

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 183–203, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Investigating File Encrypted Material Using NTFS
$logfile

Niall McGrath and Pavel Gladyshev

Digital Forensic Investigation Research Group
University College Dublin

Abstract. When an encrypted file is discovered during a digital investigation
and the investigator cannot decrypt the file then s/he is faced with the problem
of how to determine evidential value from it. This research is proposing a
methodology for locating the original plaintext file that was encrypted on a
hard disk drive. The technique also incorporates a method of determining the
associated plaintext contents of the encrypted file. This is achieved by
characterising the file-encryption process as a series of file I/O operations and
correlating those operations with the corresponding events in the NTFS
$logfile file. The occurrence of these events has been modelled and generalised
to investigate file-encryption. This resulted in the automated analysis of $logfile
in FindTheFile software.

Keywords: NTFS $logfile file, MAC Times, Encryption.

1 Introduction

Law enforcement agencies (LEA) encounter encryption in relation to many crimes.
The distribution of illegal material [1] [2] is an example of the many offences
associated with file encryption. The use of encryption in general has been cited [3] as
a major hurdle in digital investigations. When file-encrypted material is investigated
and the file cannot be decrypted, cracked nor bruteforced; there is no formal method
or technique to extract evidential value. As a result this research presents a
methodology which identifies the original plaintext filename that was encrypted,
while also displaying the plaintext contents of the file. This is irrespective of the file
being “deleted” or not. A typical scenario that occurs is where an encrypted bundle is
transmitted to a buyer or intended recipient of illegal material. Encryption software
has a common feature of giving the option of deleting the original plaintext file after
encryption. This naturally increases the complexity of a digital investigation but does
not restrict it; how to recover deleted files is outlined in [4]. The NTFS $logfile file
($logfile) is the fundamental evidence artefact upon which the proposed methodology
here is based on.

1.1 Problem Description

The main problem with investigating encrypted material is not being able to establish
an evidential link between the encrypted file and the original plaintext file and also

184 N. McGrath and P. Gladyshev

not being able to view the plaintext contents. The approach taken here to solve the
problem is to observe the process of encryption and then characterise the sequence of
events. Extracting event information from $logfile is central to the approach. This
leads to formulating a methodology, where it is modelled, generalised, automated and
then applied formally in a case-study.

1.2 Related Work

Cryptopometry methodology can only be used to investigate illegal material when it is
encrypted and exchanged using public-private key encryption like OpenPGP or X.509
[5]. Cryptopometry also does not reveal the plaintext contents of the encrypted file. It
is however elaborated on how the computer forensic investigator can use
Cryptopometry to identify encrypted material, examine it and extract evidential value
from it in [5]. Typically this scenario is where a distributor encrypts the illegal
material and posts it into a newsgroup or interest group via anonymous re-mailer or
via an instant messenger system. The accomplice who is subscribed to that group
receives encrypted material and can decrypt it. The anonymity of all involved parties
is preserved and the content cannot be decrypted by bystanders [5].

2 Background Information

In order for an application to encrypt a file’s contents the underlying actions that take
place can be categorised according to 1) type of I/O event i.e. Read or Write, 2) the
processes and the sequence of threads that govern execution and 3) where in the stack
does this executable file get called and in what mode i.e. user or kernel. In addition
there are numerous NTFS design goals outlined in [6] but the specific components
that are of interest in this paper are: $logfile and how it is updated by the Log file
service and Master File Table (MFT). ObjectId and how the Distributed Link
Tracking (DLT) service and how they facilitate forensic examinations are also of
interest.

2.1 I/O File Processing

The steps of the I/O file open process along with the principles of I/O request packet
(IRP) processing are detailed in [6]. It is outlined that the runtime library function
calls the CreateFile function, and then the kernell32.dll-windows subsystem is called
which in turn calls the native NtFileCreate function in Ntdll.dll. The transition into
kernel mode (where NtCreateFile in Ntoskrnl.exe is called) and the subsequent
commands to the Object Manager and the I/O manager and finally the transition back
to user mode are listed.

2.2 NTFS

The journal file for the windows operating system is called $logfile. The $logfile is
used to recover from system crashes and unexpected conditions. It has the standard

 Investigating File Encrypted Material Using NTFS $logfile 185

file attributes and stores the log data in the $DATA attribute. The file is organised
into 4,096 byte pages consisting of two parts: the restart and the logging area. The
restart area contains information on how to start the recovery after a system failure
[7]. There are two types of information recorded here. These are “Redo” and “Undo”
information. Redo information is how to reapply one sub-operation of a fully logged
(“committed”) transaction to the volume if a system failure occurs before the
transaction is flushed from the cache. Undo information is how to reverse one sub-
operation of a transaction that was only partially logged (“not committed”) at the time
of a system failure [9]. These “Redo” and “Undo” operation codes are used in a
composite manner to form the series of log records that are written to the $logfile
when a file operation is performed. The hexadecimal (0x) composite operation codes
are used such as 0x0E/0x0F, 0x02/0x00, 0x08/0x00, and 0x14/0x14 for file creation,
delete, extending, truncation, information setting and renaming [9]. NTFS guarantees
that the transaction will appear on the volume, even if the operating system
subsequently fails. A table of values that represent update records for each of the
following transactions is presented in [9]: Initializing (0x02), de-allocating (0x03) file
record segments, writing the end of file record segments (0x04), creating (0x05) and
deleting(0x06) attributes, updating resident (0x07) and non-resident (0x08), setting
attribute sizes (0x0B) adding (0x0E) and deleting (0x0F) index entry allocation and
setting (0x15) and clearing bits in $bitmap (0x16).

In NTFS the primary data structure is the MFT and every file will have at least
one entry in the MFT. The MFT holds information about the files and directories in
MFT entries. These MFT entries store attributes; where an attribute is a data structure
containing a specific type of information such as a file's filename. NTFS take the
form of reading and writing attributes for a given file e.g. the $DATA attribute which
is common to every file in the file system [6]. The $STANDARD_INFORMATION
attribute contains the timestamp information for each file. This attribute determines
the MAC times for a file when the properties of a file are viewed. There is also
a $FILE_NAME attribute that contains the MAC time information as it relates to
the filename for a given file. Link files are created when a file is opened [8].
Also an ObjectID is described as an attribute that uniquely identifies a file or
directory on a volume. This is listed as the location of a file at some point in time; it
is made up of a VolumeID and an ObjectID. The ObjectID of a file can be queried
using the command line tool fsutil [7].

3 Observation towards a Framework

Using three different encryption packages a file was encrypted. The encryption
process was monitored using Process Monitor. Process Monitor is a system activity
monitoring tool which monitors the flow of IRPs between various applications and
the NTFS driver. It is an example of a passive filter driver. The output of Process
Monitor while encryption is taking place is followed. Since three encryption packages
were observed, it would be superfluous to illustrate all three here as the events are
repetitive; therefore the events of one package (PrivateFile) are illustrated below. The
first operation of note in Fig 1 is a file system QueryOpen executed on the plaintext
file to be encrypted. The QueryOpen is initiated by the encryption software exe

186 N. McGrath and P. Gladyshev

process. A file handle is created and results in a successful retrieval of file attributes
like the MAC times along with allocated size. The stack trace of this event originates
from Kernel mode (ntkrnlpa.exe) to user mode (msvbvm60.dll). Next there is a file
system CreateFile call for read access to the file plaintext file. This results in an
opened status. Similarly the stack trace originates in kernel mode and traverses to user
mode. Finally there is a CloseFile instruction whose job is to close down and free up
the previous IRP associated resources. The file is now ready to be read.

Fig. 1. Initial File System Events with Plaintext file

Fig. 2. File System Events with Ciphertext file

Similarly there are file system calls (QueryOpen, CreateFile and CloseFile)
executed on the ciphertext file. The name of this file is inputted by the user or the
software automatically populates the filename field by just appending the new file
extension to the original plaintext file name, Fig 2. There is also a
QueryStandardInformationFile call to query allocation size and determine if the
entry is a directory or not; the file is now prepared to be written to. There are file
system calls (CreateFile & CloseFile) but in addition there are calls to read the
contents of the plaintext file and also to write the plaintext contents to the first
temporary file, Fig 3.

Fig. 3. Temporary file1 system events

Fig. 4. Temporary file2 system events

Subsequently the plaintext contents are re-written to a second temporary file where
the contents of this are encrypted, in Fig 4. Next there is a new handle created to the
ciphertext file and then the encrypted contents of temporary file 2 are written into
the designated ciphertext file. Please see Fig 5. The two temporary files during the
encryption process are deleted. This is achieved by the file system calling a

 Investigating File Encrypted Material Using NTFS $logfile 187

setDispositionInformationFile call, while passing a boolean variable Delete set to
true. There is a file system QueryOpen called on the plaintext file and this returns the
MAC times of the file. Then there is also a QueryInformationVolume where the
volume- create time and volume serial number are returned. There is also
a flag (SupportObjects) returned to indicate whether Objects are supported or not,
this is a reference to the DLT service mentioned earlier. Since the value returned
here is true there is a subsequent file system control call to retrieve the ÒbjectID.
This is the objectid of the birth volume i.e. volume id of where the plaintext file was
originally created.

Fig. 5. Encrypted material written to ciphertext file

Fig. 6. Timelines and timestamps

When a file is accessed or read for file encryption purposes, the last access time
attribute of the plaintext file will indicate the approximate creation time of the
encrypted file. The approximation is caused by the difference in time or lag between
the plaintext file contents being read, buffered in a temporary file then written to a
second temporary file where the encryption is carried out. Once encryption is
completed, the ciphertext data is written to the output file. The timestamp for when
the IRP_MJ_CLOSE (fileClose) executes on the ciphertext file indicates the last
access timestamp, as can be seen in Fig 6. The ciphertext file create timestamp is later
than the last access timestamp for the plaintext file, in addition the ciphertext file last
access timestamp is later than that of the plaintext file.

4 Characterise the Encryption Process

As can be seen from the observations above the flow of the encryption process can be
characterised as a series of file I/O actions. The flow of data through the encryption
process is depicted in Fig 7. The overall result of observing Privatefile encryption is that
four files are created (when plaintext file in not deleted); two temporary files, a lnk file
and the ciphertext file. The different interfaces (files) that the data flows through can
be seen and it is at these “touch-points” along the process flow where evidence can be
retrieved. This is because particular events, as indicated in [7] that occur at each of these
points are recorded chronologically in the $logfile e.g. each mft update is recorded in
$logfile and its entry is preceded with the following string “FILE0”.

188 N. McGrath and P. Gladyshev

Fig. 7. Flow of data through

4.1 Sequence of Events That Constitute the Encryption Process

The sequence model in Fig 8 displays the order in which events take place. This is
important in understanding the contents of the $logfile because a forensic picture of
events can be constructed. The individual events listed here can be classified into various
groups of event-types see table 1. This is needed in forming event sequence signatures.

Fig. 8. UML Sequence Model (plaintext file not deleted)

 Investigating File Encrypted Material Using NTFS $logfile 189

4.2 Establishing an Event Sequence Signature of the Encryption Process

Three encryption software packages were studied here. It was found that in all three
cases that the events which led to the creation of an encrypted file were consistent
with each other. However it was noted that the frequency of certain events and their
sequence varied slightly. Please see table 1 below where the individual event-types of
the three encryption software packages are summarised. It was noted that when the
plaintext file was deleted during encryption that there was no lnk file created. It was
also noted that when plaintext file was not deleted that Privatefile was inconsistent in
creating a lnk file. Under closer scrutiny this was understood to be conflicting with the
anti-virus (AV) scan that was occurring at the time of experiment. Also noted was that
Meo software didn’t create any lnk nor temporary files and this was irrespective of
any AV scans.

Table 1. Event-types

 Plaintext file deleted Plaintext file not deleted
Event -type Privatefil PGP ME Privatefil PGP ME
Create file for plaintext
Create file for ciphertext

Create lnk file X X X X
Create temp file(s) (2) (1) X X

Read plaintext file contents
Write to temp file (s) (2) (1) X X
Write to ciphertext file

5 Modeling Event Sequence Signature of the Encryption
Process

Having observed the consistent occurrence of specific event types in table 1 during
the file-encryption process, with different frequencies and event-sequences - this led
to the question to see if the encryption process could be generalised using some
formal approach. To this end a suitable formalism was introduced to define the
encryption process as an event sequence signature.

5.1 Intrusion Detection Systems – Event Sequence Signature

In the design of Intrusion Detection Systems (IDS) there is a technique used to detect
an intrusion which is called anomaly detection. The detection assumes attacks to be
well-known sequences of actions. These actions are represented in the form of special
patterns, called attack signatures. Attack signatures can be either mono-event or
multi-event, depending on the number of steps in the corresponding attack scenarios.
Defining multi-step attack signatures in a declarative form has been presented and it
shows how temporal properties of multi-event attack signatures can be modelled in
[10]. The presented model is based on high-level declarative Interval Temporal Logic
(ITL). Temporal logic extends propositional logic with a notion of time by
introducing special temporal operators e.g. always (D), sometime (◊), at the next

190 N. McGrath and P. Gladyshev

moment (D). Adding them allows true statements to be defined. The model in [10] is
a slightly modified subset of ITL and it is called it SigITL (Signature ITL). Rules can
be defined directly where a temporal formula that states a partially-ordered set of
events in a multi-event signature. Each event is regarded as an atomic proposition of
SigITL which are assumed to be mutually exclusive. Then temporal properties like
sequence, any order, partial-order, exclusive choice, non-occurrence and repetition are
defined.

5.2 Modeling Event Sequence Signature for the Encryption Process

By applying the SigITL specified in [10], the events in table 1 are grouped and
modelled according to the artefact or “touch-point” that is recorded in $logfile. In
order to formally define the modelling rules, let the following be mutually exclusive
atomic propositions of SigITL: A = Read Plaintext file process, B = Create and Write
to tmp file (repetition), C = Create lnk file process, D = Create and Write Ciphertext
file, E = Delete Plaintext file (if selected by user; non-occurrence), Z1 = User
selection: decision to delete plaintext file and Z2 = User selection: decision not
to delete plaintext file. The temporal events like sequence, non-order, non-
occurrence and mutually exclusive are defined below. If the events must occur in a
fixed sequential order, then they are expressed as follows:

◊A; ◊B; ◊C; ◊D; ◊E or ◊ (A ;B;C ;D;E)

Equation 1. Expressing an ordered sequence of events

When the events occur in no fixed order then they can be expressed using the “∧”
operator. So the events in table 1 can be summarised as :

◊A ;(◊B∧◊C∧◊D ∧◊E)

Equation 2. Sequence of events with deletion of plaintext file

However it was observed that proposition B must follow A and E must occur last.
Propositions C and D occurred in no fixed order other than after A and B but before
E. The non-occurrence of an event between two others can also be expressed using
the “D￢” operator. The occurrence of at least n repetitions of a particular event type

can also be expressed. In this case the proposition B is expressed as Bn where n= 0,
1, 2 since it was observed that B can occur zero times, once or twice, now the
following sequence signature model is arrived at:

◊A; (◊Bn ∧ D￢E) ∧ (◊CD￢E) ∧ (◊D∧ D￢E); ◊E

Equation 3. Events with non-occurrence and with repetition

Alternatively when there is no deletion of the plaintext file the events can be modelled
as:

◊A; ◊Bn ∧ ◊C ∧ ◊D

Equation 4. Events with no deletion of plaintext file

 Investigating File Encrypted Material Using NTFS $logfile 191

But the exclusive choice between two or more alternative events is represented by
the operator ⊕ . Since there is one decision to be made between Z1 or Z2 then there

is an exclusive choice between Equation 3 and Equation 4. This is modelled: ◊Z1;

(◊A ; (◊Bn ∧ D￢E) ∧ (◊CD￢E) ∧ (◊D∧ D￢E); ◊E) ⊕ (◊Z2; (◊A; ◊Bn∧

◊C ∧ ◊D)). Equivalently, this true statement is now expressed as:

◊((Z1; (A ; (Bn ∧ D￢E) ∧ (CD￢E) ∧ (D∧ D￢E); E) ⊕ (Z2; (A; Bn∧ C ∧ D)))

Equation 5. Model of event sequence signature

Equation 5 represents the generalised event sequence signature that occurs during file-
encryption. This leads to the ability of recognising the occurrence of file-encryption
and the subsequent analysis and investigation of encryption by using $logfile.

5.3 Constraint Satisfaction (CS) and Backtracking

Now that the event sequence signature can be modelled and generalised for the file
encryption process it will provide a basis to automate the methodology. The main
components of the methodology will consist of identifying the atomic propositions
(A, B, C, D, E, F, Z1 & Z2) listed above.

To classify the type of model that Equation 5 represents is not that complex as
it clearly represents a constraint satisfaction problem (CSP). In general CS is the
process of finding a solution to a set of constraints that impose conditions that the
variables must satisfy [11]. The general CSP consists in finding a list of values x =
(x[1],x[2], …, x[n]), that satisfies some arbitrary constraint i.e. a boolean function. In
this research x = (A, B, C, D, E, Z1, Z2). Backtracking is an important tool for
solving CSPs. Backtracking recursively builds candidates to the solutions [12], and
abandons each candidate as soon as it determines that it cannot be completed to a
solution. Backtracking forms the basis of the automated solution to the
methodology, this is implemented in FindTheFile, see section 8.

6 Methodology

6.1 Identify the Encrypted File to Be Investigated

As described [9] when a file or a folder is created then a series of log records are
written out to the $logfile. The hexadecimal series 0B/0B→08/00→0B/
0B→07/07→1B/01 was observed to occur a number of times when the ciphertext
file and other files are created during encryption. After an image of the HDD is
taken and the $logfile is exported for analysis the file name of the encrypted file
under investigation is determined.

192 N. McGrath and P. Gladyshev

6.2 Determine BirthVolumeID of Ciphertext File and VolumeID

The BirthVolume ID of the encrypted file is determined and then matched with the
VolumeID of the volumeID of the volume used. It can be concluded that the
encrypted file was created on the same volume of forensically acquired volume under
investigation. So updates or modifications to the ciphertext file would be in the
$logfile.

6.3 Determine $FILE_NAME of Ciphertext File

The final occurrence of the ciphertext file name is searched for in the $logfile as a
unicode string. This provides a starting point from which to step backwards in the
$logfile, backtracking will be used here. Using the hexadecimal series referred to in
6.1 the $FILE_NAME attributes are searched for in the $logfile. These names are the
Win32 name and the DOS name, see [9] for more detail. By analysing the last
occurrence of $FILE_NAME attribute in the $logfile, the timestamps can be
extracted. There are the three MAC times and the MFT modification time displayed
here. Please see next step in 6.4 below, from this it can be seen when the ciphertext
file was created.

6.4 Examine the Timestamps

NTFS timestamps contain the last modified, last accessed created and the MFT
modified times of a file. These form part of the NTFS $FILE_NAME attribute of a
file. These hexadecimal values are decoded to give date and time in UTC. The
creation date of the encrypted file is given to be at the time when there is
IRP_FILE_CLOSE was executed on the ciphertext file. This time closely
approximates the last access time of the plaintext file.

6.5 Determine Where the Add/Delete Index Entry

For the newly created files the 0x0e/0x0f log record is included in $logfile as this
indicates when a file is added/deleted from the index entry. This value is used to
determine if plaintext file is deleted or not. This index entry includes a $FILE_
NAME attribute.

6.6 Determine Other Files Created during Process

Using the hexadecimal patterns outlined in 6.1 and 6.5 the temporary files created
during encryption are identified. During the Privatefile encryption a temporary file is
used where the data is readin and buffered from the plaintext file. Then the data is
written from this temporary file to a second temporary file, where it is encrypted. The
encrypted material is written to the cipherext file from there. If the plaintext file is
not deleted then a .lnk file is created, this links back to plaintext file.

 Investigating File Encrypted Material Using NTFS $logfile 193

6.7 Use the “FILE0” Entry in $logfile to Step Backwards

Each MFT entry starts with the ascii signature string FILE0 (or 0x46494C4530). By
backtracking using the “FILE0” string and by examining the log details of the newly
created and updated files (temp files, lnk, ciphertext and plaintext) the touch-points
or the interfaces are revealed. This indicates the chronology and the sequence that
would take place i.e. when the plaintext file was last updated with an MFT update on
access time and also the newly created files’ MFT update entries.

6.8 Determine the Original Plaintext File Name

The unicode string value of the plaintext file name can easily be extracted from the
$FILE_NAME attribute in the $logfile. By backtracking in $logfile and passing each
file or touch-point will lead to determining the original plaintext file name. There are
Win32 and DOS $Filename attributes. When deletion occurs the process follows a
different series of log record entries i.e. 0F/0E→03/02→16/15→0B/
0B→08/00→0B/0B→07/07→1B/01. For deletion the composite pattern 0F/0E→03/
02→16/15 precedes the 0B/0B→08/00→0B/0B→07/07→1B/01 composite pattern.
Indicating that deleting (0x0F) and adding (0x0E) index entry allocation, de-
allocating (0x03) and the initializing (0x02) of file record segments. The first part of
the composite is for “Redo” and the second part is for "Undo" operation.

6.9 Examine the contents of the Plaintext file

The contents of the $DATA attribute of the plaintext file can be located and
the hexadecimal values extracted. The contents will remain even if the file in
question was deleted during the encryption process. This is because the $bitmap
attributes and the data is just marked as de-allocated in NTFS. Depending on
the size of the plaintext file, then the data can be stored residently on $mft or non-
residently. The hexadecimal pattern 07/00→07/00 indicates what the resident data is
otherwise the addresses of the clusters or run of clusters where non-resident data is
specified in [7].

6.10 Determine BirthVolumeID of Plaintext File

This is to validate that the plaintext file identified was encrypted on the same
volume. This would be carried out after identifying and locating the original plaintext
file.

7 Case Study

The overall objective of this case study is to validate the methodology to see if it can
establish an evidential link between the encrypted file and the original plaintext file
and also view the plaintext contents. The name of the ciphertext file under
investigation is Secret.txt.pfs. If the file name is obfuscated, renamed or its attributes
changed then these activities can be tracked and traced in the $logfile – so evidence

194 N. McGrath and P. Gladyshev

of this would be detected. This activity was observed to have the 0x05/0x06
composite pair in the $logfile.

7.1 Determine BirthVolumeID of Ciphertext File and VolumeID

Determine the BirthVolumeID by using fsutil. A fsutil query is executed against the
file and the resulting BirthVolumeID is outputted. The identical volumeID is
confirmed to occur in $logfile for the ciphertext file. The BirthVolumeID in Fig 9
and the volumeID in Fig 10 are the same so it can be concluded that the encryption
took place on this volume.

Fig. 9. BirthVolumeID of Ciphertext File extracted using fsutil

Fig. 10. VolumeID of Ciphertext file in $logfile

7.2 Determine $FILE_NAME of Ciphertext File

Find the last occurrence of the ciphertext file name in $logfile and backtracking
search is initiated from this point, please see Fig 11. This is part of the $FILE_NAME
attribute.

7.3 Examine the Timestamps

As can be seen from Fig 11 the four timestamps are create, last modified, mft
modified and last accessed– in this order. The 0x 9EADACA345DCCC01 value
represents the time Thu, 26 January 2012 16:14:54 UTC, this represents the last
modified, mft modified and last accessed times. The last access time of plaintext file
will closely approximate this time.

Fig. 11. Ciphertext file name and timestamps

 Investigating File Encrypted Material Using NTFS $logfile 195

7.4 Other Files Created during the Encryption Process

Using the same pattern 0B/0B→08/00→0B/0B→07/07→1B/01 (the series 0B/
0B→07/07→1B/01 is used to close transactions) and by tracking in the $logfile it was
seen that the other files are created i.e. .lnk and two temporary files. The .lnk file is
created if the plaintext file is not deleted during encryption.

7.5 Plaintext File - (Irrespective If It is deleted)

The plaintext file name is determined to be Secret.txt. After the encryption process
has accessed and opened the plaintext file for reading, the last access time recorded in
the $logfile is 0x1E55289745DCCC01, when decoded is Thu, 26 January 2012
16:14:33 UTC, Fig 12.

Fig. 12. Plaintext file-last access date

7.6 Plaintext Contents

Even if the plaintext file is deleted or not-deleted; the plaintext contents remains in
the $logfile, as can be seen in Fig 13. This is subject to the clusters and sectors not
being overwritten by other data that might be added later. Note: The plaintext
contents is also available in the $MFT – this only occurs when the plaintext file is not
deleted during the encryption process.

Fig. 13. Plaintext content in $logfile

7.7 Determine BirthVolumeID of Plaintext file

This is a validation step and fsutil query is executed against the identified plaintext
file and the resulting BirthVolumeID is outputted. The outputted BirthVolumeID is
identical to what is extracted from the $logfile, please see Fig 14 and Fig 15.

Fig. 14. BirthVolumeID of Plaintext File using fsutil

196 N. McGrath and P. Gladyshev

Fig. 15. BirthVolumeId from $logfile

7.8 Result of Investigation

The name of the plaintext file that was encrypted was revealed to be Secret.txt. The
ciphertext file name is Secret.txt.pfs (as was known) and the secret message which
was encrypted is “Secret Message: Icarus flew too close to the sun!”. The result of
this case study is that it validates the methodology. It validates that the objectives of
being able establish an evidential link between the encrypted file and the plaintext
file while also revealing the plaintext contents of the encrypted file are met.

8 Automation of Methodology: FindTheFile Parser

Since the event sequence signature of the encryption process can be modeled and the
occurrence of the event sequence signature can be classified as a constraint
satisfaction problem- this provided the framework to the approach taken to automate
the methodology and using the backtracking algorithm for searching event signatures.
The use of backtracking is justified as it is the formally recognised solution to a CSP.
As a result the parser was built using the JAVA high-level language. The JAVA
language was selected as the language of implementation because of its platform
cross-compatibility and its extensive library of APIs. The parser was called
FindTheFile and the central class for parsing is the StringTokeniser. This class was
instantiated for each activity that is carried out in the encryption process e.g. Create,
Write, Delete file. These activities have corresponding hexadecimal entries in the
$logfile that facilitates identification of these activities. These hexadecimal entries are
used to initialise each StringTokeniser class with the appropriate tokeniser e.g. for
newly created files the hexadecimal composite of 0x0e/0x0f log record would be used
as a tokeniser to indicate the action of adding a newly created file. The Runtime class
from the java.io.* library is also used to call the external tool called fsutil.

8.1 Implementing the Backtracking and Recursion in Java

In order to apply backtracking to the data of a particular instance of a problem that is
to be solved the following procedural parameters: root, reject, accept, first, next, and
output are implemented. FindTheFile takes the instance data X as a parameter and
would do the following: root(X): return the partial candidate at the root of the search
tree, reject(X,c): return true only if the partial candidate c is not worth completing,
accept(X,c): return true if c is a solution of X and false otherwise, first(X,c): generate
the first extension of candidate c, next(X,s): generate the next alternative extension of
a candidate, after the extension s and finally output(X,c): use the solution c of X, as

 Investigating File Encrypted Material Using NTFS $logfile 197

appropriate to the application. These steps are the pseudo code for implementing the
backtracking solution (with recursion). This solution is the searching for the
occurrence of an event sequence signature which is modeled by equation 5. The use
of the iterator JAVA class was used at the core of this processing. This subsequently
facilitated the automation of the methodology.

8.2 Recognising Temporary and Link Files

In order for the parser to be able to separate various created files (temporary and link)
from the target file (plaintext file), the parser uses straightforward rationale. The
rationale is that a temporary file- no matter what software package creates it, it will
always be deleted. So the parser identifies a temporary file by the sequence of events
that occur in the $logfile i.e. the file is created, processed (written to or read from) and
then deleted. There are hexadecimal operator codes to indicate these actions in the
$logfile. This eliminates any problems that might arise with FindTheFile not
recognising file-naming conventions of a specific encryption software package might
have. In the case of recognising the link file – the rationale is simply; a link file will
always have a .lnk extension and this never changes no matter what encryption
software is used.

8.3 FindTheFile

This parser was successfully implemented and was run against the case study. The
$logfile was loaded and the ciphertext file under investigation was entered and then
the parser was started, please see Fig 16. The output panel was generated with the
results of the investigation. The results of the parser demonstrate that the search
located all files that are associated with the ciphertext file under investigation in the
$logfile, while backtracking (with recursion) was successfully implemented. It also
indicates the original plaintext file name and shows with a check-box if it was deleted
during the encryption or not. A text field is also outputted with the plaintext contents
of the original file, regardless if the file was deleted or not. The timestamps (in UTC)
display creation date of the encrypted file and the last accessed time of the plaintext
file that was encrypted, see Fig 17.

Fig. 16. FindTheFile: Initial Screen

198 N. McGrath and P. Gladyshev

Fig. 17. FindTheFile: Output Panel

9 Performance Evaluation

9.1 Introduction

As stated previously the research objective was to develop and evaluate a
methodology for the investigation of encrypted material using the $logfile where: a)
there is an evidential link established between encrypted file and the plaintext file
and, b) the plaintext contents of the original file is revealed. Receiver Operator Curve
(ROC) analysis is carried out to evaluate how well the methodology performed.

9.2 ROC Analysis

ROC analysis incorporates binary classification which is the classifying of a given set
of objects into two groups on the basis of whether they have some property or not.
The medical community applies this to testing techniques and a typical scenario is the
medical testing carried out to determine if a patient has a certain disease or not. ROC
analysis is a useful technique for visualizing, organizing and selecting/evaluating
classifiers based on their performance. When the area under the ROC curve (AUC) is
computed it will indicate the measure of performance as a scalar of the chosen
classifier. The classifier of interest is the finding the right plaintext file and its
contents in $logfile. It is discussed [13] that when measuring the performance of
medical and quality control tests, the concepts sensitivity (true positive rate - TPR),
specificity (true negative rate - TNR) and 1-specifcity (false positive rate - FPR) are
used; these concepts are readily usable for the evaluation of any binary classifier. The
number of true positives, false negatives, true negatives, and false positives always
add up to 100% of the set. It is explained that in statistical hypothesis testing of an
experiment, there will be a null hypothesis and an alternative hypothesis [13]. Based
on the outcome of the experiment, it will be decided whether to reject the null

 Investigating File Encrypted Material Using NTFS $logfile 199

hypothesis or not. If the result of the experiment is statistically significant, then the
null hypothesis is rejected in favour of the alternative hypothesis.

9.3 Experiment

The following experiment was carried out –where there are six encryption scenarios
i.e. encryption with three different packages and for each package there are two
options –deleting and not deleting the plaintext file. As a result there are six event
sequence signatures to monitor and analyse, for each instance two text files were
encrypted. Then this means there are twelve instances of Equation 5. These are
numbered in column “No.”, please see Table 2. The objective of the experiment is to
determine a measure of performance of the methodology in terms of true-positives
and false-positives. A classification variable (dichotomous) that would indicate results
of instantiating the methodology was selected and this is called ‘Successful’ where
Yes and No are the outcome. Then the binary representation of this is in column
“Binary” where there are two classes 1= success and 0= failure.

9.4 Results and Observations

Using the “1”s listed in “Binary” column Table 2 as the list of true positives (TPs)
which are also listed in column B of Table 3, then a list of false positives (FPs) can be
created - take the TPs and replace “0” with “1” and vice-versa [13]. The FPs are
listed in column C of Table 3. The TP rate is then calculated as being the proportion
of files above this point that can be correctly investigated. This is calculated by
summing the number of TPs above this point in the table and then dividing by the
total number of TPs. These values are listed in column D of Table 3. Similar
calculations are carried out for the FP rate in column E. The true negative (TN) rate is
simply calculated by subtracting the FPR from 1 because FPR=1-Specificity. These
calculations constitute the ROC data and are listed in Table 3.

Table 2. Evaluation for six event sequence signatures

No.
(Instance
of Eqn.5)

Delete
plaintext
File
Yes = Y
No = N

Encryption
Package

Successful
 =Yes

X=No

Binary
 =1

X= 0

1.1 Y Privatefle 1
1.2 N Privatefle 1
2.1 Y Privatefle 1
2.2 N Privatefle 1
3.1 Y PGP 1
3.2 N PGP 1
4.1 Y PGP 1
4.2 N PGP 1
5.1 Y MEO 1
5.2 N MEO 1
6.1 Y MEO X 0
6.2 N MEO 1

200 N. McGrath and P. Gladyshev

Table 3. Data to plot ROC graph

A B C D E F
No.

(Instance of
Eqn.5)

TP FP
TP rate

(Sensitivity)
FP rate

(1- specificity)

TN rate
(Specificity)

1.1 1 0 0 0 1
1.2 1 0 0.091 0 1
2.1 1 0 0.182 0 1
2.2 1 0 0.273 0 1
3.1 1 0 0.364 0 1
3.2 1 0 0.455 0 1
4.1 1 0 0.545 0 1
4.2 1 0 0.636 0 1
5.1 1 0 0.727 0 1
5.2 1 0 0.818 0 1
6.1 0 1 0.909 0 1
6.2 1 0 0.909 1 0

Fig. 18. ROC Plot

Using the data in the Table 3, the TPR as Y-axis and the FPR (recall that FPR = 1-
Specificity) as X-axis were graphed to give the ROC plot in Fig 18. Then the AUC
was computed by calculating the area for each row (where A is the TPR column and
C is the FPR column) using the trapezoid rule [13]. Subsequently, a decision plot can
be drawn up – not included here. The decision plot will allow the choice of the
sequence event signature that minimizes the rate of false positives and aids in the
selection of a specific value to use as a threshold that provides a desired trade-off
between the true positive rate and the false positive rate.

It is pointed out that when the AUC is 1 the accuracy of the classifier is concluded
to be excellent, when AUC is between 0.80 and 0.90 the accuracy of the test is

 Investigating File Encrypted Material Using NTFS $logfile 201

regarded to be good, while 0.70 to 0.80 indicates a fair accuracy level, 0.60 to 0.70 is
regarded to be poor and anything else warrants test failure [13]. The AUC in this
research has been calculated to be 0.91. Therefore it can be inferred that the
methodology yielded an excellent result. The results verify the selection of the
instance of Equation 5 variable (Success/Failure) as a classifier. In relation to
Hypothesis Testing, if the Null hypothesis is H0 (indicating randomness) and the
alternative hypothesis is H1 (indicating non-randomness), then where H0: area ≤ 0.5.
H1: area > 0.5. So in relation to this research, the results of the experiment prove
to be more powerful than a random rule as the AUC is 0.91. As a result H0 is
rejected and H1 is accepted i.e. results from the methodology classifier are
not random and are statistically significant. As a note - any points that lie under
the line of no discrimination in Fig 18, would represent where no discrimination can
be made between TPR or FPR this would be regarded as test failure.

10 Research Contribution

The research presents a unique and original method of investigating encrypted
material and revealing the plaintext. This is achieved by characterising encryption as
a series of file I/O operations rather than a mathematical or a theoretical problem.
Then by following the various points along the I/O process flow evidence artefacts
can be identified in the $logfile that lead to a successful investigation of encrypted
material. A novel approach to the investigation of encrypted material is represented
in the use of event sequence signature modelling which aided the classification of the
presented problem as a constraint satisfaction problem. Then this provided the basis
of implementing a successful backtracking search solution. The methodology was
successfully automated by implementing a parser that parsed the $logfile for events
and was able to output the results of the investigation. A side-channel attack is
defined as any attack based on side-channel information e.g. implementation or
physical details of a cryptosystem. The side–channel attack is not based on brute
force or theoretical weaknesses of the cryptosystem that can be exposed through
cryptanalysis techniques [14]. Therefore it can be inferred that this research
effectively results in a side-channel attack on encryption.

11 Future Work

This methodology will be extended to investigate multiple file formats; image
formats like JPEG in particular. This will result in an investigative technique to
analyse steganographically generated image files (stego-files). Once this is in place
emphasis will be placed on admissibility of all evidence produced by methodology-
thus ensuring Daubert compliance. As an approach to achieve this it is necessary to

202 N. McGrath and P. Gladyshev

get the methodology tested in actual field conditions rather than just in laboratory
conditions. Therefore, it is intended to recommend and promote the use of this
methodology within a LEA environment. Use of the methodology in this way would
identify benefits and drawbacks and they would form the basis of future work.

12 Conclusion

The main outcome of this work is a formal methodology. This methodology has been
validated through the development of an automated system and also through its
practical application on a case study. The performance of the methodology has been
evaluated using a binary classification system of true-positives and negatives and has
resulted in an excellent score. The objective of the methodology has been to
investigate encrypted material while revealing the original plaintext file and its
contents- this has been carried out successfully in a case study. The modelling of the
initial problem and backtracking solution served as a framework to facilitate the
generalisation of the process and subsequent automation – so the presented
methodology was compatible and interoperable with all tested types of encryption.
The methodology relies fundamentally on the evidential value that can be extracted
from the $logfile. The main challenge in this research was that the data in the $logfile
is transient as the contents gets rolled over on a cyclical basis – as fresh data gets
written in to the log file, older data is flushed out. Unfortunately there is insufficient
knowledge on the precise nature of the log-rotation cycle of $logfile in the public
domain.

The following tools were used in this research: AccessData FTK Imager 2.5.1,
WinHex 16.2 3, Process Monitor, Dcode, MS FSUTIL, Privatefile, Meo and PGP
Desktop.

References

1. Carter, H.: Paedophiles jailed for hatching plot on internet (2007)
2. Joseh, S.: Hamas Terror Chat Rooms (December 11, 2007)
3. Siegfried, J., et al.: Examining the Encryption Threat, Computer Forensic Research and

Development Center. International Journal of Digital Evidence (2004)
4. Bunting, S.: The Official EnCase Certified Examiner Guide. Wiley (2008)
5. McGrath, N., Gladyshev, P., Carthy, J.: Cryptopometry as a Methodology for Investigating

Encrypted Material. International Journal of Digital Crime and Forensics 2(1) (January-
March 2010); special edition of selected papers from e-Forensics (2009)

6. Russinovich, M.E., Solomon, D.A.: Windows Internals Covering Windows Server 2008
and Windows Vista. Microsoft Press, One Microsoft Way (2009)

7. Carrier, B.: File System Forensic Analysis. Addison Wesley, Boston (2005)
8. Parsonage, H.: The Meaning of Linkfiles in Forensic Examinations (2010)
9. Cho, G.-S., Rogers, M.K.: Finding Forensic Information on Creating a Folder in $LogFile

of NTFS. In: Gladyshev, P., Rogers, M.K. (eds.) ICDF2C 2011. LNICST, vol. 88,
pp. 211–225. Springer, Heidelberg (2012)

 Investigating File Encrypted Material Using NTFS $logfile 203

10. Nowicka, E., Zawada, M.: Modeling Temporal Properties of Multi-event Attack
Signatures in Interval Temporal Logic. Wrocław University of Technology (2006)

11. Rossi, F., Van Beek, P., Walsh, T.: Constraint Satisfaction: An Emerging Paradigm.
In: Handbook of Constraint Programming. Foundations of Artificial Intelligence. Elsevier,
Amsterdam (2006)

12. Gurari, E.: Backtracking algorithms “CIS 680: DATA STRUCTURES: Chapter 19:
Backtracking Algorithms” (1999), http://www.cse.ohio-state.edu/gurari/
course/cis680/cis680Ch19.html#QQ1-51-128

13. Altman, D.G., Bland, J.M.: Diagnostic Tests – Sensitivity and Specificity. BMJ 308(6943),
1552 (1994) PMID 8019315

14. Chen, S., Wang, R., Wang, X., Zhang, K.: Side-Channel Leaks in Web Applications:
A Reality Today, A Challenge Tomorrow. In: IEEE Symposium on Security & Privacy
(May 2010), http://research.microsoft.com/pubs/119060/
WebAppSideChannel-final.pdf

	Investigating File Encrypted Material Using NTFS $logfile
	1 Introduction
	1.1 Problem Description
	1.2 Related Work

	2 Background Information
	2.1 I/O File Processing
	2.2 NTFS

	3 Observation towards a Framework
	4 Characterise the Encryption Process
	4.1 Sequence of Events That Constitute the Encryption Process
	4.2 Establishing an Event Sequence Signature of the Encryption Process

	5 Modeling Event Sequence Signature of the Encryption Process
	5.1 Intrusion Detection Systems – Event Sequence Signature
	5.2 Modeling Event Sequence Signature for the Encryption Process
	5.3 Constraint Satisfaction (CS) and Backtracking

	6 Methodology
	6.1 Identify the Encrypted File to Be Investigated
	6.2 Determine BirthVolumeID of Ciphertext File and VolumeID
	6.3 Determine $FILE_NAME of Ciphertext File
	6.4 Examine the Timestamps
	6.5 Determine Where the Add/Delete Index Entry
	6.6 Determine Other Files Created during Process
	6.7 Use the “FILE0” Entry in $logfile to Step Backwards
	6.8 Determine the Original Plaintext File Name
	6.9 Examine the contents of the Plaintext file
	6.10 Determine BirthVolumeID of Plaintext File

	7 Case Study
	7.1 Determine BirthVolumeID of Ciphertext File and VolumeID
	7.2 Determine $FILE_NAME of Ciphertext File
	7.3 Examine the Timestamps
	7.4 Other Files Created during the Encryption Process
	7.5 Plaintext File - (Irrespective If It is deleted)
	7.6 Plaintext Contents
	7.7 Determine BirthVolumeID of Plaintext file
	7.8 Result of Investigation

	8 Automation of Methodology: FindTheFile Parser
	8.1 Implementing the Backtracking and Recursion in Java
	8.2 Recognising Temporary and Link Files
	8.3 FindTheFile

	9 Performance Evaluation
	9.1 Introduction
	9.2 ROC Analysis
	9.3 Experiment
	9.4 Results and Observations

	10 Research Contribution
	11 Future Work
	12 Conclusion
	References

