven)(σnumber=5(S)) S
Word Number
four 4
seven 5

t4 : I ← R ∪ S I

Word Number
four 4
five 5
six 6

seven 5

t5 : J ← H ∩ I J
Word Number
five 5

t6 : H ← ∅ H
Word Number

t7 : H ← I − J H

Word Number
four 4
six 6

seven 5

t8 : R← ρnumber = numeral(R) R

Word Numeral
four 4
five 5
six 6

t9 : J ← ∅ J
Word Number

Fig. 4. Original Relations Obtained from Queries Executed

Table 2. Reconstructed relation S∗

S∗
Word Number
four 4
null 5



230 O.M. Adedayo and M.S. Olivier

in order to reconstruct the tuples in H at time t3. However, because the
reconstructed relation S∗ is a partial inverse, the tuple in H at t3 cannot be
reconstructed from the re-execution of this query and an empty relation H∗

with the same attributes as the original relation H is generated (table 3).

Table 3. An Empty Reconstructed relation H∗

H∗ Word Number

This example reflects a major limitation of the database reconstruction al-
gorithm that can be encountered when dealing with partial inverses. In the
rest of this paper, we discuss some of the techniques that can be applied
in conjunction with the reconstruction algorithm in order to generate more
complete reconstructed relations and/or find corroborating evidence regard-
ing the data on a database during database forensics.

4 Absence of Evidence

The database reconstruction algorithm [6] can be used to find the information
in the database at an earlier time. In this same way as data collected in different
branches of digital forensics can be the required evidence or assist in carrying
out an investigation, reconstructed relations may often be used as the evidence2,
provide support for other evidence during an investigation, or to provide more
information about an investigation. Unfortunately, the fact that a reconstructed
relation may be incomplete implies that some evidence may not be found. In
situations where the evidence to refute or support a claim cannot be found in
a reconstructed relation, it is important to remember an axiom from Forensics
Science that says that, “absence of evidence is not evidence of absence” [2]. For
example, if no evidence (or reconstructed data) could be found to support the
sales representative’s claim about the price of good sold on a particular date, it
does not mean that the representative is lying. If no evidence could be found on a
computer to determine whether or not it accessed a particular web page, it does
not mean that the computer was used to access the site. It is important to base
all assertions on solid supporting evidence and not on an absence of evidence
[2]. Thus, it is necessary for an investigator to find corroborating evidence that
clearly demonstrates the falsity or truth of a claim about the information on a
database at an earlier time.

In this paper, we present two techniques of finding corroborating evidence
about claims on the data in a database. The first technique works based on
Locard’s exchange principle that contact between two items will always result

2 Evidence may or may not be admissible in a court of law.



On the Completeness of Reconstructed Data for Database Forensics 231

in an exchange [3]. That is, there will always be some trace evidence with every
interaction even though it may not be easily detected. According to Casey [2],
this principle applies in both the physical and digital realms and can provide
links between them. For example, in a case involving email harassment, the act
of sending messages over a web-based email service can leave traces such as files
and links on the sender’s hard disk and/or web browser as well as some date-
time related information. Other information may also possibly be obtained from
the email service provider [2]. Although this principle may not be true for all
systems in general, it is true for systems that keep record of their actions or
activities. In database reconstruction, the items involved in an interaction are
the relations on a database while the interaction is the operation performed on
such relations. This technique works on the fact that if there is a claim that
some data was in a relation at an earlier time, then there should be some trace
evidence that can be gathered from the interaction of the relation with other
relations on the database.

The second technique for finding corroborating evidence involves the recon-
struction of more complete relations through the iteration of the database recon-
struction algorithm presented in [6] and inferences from reconstructed relations.
The technique works on the fact that the data created when an investigator
reenacts the events in a crime should resemble the original evidence collected
as close as possible. That is, given a reconstructed relation, if an investigator
re-executes the queries performed on the database (using the log record), the
recreated database instance should be the same as the current instance of the
database. If this is not the case, then it implies that some information is missing
in the reconstructed relation since we have already proved that any data in a
reconstructed relation is indeed correct and contained in the original relation [5].

In the following sections we describe how these techniques can be applied
in finding corroborating evidence regarding claims about the information in a
database at an earlier time and how the database reconstruction algorithm can be
used to get more complete reconstructed relations. The techniques are currently
not automated as this paper is focused on describing the logical steps to be
followed during reconstruction.

5 Reconstruction from Interaction

According to Locard’s exchange principle [3], the interaction or contact between
two items will always result in an exchange. The technique of reconstructing data
from interaction works on this principle and is synonymous to the collection of
trace evidence at a crime scene.

From the reconstruction example in section 3, it is obvious that the tuples in
relation H at t3 could not be reconstructed because of two reasons:

1. the database reconstruction algorithm depends on the inverse of the update
performed on relation S, which results in the generation of a partial relation
S∗ with missing values in one of its columns.



232 O.M. Adedayo and M.S. Olivier

2. The inverse of the first query of the subsequent value block of H after time
t3, that is, the query at t6 in value block VH2 cannot be found since H was
either dropped or all of its tuples were deleted at this point.

In general, a particular situation in which the database reconstruction algorithm
may be unable to reconstruct required data during an investigation is when
the relation to be reconstructed is deleted in the subsequent value block of the
relation; one or more relations which the relation being reconstructed interacted
with have been deleted; or where the re-execution of the actual query that led to
the relation being reconstructed cannot be done due to the inability to determine
or reconstruct a complete version of other relations involved in the query.

An alternative way of reconstructing data in these cases is to explore the in-
teraction of the relation to be reconstructed with other relations (using the RA
log) and making inferences based on the operations performed during the inter-
action. A summary of inferences that can be made when considering different
operations in an interaction are given below:

1. Cartesian product: if H ← I(A)× J(B), where A and B are attributes of
the relations, then:
(a) x ∈ πA(H)⇔ x ∈ I
(b) x ∈ πB(H)⇔ x ∈ J .

2. Union: if H ← I ∪ J , then:
(a) x ∈ H ⇔ x ∈ I or x ∈ J , and this means that,
(b) x ∈ H and x /∈ I ⇒ x ∈ J and
(c) x ∈ H and x /∈ J ⇒ x ∈ I.

3. Intersection: if H ← I ∩ J , then:
(a) x ∈ H ⇔ x ∈ I and x ∈ J .

4. Difference: if H ← I − J , then:
(a) x ∈ H ⇔ x ∈ I and x /∈ J
(b) x ∈ J ⇒ x /∈ H .

5. Division: if H ← I/J , then
(a) x ∈ H × J ⇒ x ∈ I. That is H × J ⊆ I.

6. Projection: if H ← πA(J), then:
(a) H ⊆ J , that is, y ∈ H ⇒ y ∈ J where y are values in similar columns of

H and J .
7. Selection: if H ← σA(J), then:

(a) H ⊆ J , that is, x ∈ H ⇒ x ∈ J .
8. Rename: if H ← ρA=B(J), where A and B are attributes, then:

(a) J = ρB=A(H) and x ∈ H ⇔ x ∈ J .

Considering the reconstruction example in section 3, this technique can be ap-
plied to reconstruct the tuple in H instead of the empty relation H∗ generated
from the reconstruction algorithm. It is important to note that the technique
of reconstruction from interaction is not independent and requires the usage of
the inverse operators of the relational algebra or the use of the reconstruction
algorithm in regenerating other relations that might be involved in an interac-
tion. This technique can be used in reconstructing the tuples in a relation by
taking the following steps. The reconstruction of the tuples in relation H at t3
(problem from section 3) is used to provide an example of the process at each
step.



On the Completeness of Reconstructed Data for Database Forensics 233

1. Identify all the interactions involving the relation to be reconstructed from
the RA log. There should be at least one interaction before and after the
deletion of the relation. For example, the interactions ofH in figure 4 include
the query at t5 (that is, J ← H ∩ I) and at t7 (that is, H ← I − J).

2. Determine the tuples in the other relations involved in the interaction(s)
that occurred after the deletion of the relation of interest either through the
reconstruction algorithm or the inverse operators of the relational algebra.
For example, we need to find the inverse of the query H ← I − J in order
to determine the tuples in J since relation I is known. Thus, we have3:

−−1(H) = J∗ = I −H

which is as shown in table 4.

Table 4. Relation J∗ from the inverse difference operation

J∗ Word Number
five 5

3. The last step involves making inferences from the other relations that have
been reconstructed in step 2, and which were also involved in an interactions
with the relation being reconstructed before its deletion. For example, the
relation J was involved in an interaction with H at t5 (that is the query,
J ← H ∩ I) and since this involves an intersection operation, the inferences
described earlier implies that every tuple in J must also be in H . That is,

Table 5. H through Reconstruction from Interaction

H
Word Number
five 5

we have the relation H which is given as table 5 instead of the earlier empty
relation in table 3.

6 Reconstruction through Iteration

Another technique that can be used in reconstructing the information in a
database is through the iteration of the database reconstruction algorithm and
the queries in the RA log, and making inferences from tuples generated and
queries performed during the process.

3 Although the resulting J∗ is complete when compared with the original J at t7, this
is not always the case with inverse difference operator.



234 O.M. Adedayo and M.S. Olivier

Rr

Word Number
five 5
six 6

Sr

Word Number
four 4
null 5

Fig. 5. Reconstructed relations Rr and Sr

The technique works on the notion that if the queries in a log are re-executed
using some reconstructed relations, then the final instance of the database gen-
erated after the re-executions should be the same as the current instance of the
database. Since it was proven in an earlier work [5] that the output generated
from the database reconstruction algorithm is correct, any difference between
the current instance of the database and the instance generated from the re-
executions implies that there are some missing data in one or more relations
involved in the queries that were re-executed. The differences identified between
the two database instances can be used to make inferences and reconstruct the
missing data in the relations involved.

Considering the reconstruction example in section 3, this technique can be
applied to reconstruct the tuple in H instead of the empty relation H∗ generated
from the reconstruction algorithm. The steps involved in this technique are listed
below. The reconstruction of the tuples in relationH at t3 (problem from section
3) is used to provide an example of the process at each step.

1. Attempt the reconstruction using the database reconstruction algorithm and
identify other relations that needed to be reconstructed. For example, our
attempt to reconstruct relationH at t3 in figure 4 required the reconstruction
of relations R ans S. For simplicity, we will use a subscript r to denote
relations that were reconstructed or generated from reconstructed relation.
Thus, the reconstruction of relations R and S generated the relations Rr = R
and Sr = S∗ (as explained in section 3) given in figure 5.

2. Re-execute the queries in the log using the reconstructed relations and make
possible inferences whenever a reconstructed relations differs from the cur-
rent instance on the database. For examples, in the reconstruction of H , we
can re-execute the queries in figure 4 using the relations Rr and Sr. The
re-execution process is shown in figure 6.

At time t4 of the re-execution, the relation Ir generated differs from the
relation I in the current instance of the database. A comparison of the two
relations (figure 7) shows that I contains a tuple that is not in Ir and Ir
contains a tuple that is not in I. It is possible to assume that the null value in
Ir is indeed the value “seven” since there is only one column with a missing
value and the second column in both I and Ir matches. Alternatively, we
can make inferences from the tuple in I which is not in Ir . That is, since
I is a union of R and S, then the tuple <seven, 5> should be in either
Rr or Sr. However, since we are sure that the relation Rr is complete, it
implies that the tuple is in Sr. That is, Sr is given as table 6. Since the
relation Sr generated from the inferences are exactly the same as the current



On the Completeness of Reconstructed Data for Database Forensics 235

t0 : Reconstructed relation Rr Rr

Word Number
five 5
six 6

t1 : Reconstructed relation Sr Sr

Word Number
four 4
null 5

t2 : Hr ← Rr ∩ Sr Hr
Word Number

t3 : S ← Fupdate(word=seven)(σnumber=5(S))
Skipped since Sr was

generated from its inverse.

t4 : Ir ← Rr ∪ Sr Ir

Word Number
four 4
five 5
six 6
null 5

Fig. 6. Re-execution of the query log using the reconstructed relations

Ir

Word Number
four 4
five 5
six 6
null 5

I

Word Number
four 4
five 5
six 6

seven 5

Fig. 7. Reconstructed relation Ir and current relation I

Table 6. Table Sr generated from re-execution and inferences

Sr

Word Number
four 4
seven 5

instance of the relation S, no further inferences can be made at this point.
The concluding part of the re-execution process is shown in figure 8. The
relation Hr generated from the re-execution process at time t7 should be
the same as the current instance of H on the database. But, this is not the
case (as shown in figure 9). Again, the differences between the two relations
can be used to make inferences about the data in the database. Relation Hr

contains the tuple <five, 5> which is not present in the current instance of
H , this implies that some data was missing in the reconstructed relations
used to compute Hr. Since the tuple, <five, 5> is not expected to be in Hr,
then the only possibility is that it should have been in the relation Jr since



236 O.M. Adedayo and M.S. Olivier

t5 : Jr ← Hr ∩ Ir Jr
Word Number

t6 : Hr ← ∅ H
Word Number

t7 : Hr ← Ir − Jr Hr

Word Number
four 4
five 5
six 6
null 5

t8 : R← ρnumber = numeral(R)
Skipped since Rr was

generated from its inverse.

Fig. 8. Re-execution of the query log using the reconstructed relations

Hr

Word Number
four 4
five 5
six 6
null 5

H

Word Number
four 4
six 6

seven 5

Fig. 9. Reconstructed relation Hr and current relation H

all the tuples in Jr were removed from Ir to generate Hr (from the difference
operation at t7). If the tuple is in Jr at t7, it implies that it was also in Jr at
t5 since both times are in the same value block of J . This further implies the
tuple <five, 5> was in both Hr and Ir at time t5. Also, since t5 and t2 are
in the same value block of H , it implies that the tuple <five, 5> was in H at
t2 and subsequently at t3. Thus, the relation H at t3 can be reconstructed
as shown in table 7.

Table 7. H from Reconstruction through Iteration

H
Word Number
five 5

As with the technique of reconstruction from interaction and as shown in the
example above, the technique of reconstruction data through iteration also rely
on the use of the database reconstruction algorithm, inverse relational algebra
and value blocks. Also, the techniques are currently not automated as this paper
is focused on describing the logical steps to be followed during reconstruction.
Both techniques can be used in reconstructing data when dealing situations



On the Completeness of Reconstructed Data for Database Forensics 237

involving incomplete reconstruction of some other relations or the deletion of
required relation at some point in the log file. The decision about which of the
techniques to use will depend on the content of the log file and/or an intuitive
decision of which technique is likely to enable the reconstruction of more data.

7 Conclusion and Future Work

This paper discusses an algorithm for reconstructing the information in a
database at an earlier time and presents the limitation of the algorithm us-
ing a typical example. The limitation of the algorithm arises mainly because of
the possibility of generating incomplete inverses when using the inverse oper-
ators of the relational algebra. Since the reconstructed relation or tuples of a
relation may often be used as evidence in an investigation; to refute or support
claims about the content of a database at an earlier time; or to simply get for
information about an investigation, the reconstruction of incomplete data may
imply that some evidence are missing.

The paper describes two different techniques that can be used in conjunction
with the database reconstruction algorithm and the inverse operators of the
relational algebra to generate more complete relations or provide corroborating
evidence for claims about the data on a database at an earlier time. The first
technique works based on Locard’s exchange principle while the other rely on
the iteration of the reconstruction algorithm and re-execution of the queries in
the log file. Both techniques are described using a typical example.

Future work will entail investigating if these techniques can be used to recon-
struct all the tuples in a relation always and if not, describe the conditions under
which complete relations can be reconstructed. In addition, we will determine
whether the information recovered from a database using the reconstruction al-
gorithm and these techniques is “maximal” in that one determines that the log
contains no further information that may be used to reconstruct values.

Acknowledgement. This research was supported by the Organization for
Women in Science for the Developing World (OWSD).

References

1. Carrier, B.: Defining digital forensic examination and analysis tools using abstrac-
tion layers. International Journal of Digital Evidence 1, 2003 (2002)

2. Casey, E.: Digital Evidence and Computer Crime - Forensic Science, Computers
and the Internet, 3rd edn. Academic Press (2011)

3. Chisum, W.J., Turvey, B.: Evidence dynamics: Locard’s exchange principle & crime
reconstruction. Journal of Behavioural Profiling 1(1) (January 2000)

4. Codd, E.F.: The Relational Model for Database Management, Version 2. Addison-
Wesley (1990)

5. Fasan, O.M., Olivier, M.S.: Correctness proof for database reconstruction algo-
rithm. Digital Investigations (2012)



238 O.M. Adedayo and M.S. Olivier

6. Fasan, O.M., Olivier, M.S.: Reconstruction in database forensics. In: Peterson,
G., Shenoi, S. (eds.) Advances in Digital Forensics VIII. IFIP AICT, vol. 383,
pp. 273–287. Springer, Heidelberg (2012)

7. Fowler, K.: SQL Server Forensic Analysis. Addison Wesley Professional (2008)
8. Garfinkel, S.L.: Digital forensics research: The next 10 years. Digital Investiga-

tion 7, S64 – S73 (2010); The Proceedings of the Tenth Annual DFRWS Conference
9. Litchfield, D.: Oracle forensics part 1: Dissecting the redo logs. NGSSoftware In-

sight Security Research (NISR) Publication (March 2007)
10. Litchfield, D.: Oracle forensics part 2: Locating dropped objects. NGSSoftware

Insight Security Research (NISR) Publication (March 2007)
11. Litchfield, D.: Oracle forensics part 3: Isolating evidence of attacks against the

authentication mechanism. NGSSoftware Insight Security Research (NISR) Publi-
cation (March 2007)

12. Litchfield, D.: Oracle forensics part 4: Live response. NGSSoftware Insight Security
Research (NISR) Publication (April 2007)

13. Litchfield, D.: Oracle forensics part 5: Finding evidence of data theft in the absence
of auditing. NGSSoftware Insight Security Research (NISR) Publication (August
2007)

14. Litchfield, D.: Oracle forensics part 6: Examining undo segments, flashback and
the oracle recycle bin. NGSSoftware Insight Security Research (NISR) Publication
(August 2007)

15. Olivier, M.S.: On metadata context in database forensics. Digital Investigation
5(3-4), 115–123 (2009)

16. Palmer, G.: A road map for digital forensic research. Technical report. In: First
Digital Forensic Research Workshop (DFRWS), Utica, New York (August 2001)

17. Wright, P.M.: Oracle database forensics using logminer. Next Generation Security
Software (January 2005)

18. Wright, P.M., Burleson, D.K.: Oracle Forensics: Oracle Security Best Practices.
Rampant Techpress (2010)


	On the Completeness of Reconstructed Data for Database Forensics
	1 Introduction
	2 Background and Notation
	2.1 Database Forensics
	2.2 Inverse Relational Algebra
	2.3 Relational Algebra Log and Value Blocks
	2.4 Database Reconstruction Algorithm

	3 Limitation of the Reconstruction Algorithm
	4 Absence of Evidence
	5 Reconstruction from Interaction
	6 Reconstructionthrough Iteration
	7 Conclusion and Future Work
	References




