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Abstract. Recent advances in genetic engineering have allowed the insertion of 
artificial DNA strands into the living cells of organisms. Several methods have 
been developed to insert information into a DNA sequence for the purpose of 
data storage, watermarking, or communication of secret messages. The ability 
to detect, extract, and decode messages from DNA is important for forensic 
data collection and for data security. We have developed a software toolkit that 
detects the presence of a hidden message within a DNA sequence, and 
deciphers that message. In order to decode a message we are modifying several 
existing cryptanalysis tools that have been developed for solving simple 
substitution ciphers and compare their performance. 
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1 Introduction  

Deoxyribose Nucleic Acid (DNA) is the carrier of hereditary information for every 
living organism. DNA is a double helix with two anti-parallel strands containing four 
different nucleotides, which are distinguished by one of the four bases adenine (A), 
cytosine (C), guanine (G), and thiamine (T). The two strands form base pairs of 
interacting complementary bases (A-T and C-G) held together by hydrogen bonds. 
DNA has the potential to store vast amounts of data using combinations of those four 
nucleotides within genomes that can range to several billion bases in length [1]. 

Contained within genomic sequences are regions that code for genes that produce 
proteins which are collections of amino acids.  In the process of translation, an mRNA 
sequence that has been transcribed, or copied, from the gene coding region is used as 
a template to transform from the four base code of DNA to the 20 base code of amino 
acids.  The process by which this transformation occurs, known as the genetic code, 
was first uncovered by Marshall Nirenberg [2].  In gene coding regions, a codon 
refers to a sequence of three nucleotides that determines which amino acid will be 
incorporated next during protein synthesis. With four nucleotides, this method allows 
43=64 possible combinations. Each codon encodes for one of 20 amino acids, with 
exception of the three STOP codons TAA, TAG, and TGA [3], thus allowing for 
degeneracy where multiple codon sequences code for the same amino acid. For the 
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purposes of DNA steganography, characters of messages may be encoded by variable 
lengths of DNA sequences that may or may not be three bases in length. While not 
codons in the strict biological sense, we will refer to these encoding patterns as 
codons for the purpose of this manuscript. 

1.1 DNA Computing 

DNA computing is an emerging new research field that uses DNA molecules instead 
of traditional silicon based microchips. The first researcher to demonstrate the 
computing capability of DNA was Leonard Adelman, who in 1994 developed a 
method of using DNA for solving an instance of the directed Hamiltonian path 
problem [4]. In 1997, Ogihara and Ray demonstrated that DNA computers can 
simulate Boolean AND and OR gates [5]. The advantage of DNA computers is that 
they are smaller and faster than traditional silicon computers, and they can be easily 
used for parallel processing. DNA has also been used as a tool for cryptography and 
cryptanalysis, using molecular techniques for its manipulation [3]. Bogard et al. 
describe how multiple sequence alignment can be used for error reduction in DNA 
computing [6]. 

1.2 DNA as Storage Medium 

DNA has recently been investigated as an ultra-compact, long term data storage 
medium (Table 1) and a stegomedium for hiding messages. Instead of expressing a 
message as a series of ones and zeros, it is represented in DNA as a series of As, Cs, 
Gs, and Ts. A number of algorithms have been developed to encode a message in 
DNA characters and either disguise these messages as novel DNA sequences or 
encapsulate them within existing ones. It has been proven that it is possible to insert 
artificial DNA components that contain encoded information into the genomes of 
living organisms [3,7-15].  

Craig Venter, who led the private effort to sequence the human genome, managed 
to create the first cell with a synthetic genome in 2010. The J. Craig Venter Institute 
(JCVI) took a computer file containing the DNA sequence of the bacterium 
Mycoplasma mycoides, modified it, produced physical DNA from this sequence, and 
inserted this DNA into a cell, which then reproduced under control of the new DNA 
to create a new bacterium [15]. This led to the creation of a company, Synthetic 
Genomics, which focuses on the creation of synthetic genomes for applications 
including vaccine design, bioenergy, and biofuels. 

Using DNA as storage medium has many advantages, such as long life, 
redundancy, and high density. According to Bancroft et al. [16] about 200 novels or 
other data each equivalent in size to “A Tale of Two Cities” could be stored in a DNA 
microchip with the area of a postage stamp. 

 



206 M.B. Beck, E.C. Rouchka, and R.V. Yampolskiy 

 

Table 1. Life expectancy and storage capacity of various data storage media compared to DNA 

Type Life Expectancy Capacity 

DNA Millions of years 108 TB per 1 gram [1] 

Hard disk ~10 years Up to 4 TB (2011) 

CD ~10 years 800 MB 

DVD <10 years Up to 17GB 

USB flash drive ~10 years, 

depending on usage 

Up to 256GB (2011) 

Tape ~30 years Up to 35 TB 

Yachie et al. [8] demonstrated the possibility to use DNA of living organisms as a 
data storage  medium by inserting the message “E=mc^2 1905!” into the genome of 
B. subtilis. Over 99% of the encoded data was later recovered using sequence 
alignment methods. 

Living organisms are a great storage medium when it comes to preserving data 
over timespans ranging in millions of years. When an organism reproduces, it 
automatically creates a backup copy of the data contained in its DNA. In addition, 
selective pressure and DNA error correction reduce the risk of the data being 
destroyed by random mutations. It has been suggested to use cockroaches, which are 
known for their resilience and high reproduction rate, as living time capsules for 
storing every issue of The New York Times Magazine for a certain year in their DNA 
which could theoretically be retrieved 1000 years later [17]. 

1.3 Error Correcting Approaches 

Even though mutations are rare, occurring at a rate between 10-11 and 10-7 per base per 
replication in bacteria and higher eukaryotes [18], it is necessary to consider some 
form of error detection and error correction since a mutation can destroy the 
encrypted message in the DNA sequence. According to Yachie et al. [8], inserting the 
data redundantly into multiple loci of the genome is sufficient to allow the retrieval of 
stable and compact data without the need for  template  DNA,  parity  checks,  or  
error correcting algorithms. 

The comma code and the alternating code provide a form of error detection 
capability by encoding the message in a distinguishable pattern [19]. Arita [9] 
developed a comma-free code that has error correction capabilities. The message is 
translated into binary as an intermediary step. A parity bit is used in the binary code to 
keep the respective number of ones and zeroes odd. 

The DNA-Crypt software developed by Heider and Barnekow [10] also translates 
messages into binary before encoding it in DNA code. It uses a very thorough 
approach to error detection by employing two error correction codes: the 8/4 
Hamming-code and the WDH-code. The 8/4 Hamming-code is more compact, but it 
can correct fewer errors than the WDH code. DNA-Crypt has an integrated fuzzy 
controller using singleton fuzzyfication. The fuzzy controller decides which of the 
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two error detecting codes should be used, or none at all. This decision is based on the 
individual mutation rate of the DNA sequence that contains the secret message, the 
length of the sequence, and its stability over time. An answer is determined from 
those three factors by a set of rules based on heuristics [10].  

2 Hiding Data in DNA 

2.1 Overview 

Steganography is the science of hiding information by transmitting secret messages 
through unsuspicious cover carriers in a way that makes the presence of any 
embedded messages undetectable. The term has its origins in the Greek language and 
means "covered writing". While the goal of cryptography is to make a message 
unreadable, steganography aims at avoiding suspicion to the existence of a hidden 
message [20]. Due to its properties as a data storage medium, DNA can be used for 
steganography (stegomedium). 

One of the most important problems in espionage is how to get the obtained 
information out of the target country without the information being detected by the 
enemy. With the appropriate knowledge and technology, a spy could have the 
information inserted into the DNA of an organism, and send it out of the country as an 
unsuspicious biological sample. It is possible to insert not only text, but also images 
and many other forms of digitizable data into a DNA sequence. For that reason, it is 
important to develop forensic tools that can detect hidden information in DNA. 

Table 2. Genetic code for protein translation (codons that code for the same amino acid 
regardless the third position are highlighted) [2, 3] 
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GAA Glu [E] 
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An obvious choice of a location for inserting a message into a genome would be a 
noncoding genomic region. However, those regions might have other critical, 
unknown functions [7] and thus, inserting data there might possibly kill the organism. 
Therefore Arita et al. [7] suggested that it may be a more reliable solution  to encode 
the message in the protein coding regions of genes. There are 20 amino acids and one 
stop symbol using a total of 64 possible codons [7]. Two or more codons often code 
for the same amino acid. Many of these redundant, or synonymous, codons typically 
differ in their third position, also known as the wobble base [3]. In Table 2, codons 
encoding the same amino acid regardless of the base in the third position are 
highlighted. These are the codons that can be used to embed messages. 

Table 3. Research on data hiding in DNA 

Researcher Year Coding  Message  Location Organism  

Clelland et 

al.[11] 

1999 Clelland June 6 invasion: 

Normandy 

artificial human 

 

Brenner et 

al.[12] 

1999 Comma 

code  

Not reported Bsp120I E.coli 

Wong et al. 

[20] 

2003 Clelland 

variant 

Not reported Not reported Deinococcus 

radiodurans 

Arita and 

Ohashi [7] 

2004 Arita AO2KEIO1-F ftsZ gene B. subtilis RIK8 

Tanaka et al. 

[21] 

2005 Similar to 

Clelland  

MESSAGE Artificial 

sequence 

Artificial DNA 

strand 

Yachie et al. 

[8] 

2007 Keyboard 

scan 

E=mc^2 1905! metB and proB B.subtilis 

BEST2136 

Heider and 

Barnekow[14] 

2008 DNA-

Crypt 

TB Vam7 

sequence 

Saccharomyces 

cerevisiae 

CG783 

Jiao and 

Gouette [13] 

2009 ASCII 

8 bit binary 

CODING tatAD 

gene 

B. subtilis 

J. Craig 

Venter 

Institute[15] 

2010 Clelland 

variant 

Multiple messages Not reported Artificial 

bacterium 

2.2 Coding Schemes 

A code is an algorithm which uniquely represents symbols from some source 
alphabet, by symbols or strings of symbols in a target alphabet. In our case, the source 
alphabet is the English alphabet plus digits and punctuation characters, and the target 
alphabet consists of the four nucleotides. A coding scheme is a set of rules that 
determines which symbol of the source alphabet is represented by which symbol in 
the target alphabet. 
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Types of Coding Schemes. The coding schemes for inserting messages into DNA 
that have been developed can be grouped into three categories: schemes using direct 
translation, schemes that use intermediate steps for error detection, and schemes that 
have been optimized for detectability or efficiency.  

The first category uses a straightforward approach by substituting a sequence of 
nucleotides of length n for each alphanumeric symbol [10, 12]. Since the codon in this 
case is of length n, up to 4n distinct characters can be encoded. Given the codon 
length of n, there are 4n! possible coding schemes. The coding schemes developed by 
Clelland [11] and Wong [20]  fall into this category. 

The second category of coding schemes consists of more complex schemes that use 
several intermediate steps, such as translating a message into binary before using a 
coding table to translate it into nucleotides. Intermediate steps like this are often used 
for error detection, since there are many proven error detection algorithms for binary 
messages. 

The third category of coding schemes consists of schemes that were designed to 
meet certain criteria, such as providing error detection capability, being economical, 
or being easy to detect. The comma code, the alternating code, and a coding scheme 
based on the Huffman code [18] fall into this category. 
 
Clelland’s Coding Scheme and Wong’s Coding Scheme. The coding scheme 
developed by Clelland et al. [11] is very similar to the one developed by Wong et al. 
[20]. They are both extensions of the three base codon encoding used by the genetic 
code.  Since there are 43=64 possible distinct characters that can be encoded, this 
scheme allows for all 26 characters of the English alphabet, the digits 0-9, and special 
characters. Both coding schemes do not use all possible codons. 
 
DNA-Crypt. The DNA-Crypt coding scheme developed by Heider and Barnekow 
[10] translates a message into a five bit sequence, where one bit serves as parity bit to 
keep the respective number of ones and zeros odd. The other four bits are translated 
into nucleotides, with two bits per nucleotide. As mentioned earlier, it employs two 
error correction codes, the 8/4 Hamming-code and the WDH-code. 
 
ASCII Based Coding Scheme. Another coding scheme implements the algorithm 
described by Jiao and Gouette [3] which inserts a message into the noncoding region 
of  an existing DNA sequence. This method consists of several steps:  
 

1)  Convert each character in the message into its ASCII representation. 
2)  Convert the ASCII code from decimal into binary. 
3)  Converting binary to DNA by replacing 00 with A, 01 with C, 10 with G, and 

11 with T. 
4)  Insert message into a carrier DNA sequence. 

 
Steps 1-3 are referred to as the ASCII coding scheme throughout the remainder of this 
paper. The fourth step can be applied to other coding schemes if the message is to be 
inserted into a coding DNA region. This insertion is performed by replacing the last 
bits of redundant codons in the carrier sequence with characters from the message 
sequence. The ASCII coding scheme makes it possible to encode uppercase letters, 
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lowercase letters, numbers, and special characters. Each character is represented by a 
sequence of four bases. 

There are 4! = 24 different ways to choose which two-bit binary sequence is 
translated into which nucleotide. The DNA-Crypt coding scheme uses 00=T; 01=G; 
10=C; 11=A [10], whereas the ASCII coding scheme uses 00= A; 01= C; 10= G; 11= 
T [3]. 

 
Yachie Coding Scheme. Yachie et al. [8] developed a coding scheme similar to 
ASCII encoding. Instead of ASCII it uses the keyboard scan code for each character. 
The keyboard scan code is the data that the keyboard sends to the computer to 
indicate which key has been pressed. This code, which is hexadecimal, is converted 
into binary, and then translated into DNA using a coding table. 
 
Arita Coding Scheme. Arita and Ohashi [7] translated each letter of the English 
alphabet as well as an empty space and the characters ‘‘’, ‘.’, ‘&’ into a 6-bit binary 
sequence. One of the bits serves as parity bit by keeping both the number of 0s as well 
as the number of 1s odd for error detection. When a message encoded with this 
coding scheme is inserted into a coding region of a DNA sequence, a 0 indicates to 
leave the 3rd base of a codon unchanged, while a 1 indicates that it needs to be 
changed. In order to extract the encoded message, one needs to compare the sequence 
that contains the message with the original, unchanged sequence to determine if a 
base was changed or not [10]. 
 
Coding Scheme Based on the Huffman Code. Another coding scheme is based on 
the  Huffman code developed by David A. Huffman [22] and the frequency of letters 
in the English language from “The Code Book” by Simon Singh [23]. The Huffman   
 

Table 4. Letter frequency in English language and DNA coding scheme using 
Huffman code [19] 

Letter Freq 

(%) 

Codon  Letter Freq (%) Codon 

e 12.7 T w 2.4 AAT 

t 9.1 AG m 2.4 ACA 

a 8.2 AT f 2.2 ACG 

o 7.5 GA y 2.0 ACC 

i 7.0 GG g 2.0 ACT 

n 6.7 GC p 1.9 CCA 

s 6.3 GT b 1.5 CCG 

h 6.1 CA v 1.0 CCT 

r 6.0 CG k 0.8 CCCA 

d 4.3 CT j 0.2 CCCG 

l 4.0 AAA x 0.2 CCCC 

c 2.8 AAG q 0.1 CCCTA 

u 2.8 AAC z 0.1 CCCTG 



 Finding Data in DNA: Computer Forensic Investigations of Living Organisms 211 

 

code is an entropy encoding algorithm used for lossless data compression. The coding 
scheme based on this code currently only encodes letters, but not numbers or special 
characters.  The average codon length is 2.2 bases. There are 4! possible ways to 
generate a Huffman code for encoding the 26 letters of the English alphabet, but it is 
also possible to create a Huffman code based scheme that includes numbers and 
special characters. 

Comma Code. The comma code uses four base codons consisting of combinations of 
A, C, G and T, where G serves as a separator between the different characters. The 
term comma code may be misleading. It does not mean that G is the encoding for the 
comma character, but that it separates the encodings for each character. Smith et al. 
[19] suggest using five base codons with a separator every sixth base, but the original 
paper by Brenner et al. [12] is more descriptive and recommends the use of four bases 
per codon and a vocabulary made up of eight four-base ‘‘words’’ for biochemical 
reasons. The gaps between the Gs are filled with TTAC, AATC, TACT, ATCA, 
ACAT, TCTA, CTTT, or CAAA. Since this method would only allow the encoding 
of eight characters, combinations of two such words separated by a G are used for 
each character. This approach results in a total of 64 possible characters consisting of 
ten nucleotides each. The comma code encodes lowercase letters, numbers from 0-9, 
and special characters. The mapping of codons to characters was arbitrarily 
constructed. A sequence in comma code can easily be identified as containing a 
message, due to the occurrence of G every five bases, including the beginning and the 
end of the sequence. The comma code is the least efficient coding algorithm. 

 
Alternating Code. The alternating code uses 64 codons with six bases per codon, 
alternating between purines (A or G) at odd positions and pyrimidines (C or T) at 
even positions. This coding scheme creates a pattern that does not occur naturally and 
can easily be recognized. For the same reason, the bases could be arranged for 
example in a pattern that has three purines followed by three pyrimidines or vice 
versa. The alternating code encodes the same characters as the comma code. The 
decision which codon codes for which character was made arbitrarily [19]. 

Summary of Coding Schemes. The coding schemes differ in codon length, 
detectability, number of characters that can be encoded, and the number of steps 
involved in encoding a message. The Huffman code is the most economical in terms 
of codon length, while the comma code is the least economical. The Clelland coding 
scheme and the Wong coding scheme are the easiest to implement. The comma code, 
alternating code and DNA-Crypt are the easiest to detect, and DNA-Crypt offers the 
best error correction.  

Inserting a message into a coding region only replaces bases, but does not add new 
ones. Therefore the size of the genome is only affected if the message is inserted into 
a non-coding region.  The length of the encoded message is the length of the 
unencoded message multiplied by the codon length of the coding scheme. For 
example, the message “UNIVERSITY OF LOUISVILLE” is 24 characters long, 
including spaces. It would be 
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CTGCCTCAGCTTATGCGTCTACAGCTCGAGCGAATTCCCCGACTGCAGCTACT 
TCAGCCCCCCATG, which is 72 characters in Wong’s coding scheme and 
GTACTGACATGAATCGACATGAATCGTTACGTACTGTCTAGTTACGACATGTACTGAA
TCGTACTGTACTGAATCGTTACGTACTGATCAGATCAGTTACGAATCGCTTTGTTACG
TCTAGAATCGATCAGAATCGCTTTGTACTGACATGAATCGTTACGTACTGTACTGTAC
TGTCTAGAATCGTTACGAATCGATCAGAATCGATCAGTTACGACATG, which is 240 
characters in Comma Code.  

For inserting pictures, audio, and video files into a DNA sequence it would be best 
to translate the binary representation of the file into DNA code, with each base 
encoding two bits, for example A=00, C=01, G=10, and T=11. 

2.3 Encryption and Watermarking of DNA Messages 

To make detection even more difficult, it is possible to encrypt a message using 
modern encryption algorithms such as Data Encryption Standard (DES), RSA, and 
Number Theory Research Unit (NTRU) before encoding it into DNA.  

One application for inserting messages into DNA is watermarking. This method 
can help establish brand names for engineered bacteria strains in order  to resolve 
legal disputes regarding gene related patents [7].  Watermarking infectious agents can 
be useful for tracking them back to their source after an accidental release [24]. 

Researchers at the JCVI inserted four watermarks using a Category 1 coding 
scheme similar to Clelland’s and Wong’s into their artificial genome. The first 
watermark consists of a copyright like statement; the coding table for Ventner’s 
coding scheme, and a hidden HTML page. The second, third, and fourth watermarks 
consist of a list of the authors and three quotations. 

The coding scheme created by Arita and Ohashi [7] and the DNA-Crypt algorithm 
developed by Heider and Barnekow [10] were both designed for watermarking short 
trademarks or signatures into genomic DNA.  

2.4 Messages Finding Data in DNA 

Steganalysis is the process of discovering hidden messages [25]. There are two main 
categories of steganalytic methods: blind steganalysis and specific steganalysis. Blind 
steganalysis can be used to detect a variety of different steganographic algorithms, 
including previously unknown ones. The goal of specific steganalysis is to detect a 
specific known steganographic algorithm by exploring how this particular algorithm 
works and how it changes the statistics of the cover media [26].  

The research on steganalysis is important for several reasons: First, detecting the 
presence of secret messages can help intercept communication between members of 
terrorist organizations or other illegal groups. Second, improvements in steganalysis 
also help to develop better methods for information hiding. Third, better statistical 
methods for multimedia contents can emerge as a byproduct of steganalysis research. 
These can then be applied in other related research fields, such as digital forensics 
[26], or bioinformatics. 
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Most existing steganalysis approaches focus on images as a stegomedium, 
especially JPEG images as well as audio and video files. Text documents are not used 
as often since they can only hold a smaller amount of information than a graphic 
document with same amount of carrier data. However, text files are still used because 
they are easily edited, stored, and transferred [27]. 

2.5 Experiments Performed in Silico 

Wang and Zhang [28] have developed a software called WordSpy to detect certain 
biological features within a genome. This software regards these biological features of 
a genome as a message hidden in a cover-text of genomic sequences. A Hidden 
Markov Model is used to decipher the message and to extract over-represented motifs. 
WordSpy combines word counting and statistical modeling to detect frequently 
occurring sub-sequences [28]. 

Since many different coding schemes for inserting messages into DNA have been 
developed, we decided to develop a software toolkit that would enable us to insert and 
extract messages from DNA sequences, allow us to compare different coding 
schemes, and serve as basis for research into developing methods to find and extract 
messages encoded with unknown coding schemes.  

2.6 Solving Substitution Ciphers 

The way messages are encoded in DNA is typically through the use of substitution 
ciphers, for example, the letter ‘a’ is substituted by the sequence ‘AAA’, the letter ‘b’ 
by ‘AAC’, and so on. Several methods have been developed for breaking substitution 
ciphers. One of our goals is to adapt an algorithm for breaking substitution ciphers to 
decode a message written in DNA symbols. Almost all approaches use n-grams of 
letters. 

Spillman et al. [29] developed a Genetic Algorithm and although they report good 
results  for their Genetic Algorithm, Delman [30] found Genetic Algorithms to be 
unreliable for solving substitution ciphers and was unable to reproduce the results.  

Another software called Quipster has been developed by Hasinoff [31]. The 
software decodes a median of 94% of the cipher letters correctly.  

A Particle Swarm Optimization (PSO) algorithm has been developed by Uddin and 
Youssef [29]. Their results show that PSO provides a very powerful tool for the 
cryptanalysis of simple substitution ciphers using a ciphertext only attack. Uddin and 
Youssef [32] also investigated the use of Ant Colony Optimization (ACO) for 
automated cryptanalysis of classical simple substitution ciphers and found them to be 
very effective on various sets of encoding keys. 

Lucks [33] developed an algorithm which employs an exhaustive search in a 
dictionary for words that satisfy constraints on word length, letter position and letter 
multiplicity. His method is not restricted to English and can be used for any language. 

It is especially difficult to decode short ciphers, because they have different 
distribution statistics than larger texts. Hart [34] developed a method that addresses 
these problems by using whole words instead of n-grams and by employing a 
maximum likelihood estimator.  
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Jakobsen [35] developed a fast algorithm that is based on a process where an initial 
key guess is refined through a number of iterations. Each step of this algorithm 
evaluates the plaintext corresponding to the current key and the result is used as a 
measure of how close the algorithm is to discovering the correct key. The author 
claims that only knowledge of the bigram distribution in the ciphertext and the 
expected bigram distribution in the plaintext is necessary in order to decipher the 
message. The algorithm currently only uses bigrams, but the author suggests using 
trigrams or whole words for future research. 

Forsyth and Safavi-Naini [36] approached the solving of substitution ciphers  as a 
combinatorial optimization problem and developed an algorithm that uses simulated 
annealing. This algorithm is very complicated and difficult to implement, but it is 
very successful at decrypting ciphertexts, especially ones with over 5000 letters. 

Peleg and Rosenfeld [37] address it as a probabilistic labeling problem and 
assigned probabilities of representing plaintext letters to every code letter. This 
approach was done by using joint letter probabilities. These probabilities were 
updated in parallel for all code letters, and using this scheme iteratively, they were 
able to break the cipher.  

3 Description of DNA-Steg 

3.1 Encoding and Inserting Messages 

The DNA steganography and steganalysis toolkit we developed currently consists of 
two programs. One for encoding a message in a DNA sequence (steganography), and 
the other for detecting and extracting a hidden message from a DNA sequence 
(steganalysis). 

Our software offers a choice of several different coding schemes. It reads in the 
coding table for the selected coding scheme from a file and then prompts the user to 
either type the message to be encoded on the keyboard or to read it in from a file. 
Since the ASCII coding scheme is the only one that distinguishes between uppercase 
and lowercase characters, the program converts all characters in the message into 
uppercase characters for all coding schemes other than the ASCII coding scheme. The 
steganography program then encodes the message using the appropriate coding table.  

 
The toolkit implements the following coding schemes: 
- Huffman code based scheme [19] 
- Alternating code [19] 
- Comma code [12, 19] 
- Wong’s coding scheme [20] 
- Clelland’s coding scheme [11] 
- DNA-Crypt [10] 

- ASCII coding scheme [3] 
 

Coding tables for comma code and alternating code were created arbitrarily, since the 
original researchers did not provide any. 
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The message can either be directly written to a file by itself if it is to be stored in a 
noncoding region, or be inserted into the coding region of an existing DNA sequence 
file. For inserting a message in a coding region, the algorithm described by Jiao and 
Gouette [3] is used. DNA sequences can be chosen from a folder where they are 
stored in FASTA format [24], which is widely used in bioinformatics. The program 
displays the maximum number of characters a message can have, depending on the 
coding scheme and the sequence it is to be inserted into. 

3.2 Approaches to Detecting Messages in DNA 

Finding a message that has been inserted into the coding region of a DNA sequence is 
relatively simple if the original sequence is known.  We have developed a program 
which compares a modified DNA sequence with its original. Since the message is 
assumed to have been inserted into wobble bases, the first step is to identify wobble 
base codons in both sequences and to compare them to each other. The first codon 
where the wobble base is different from the one in the original is identified as the 
beginning of the message. The last codon where it differs is marked as the end of the 
message.  

The limitation in this approach is that there are codons where the wobble base does 
not change. This is not a problem if it happens in the middle of the message. The 
program therefore assumes it contains one long message instead of several smaller 
ones. Problems can arise if this happens at the beginning or end of the message, but if 
the message can be decoded and it is seen that pieces are missing, the program can 
expanded to go back and fix it. 

In order to test the program, the message “THIS IS A TEST” was inserted into ftsZ 
using the Wong coding scheme. The program then compared the modified sequence 
with the original one. It correctly identifies the beginning codon and the end codon of 
the message and extracts the modified wobble bases. 

Finding a message in a noncoding DNA region is much more difficult. But there 
are ways to determine if a DNA sequence is artificial by statistical analysis. For 
example, if a certain base is significantly overrepresented, underrepresented, or not 
present at all, it can be assumed that the sequence is artificial and should be further 
analyzed to determine if it may contain a message.   

Messages that have been encoded using a variation of the alternating code or the 
comma code are more likely to be detected than messages that were encoded with a 
different coding scheme. The reason for that is that they have a repeating pattern, 
which can be detected by a human or a computer program. If every nth base is the 
same, this hints at the possibility that comma code or a variation thereof has been 
used to create this sequence. 

Another coding scheme that is easy to identify is the DNA-Crypt coding scheme 
because the low occurrence of As in a message encoded with this scheme.  

However, as a countermeasure against attempts to detect messages by counting the 
occurrence of nucleotides, a coding scheme such as the one developed by Modego 
[38] can be used. Modego’s coding scheme uses two codons to encode each letter. 
Which codon is used is determined by the GC content of the carrier sequence. For 
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example, if a message was to be inserted into a sequence with a high  GC content, the 
letter L would be encoded as CTG, but in a sequence with low GC content it would be 
TTA [38]. The obvious tradeoff is the number of characters that can be encoded is cut 
in half. 

In order to detect the alternating code, the program stores all odd position 
characters in one list and all even position characters in another and then compares 
both of them. If none of the even characters appears in the list with the odd ones and 
vice versa, the program has detected a message in alternating code with the pattern 
XYXYXY, where  X is either an A or a G and Y a C or a T, or vice versa. The 
program can easily be extended to detect alternating codes with pattern XXYYXXYY 
or XXXYYY. 

Currently the steganalysis part reads messages from a DNA sequence by executing 
the algorithm that was used for encoding the message in reverse order. Since it does 
not know which coding scheme was used, it uses a brute force approach to test all 
supported coding schemes and displays the resulting message on the screen. The user 
can choose if the message was hidden in a noncoding region or in an existing DNA 
sequence, which can be selected from a folder. If a sequence is chosen, the program 
will display the number and the percentage of occurrences of each nucleotide in the 
altered sequence as well as in the original sequence. Usually there is not much 
difference in the statistics of both sequences, since the inserted messages are fairly 
small. 

One possible way to detect unknown encoding schemes might be to use the 
WordSpy algorithm developed by Wang and Zhang [28]. 

4 Further Research 

We are currently working on a way to modify an existing approach for solving simple 
substitution ciphers where each letter in the English alphabet is substituted for a 
different English letters to solving simple substitution ciphers in which each letter of 
the English alphabet, numbers from 0-9, and several special characters such as spaces, 
commas, and periods are each substituted by a combination of three DNA bases. 
While the original program searches over the space of 26! possible keys, our program 
will have a search space of 64! possible keys. 

The goal is to modify several existing approaches and then use the Wisdom of 
Artificial Crowds (WoAC) [39, 40] post-processing algorithm instead of brute force 
guessing in order to find out with which coding scheme the message has been 
encoded in. As a proof of concept, a program will be developed that will be able to 
decode any message that has been encoded with a category 1 coding scheme of codon 
length 3. This approach can be adapted to be used for other coding schemes as well. 

Currently the steganalysis tool can only detect and extract messages that have been 
encoded with the previously described coding schemes. For example, it only has two 
coding tables for coding schemes of category 1, namely the ones developed by 
Clelland [11] and Wong [20]. But since there are four nucleotides, a category 1 
coding scheme with a codon length of three, which can encode 64 characters, can be 
generated in 64! possible ways. And that is only if the same 64 characters are being 
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used. For example, one coding scheme can start with A=AAA, B=AAC, C=AAG... 
while another one could be A=AGT, B=CCG, C=CTG... Brute force guessing which 
variant has been used to encode the message would take an enormous amount of time 
and would therefore not be feasible. 

Knowing the characteristics of several previously developed coding schemes and 
their different variations makes it possible to develop a more optimized coding 
scheme. For example, coding scheme that is based on the Huffman code could be 
expanded to include numbers and special characters. 

We also need to develop methods to detect and decode a message if the encoded 
message is also encrypted.  

5 Conclusion 

DNA steganography is a new field and therefore it offers many opportunities to 
improve upon existing approaches for steganography as well as steganalysis. 
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