
Similarity Preserving Hashing: Eligible

Properties and a New Algorithm MRSH-v2

Frank Breitinger and Harald Baier

da/sec Biometrics and Internet Security Research Group
Hochschule Darmstadt, Darmstadt, Germany
{frank.breitinger,harald.baier}@h-da.de

Abstract. Hash functions are a widespread class of functions in com-
puter science and used in several applications, e.g. in computer forensics
to identify known files. One basic property of cryptographic Hash Func-
tions is the avalanche effect that causes a significantly different output if
an input is changed slightly. As some applications also need to identify
similar files (e.g. spam/virus detection) this raised the need for Simi-
larity Preserving Hashing. In recent years, several approaches came up,
all with different namings, properties, strengths and weaknesses which is
due to a missing definition.

Based on the properties and use cases of traditional Hash Functions
this paper discusses a uniform naming and properties which is a first step
towards a suitable definition of Similarity Preserving Hashing. Addition-
ally, we extend the algorithm MRSH for Similarity Preserving Hashing to
its successor MRSH-v2, which has three specialties. First, it fulfills all our
proposed defining properties, second, it outperforms existing approaches
especially with respect to run time performance and third it has two de-
tections modes. The regular mode of MRSH-v2 is used to identify similar
files whereas the f-mode is optimal for fragment detection, i.e. to identify
similar parts of a file.

Keywords: Digital forensics, Similarity Preserving Hashing, fuzzy hash-
ing, MRSH-v2, properties of Similarity Preserving Hashing.

1 Introduction

Within the area of computer forensics investigators are overwhelmed with digital
data. Traditional books, photos, letters and long-playing records (LPs) turned
into ebooks, digital photos, email and mp3. In order to handle this amount of
data, investigators need methods to automatically identify suspect files (e.g.,
images of child abuses). Normally the proceeding is quite simple: the investiga-
tor computes hash values (fingerprints) of all files which he finds on a storage
medium and performs database lookups, e.g., within the widespread National
Software Reference Library (NSRL, [1]). Besides finding exact duplicates using
a cryptographic Hash Function, it is also necessary to uncover similar files using
Similarity Preserving Hashing.

M. Rogers and K.C. Seigfried-Spellar (Eds.): ICDF2C 2012, LNICST 114, pp. 167–182, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



168 F. Breitinger and H. Baier

Cryptographic Hash Functions are well established and thus a clear definition
exists. This is in contrast to Similarity Preserving Hashing where the (preferable)
properties are unclear although there are existing approaches like ssdeep from
Kornblum ([2], 2006), sdhash from Roussev ([3], 2010) or bbHash from Breitinger
et al. ([4], 2012).

There are two main contributions of this paper. On the one hand it discusses
foundations for Similarity Preserving Hashing as a first step towards a definition
of Similarity Preserving Hashing. Our discussion comprises a uniform naming,
five important properties, which we consider to be eligible to be part of a def-
inition of Similarity Preserving Hashing and two use cases to understand our
proposals. On the other hand, we present a new version of the existing Similar-
ity Preserving Hashing algorithm MRSH ([5]). We show that our version MRSH-v2

is compliant with the proposed defining properties. Moreover, practical tests
and a theoretical analysis reveal that MRSH-v2 outperforms existing approaches
with respect to run time performance and allows to detect similar files and file
fragments.

The rest of the paper is organized as follows: At first we present properties
(Sec. 2.1), use cases (Sec. 2.2) and Bloom filters (Sec. 2.3) for Similarity Pre-
serving Hashing in the section on foundations (Sec. 2). Next, we shortly review
related work in Sec. 3. Sec. 4.1 introduces the concepts of the existing algo-
rithm MRSH, while Sec. 4.2 deals with our improved variant MRSH-v2. Based on
the foundations and the new algorithm, Sec. 5 evaluates MRSH-v2 and presents
experimental results. Sec. 6 concludes our paper.

2 Foundations of Similarity Preserving Hashing

The topic uses the term Similarity Preserving Hashing that is also known as
similarity digest, fuzzy Hash Function or similarity preserving Hash Function.
Within a first step we like to come up with a uniform naming.

Each existing approach consists of two sub-functions: one for generating hash
values / fingerprints1 and one for comparing them. Thus, Similarity Preserving
Hashing2 (abbreviated SPH) consists of a

similarity preserving hash function, (abbreviated SPHF) which is a func-
tion / algorithm to create a hash value / fingerprint and a

comparison function, (abbreviated CP) that outputs a similarity score for
two hash values / fingerprints.

In contrast to cryptographic Hash Functions, we do not expect a fixed-length
hash value (more in Sec. 2.1) and therefore the term hashing might be a little
bit confusing. Nevertheless, as some uses cases are almost identical to traditional
Hash Functions, we agreed on this term.

Talking about the similarity of files, one usually distinguishes between byte
level similarity and semantic similarity. In what follows we treat each input as a

1 The term fingerprint or hash value is due to cryptographic Hash Functions.
2 We also use the long term Approach for Similarity Preserving Hashing.



SPH: Properties and MRSH-v2 169

byte sequence and consider byte level similarity. Thus, when talking about the
similarity of two files, we generally talk about the similarity of the underlying
byte sequences.

2.1 Properties of Similarity Preserving Hash Functions

We bring five properties for Similarity Preserving Hashing into being that are dis-
cussed in the following and later used as a benchmark. This results from the neces-
sity thatwedonothavea clear definition rightnow. Inspiredby cryptographicHash
Functions we distinguish between general properties (P1-P3) and security proper-
ties (P4-P5). Finally this sections briefly discusses the impact of the properties to
the existing algorithms: ssdeep ([2]), sdhash ([3]), and bbhash ([4]).

General Properties for SPH

P1 - Compression. The output (hash value) of a SPHF is much smaller than
the input (the shorter the better). In contrast to traditional Hash Functions
we do not expect a fixed-length hash value. The reason for compression is
two-spread. First, a short hash value is space-saving and second, the com-
parison of small hash values is faster.

P2 - Ease of Computation. Generating a hash value is ‘fast’ in practice for
all kinds of inputs. This is comparable to the property of a classical hash
function like SHA-1. It is obvious that ease of computation is a prerequisite
for a SPHF to be usable in practice.

P3 - Similarity Score. In order to compare two hash values we need a ‘com-
parison function’3. Input of the comparison function are two hash values,
its output is a value from 0 to X , where X is the maximum match score.
A match score of X indicates that the hash values are identical or almost
identical, which implies that the input files are identical or almost identical,
too. Preferably the similarity score is between 0 and 100 and represents a
percentage value. If the comparison function is linear, it is easy to map the
match score in [0, X ] to the corresponding value in [0, 100].

Security Properties for SPH

P4 - Coverage. Every byte of an input is expected to influence the hash value.
We remark that this property is formulated in a statistical way. It means
that given a certain byte of the input the probability that this byte does
not influence the input’s digest is insignificant. Otherwise it is possible that
small changes will be uncovered. This property is in conformance with the
corresponding characteristic of classical hash functions.

P5 - Obfuscation Resistance. It is the difficulty to achieve a false negative
/ non-match. For instance, let f be a file e.g., a suspect file. Then it should
be difficult to manipulate f to f ′ so that a comparison yield a non-match
but they are still very similar.

3 In most cases the comparison of similarity preserving hash values is more complex
than for traditional hashes where we can use the Hamming distance.



170 F. Breitinger and H. Baier

2.2 Use Cases

This section demonstrates that within the area of Similarity Preserving Hash-
ing both mentioned security properties are sufficient. Assuming the applications
computer forensics, malware or junk mail detection, which are reasonable in
our mind, we identified two common aspects: file identification and fragment
detection, which are explained in the following.

File Identification. The mentioned applications mostly use databases con-
taining hash values of known inputs e.g., it stores fingerprints of known malware
or files from previous investigations. Later on, if the application is faced with
an unknown input, it generates the fingerprint and performs database lookups.
Depending on the underlying database, this processing categorizes files into the
categories: known-to-be-good, known-to-be-bad and unknown input.

Blacklisting. The main challenge for an active adversary is to hide suspect
(=known-to-be-bad) files from an automatic identification through a 3rd party
e.g., investigators, anti-virus software or junk mail scanner. As this is easily
feasible for cryptographic Hash Functions by flipping a single bit, it should not
be possible within the area of SPH. This concludes P5 - obfuscation resistance.

Whitelisting. Within the area of whitelisting we believe that cryptographic
Hash Functions are the mean of choice. For instance, an active adversary is able
to manipulate the ssh daemon of an operation system and include a backdoor.
Thus, the original file and the modified file are still very similar although it is a
malicious ssh daemon.

As whitelisting is out of scope we argue that traditional security properties like
preimage-resistance, second preimage-resistance and collision resistance are not
necessary for SPH - no one likes to manipulate a file to look like a suspect file.

Fragment Detection. Another opportunity for SPH on the binary level is its
ability to identify file fragments e.g., 200kiB out of 1MiB. One possible scenario
is the computer forensics. For instance, an investigator receives a hard disk which
is formatted in quick-mode. Thus he is only able to analyze the low level hdd
blocks. If a match is identified, a known-to-be-bad files were present before the
deletion. In the best case he even may recover the file.

2.3 Bloom Filters and the Comparison Function

A very promising way to represent hash values for SPH are Bloom filters because
they allow a fast comparison using the Hamming distance. According to this,
we briefly describe Bloom filters in general followed by a possible comparison
function (CP) as mentioned in Sec. 2.

Bloom Filters. A Bloom filter is an array of m bits (all set to zero) and used to
represent a set S of n elements. In order to ‘insert’ an element s into the filter, k
independent Hash Functions are used where each Hash Function outputs a value



SPH: Properties and MRSH-v2 171

between 0 andm−1. For instance, to insert s we compute h0(s), h1(s), . . . hk−1(s)
where each h outputs a value between 0 and m− 1. Thus, each Hash Function
sets the corresponding bit within the Bloom filter.

To answer the question if s′ is in S, we compute h0(s
′), h1(s

′), . . . hk−1(s
′) and

look if the bits at the corresponding positions are set to one. If all bits are set to
one, s′ is assumed to be within S with a high probability. Otherwise, if at least
one bit is set to zero, we know that s′ is not within S.

Comparison Function for Bloom Filters. This paragraph explains Rous-
sev’s idea ([3,6]) for a CP. The proceeding how to obtain a set S out of the input
is explained later in Sec. 4.1. Hence, the rest of this section only explains how
we compare Bloom filters.

Let bf, bf ′ be two Bloom filters, let |bf | denote the number of bits set to one
within a Bloom filter and let e be the amount of bits in common (e = |bf ∩ bf ′|).
To define the similarity of two Bloom filters, we have to make some assumptions
of the minimum and maximum overlapping bits by chance wherefore Roussev
introduces a cutoff point C. If e ≤ C, then the similarity score is set to zero.

C is determined as follows

C = α · (Emax − Emin) + Emin (1)

where α is set to 0.3 4, Emin is the minimum number of overlapping bits due
to chance and Emax the maximum number of possible overlapping bits. Thus
Emax is defined as

Emax = min(|bf |, |bf ′|). (2)

As described in Sec. 2.3, k denotes the amount of hash functions and m the size
of a Bloom filter in bits. Furthermore, let bf denote the amount of elements
within a Bloom filter and p = 1 − 1/m the probability that a certain bit isn’t
set to one when inserting a bit. Thus

Emin = m · (1− pk·bf − pk·bf
′
+ pk·(bf+bf ′)) (3)

is an estimation of the amount of expected common bits set to one in the two
Bloom filters bf, bf ′ by chance. In order to receive a similarity score we use

SFscore(bf, bf
′) =

{
0, if e ≤ C

[100 e−C
Emax−C ], otherwise .

(4)

Due to different file sizes, it might be possible that |S| is very large and all bits
within bf 5 would be set to one. To overcome this issue, we create a new Bloom
filter if bf = BFmax. Hence, the final hash value is not a single but a list of
Bloom filters. If we’d like to compare them, it is an all-against-all comparison of
Bloom filter sequences.

4 This is done by best practice.
5 The size m of a Bloom filter is fixed.



172 F. Breitinger and H. Baier

Let SD1 = {bf1, bf2, . . . bfs} and SD2 = {bf ′
1, bf

′
2, . . . bf

′
r} the Bloom filter

sequences (hash values) of two inputs and s ≤ r. If bf1 < 6 or bf ′
1 < 6 then

the original input does not contain enough features and the similarity score is
−1, not comparable. Otherwise the similarity score is the mean value of the best
matches of an all-against-all comparison of the Bloom filters, formally defined
as

SDscore(SD1, SD2) =
1

s

s∑
i=1

max
1≤j≤r

SFscore(bfi, bf
′
j) . (5)

3 Related Work

The beginning of similarity preserving hashing was in 2002 by Harbour who
developed dcfldd6 which extends the well-known disk dump tool dd. dcfldd is
also called block based hashing as it divides an input into fixed-size blocks, hash
each block separately and concatenate all hash values. In order to overcome this
approach it is sufficient to insert / remove one byte in the beginning. Thus the
offset of each block shifts and the resulting hash value is completely different.

Context triggered piecewise hashing (abbreviated CTPH) can be consid-
ered as an advancement of dcfldd which fixes the alignment weakness. It was
presented in [2] by Kornblum in 2006 and is based on a spam detection algorithm
of [7]. The basic idea is equal to the aforementioned block based hashing but
instead of dividing an input into blocks of a fixed length, an input is divided
based on the current context of 7 bytes.

As CTPH was the first Approach for Similarity Preserving Hashing, it was
improved in the upcoming years by [8,5,9,10] with respect to both, efficiency
and security. In 2011 [11,12] did a security analysis of CTPH where the authors
focused on blacklisting and whitelisting and came to the conclusion that ssdeep
fails in case of an active adversary.

Similarity Digest Hashing is a completely different Approach for Similarity
Preserving Hashing and was presented in 2010 by Roussev ([3]) including a pro-
totype called sdhash. Instead of dividing an input into pieces, sdhash identifies
“statistically-improbable features” ([13]) using an entropy calculation.

These characteristic features, a sequence of length 64 bytes, are then hashed
using the cryptographic Hash Function SHA-1 ([14]) and inserted into a Bloom
filter ([15]). Hence, files are similar if they share identical features.

Comparison [16] provides a comparison of ssdeep and sdhash and shows that
the latter “approach significantly outperforms in terms of recall and precision in
all tested scenarios and demonstrates robust and scalable behavior”. A security
analysis ([17]) approved this statement but also showed some peculiarities and
weaknesses of sdhash.
6 http://dcfldd.sourceforge.net; visited 02.05.2012

http://dcfldd.sourceforge.net


SPH: Properties and MRSH-v2 173

4 Multi-Resolution Similarity Hashing (MRSH)

Roussev et al. ([5]) present a powerful variation of ssdeep called multi-resolution
similarity hashing (abbreviated MRSH) that slided into obscurity. Therefore Sec.
4.1 explains the concept of the original algorithm and Sec. 4.2 shows changes to
increase the performance.

4.1 Foundations of MRSH

As briefly described within Sec. 3 the main idea of ssdeep is to divide an input
in several chunks based on the current context of 7 bytes where an input is a
byte sequence. As MRSH is based on ssdeep, this algorithm is explained first.

Let an input IN of length L be given as a byte sequence b0b1 . . . bL−1. In order
to identify the end of a chunk (i.e., to divide the input into blocks), ssdeep uses
a window of size 7 bytes that moves through the whole input, byte for byte. At
each position p (0 ≤ p < L) within IN the window contains a byte sequence
BSp = bp−6bp−5 . . . bp which serves as input for a pseudo random function PRF .
We denote this by PRF (BSp). If PRF (BSp) hits a certain value, the end of the
current chunk is identified and bp is called a trigger point. The subsequent chunk
starts at byte bp+1 and ends at the next trigger point or EOF.

In order to define a hit for PRF (BSp), MRSH uses a fixed modulus called
blocksize b e.g., 256 7. Thus, if PRF (BSp) ≡ −1 mod b then bp is a trigger
point and the algorithm identified the end of the chunk. If PRF outputs equally
distributed values, the probability of a hit is reciprocally proportional to b and
therefore the average chunk size should be b bytes8.

In contrast to ssdeep which uses an algorithm called rolling_hash9 for
PRF , MRSH uses the polynomial Hash Function djb210 over the 7 byte window
which is shown in Algorithm 1. For each window (at each position p within IN)
the window needs to be computed.

Algorithm 1. Polynomial Hash Function djb2

unsigned long hash = 5381
int c
for i = 0 → 6 do � Run through all bytes within the window

c = BS[i]
hash = ((hash<< 5) + hash) + c; � 33 · hash + c

end for
return hash

7 ssdeep used a variable modulus based on the file size.
8 Therefore this modulus is called blocksize.
9 This function is a variation of Adler-32; http://en.wikipedia.org/wiki/Adler-32;
visited 04.06.2012

10 http://www.cse.yorku.ca/~oz/hash.html; visited 21.05.2012

http://en.wikipedia.org/wiki/Adler-32
http://www.cse.yorku.ca/~oz/hash.html


174 F. Breitinger and H. Baier

The biggest difference between ssdeep and MRSH is the hash value represen-
tation. ssdeep uses the non-cryptographic Hash Function FNV ([18]) to hash
each chunk. For each chunk it uses the least significant 6 bits of the FNV hash
and concatenates all of them. Thus the final hash value is a Base64 sequence.

MRSH works completely different. All identified chunks build the set S which
is used as basis for the hash value generation using Bloom filters (see Sec.
2.3). Instead of using k different Hash Functions, MRSH “take[s] the MD5 hash
and split[s] it into four 32-bit numbers and take[s] the least significant 11 bits
from each part” ([5]). For instance, imagine the least significant 11 bits are
010 1000 1010 = 0x28A = 650, thus the bit at position 650 within the Bloom
filter is set to one. Having 4 sub-hashes, each chunk sets 4 bits within the Bloom
filter. After inserting BFmax(=256) chunks into a Bloom filter, it reaches its
maximum and a new filter is created. Hence, the final hash value is a list of
Bloom filters.

As stated before, b is the approximate length of a chunk. In comparison to
ssdeep, MRSH uses a minimum chunk size which is 1

4 of the chunk size b. Thus,

whenever a trigger point is discovered the next b
4 bytes are skipped for PRF , so

the chunk is guaranteed a minimum size of b
4 .

4.2 MRSH Version 2

In the following we present an updated version of MRSH called MRSH-v2. Gen-
erally speaking MRSH-v2 uses its precursor as a base frame but with some ac-
commodations based on the aforementioned properties.

PRF. We impose two important requirements on a pseudo random function
(PRF). First, it has to be very efficient with respect to its computation time
as it is invoked for roughly every byte of the input. Second its output should
behave pseudo randomly.

In his version of MRSH Roussev changed the PRF from rolling_hash to
djb2 which he motivates with respect to performance. As shown in Algorithm 1,
djb2 should be quite fast. However, our tests presented in Sec. 5.2 show different
results. The point is, although djb2 looks less complex, it needs to compute the
hash value over the whole window at each time (7 loops per window) whereas
the original version (rolling hash) is able to remove the last byte and add the
new one to the hash value (only one loop per window).

[5, Sec. 3] compares the randomness of djb2 with MD5 and concludes that
djb2 totally fulfills the expectations of a fast PRF. However, [11, Sec. V] shows
that rolling_hash is suitable for MRSH-v2, too.

As outcome of both requirements we decided to make use of the original rolling
hash as PRF in our algorithm MRSH-v2.

Chunk Hash Function. The motivation to change the chunk Hash Function
from FNV to MD5 is that “FNV is not a collision-resistant function and has
some known collision issues [...] especially for inputs with lower entropy which
would present a serious problem for simple hashes” ([5]).



SPH: Properties and MRSH-v2 175

The latter argument is in contrast to [18] where it says that “the high dis-
persion of the FNV hashes makes them well suited for hashing nearly identical
strings”. Furthermore we argue that collision resistance is not necessary as dis-
cussed in Sec. 2.1. Moreover MRSH reduces the MD5 hash value from 128 bits
to 44 bits in order to insert it into the Bloom filter. Thus, the hash looses its
cryptographic properties.

Due to these facts our version uses FNV-1a (64 bit) and is therefore faster
(some measurement results are given in Sec. 5.1).

Minimum Chunk Size. A minimum chunk size comes with two improvements.
First, it overcomes one of the main attacks on ssdeep presented in [11] called
‘adding trigger points’. Second, it increases the performance as the PRF needs
not to be computed at each offset within the input sequence. A drawback is that
some details may lost. This is the case if two subsequent trigger points have a
distance of at most b

4 − 1.
We illustrate this characteristics on base of an extreme example. We assume

that the input byte sequence has a trigger point every
(
b
4 − 1

)
-th byte. They are

denoted by t0, t1, t2, .... Then every second trigger point is skipped (only trigger
points with an even index are used). Removing the first trigger point t0 from the
input results in considering the trigger points t1, t3, ... yielding a fundamental
different hash value.

However, for performance reasons we agree on the same minimum chunk size
as used in MRSH, b

4 .

Bloom Filters. MRSH uses Bloom filters of size m = 2048 and inserted
BFmax = 256 chunks each setting 4 bits within the Bloom filter which is in
contrast to our implementation. Within MRSH a maximum of 1024 bits could
be set and each Bloom filter could represent approximately 65,536 byte (using
the blocksize b = 256).

The final hash value of MRSH-v2 is mostly based on the settings identified for
sdhash in [3,6]. Thus the Bloom filter size is still m = 2048 bits but we changed
BFmax = 256 and k = 5 (five sub-hashes). The maximum is therefore 800 bits
and one Bloom filter could represent approximately 40,960 byte (more see Sec.
5.1). Also MRSH has a better compression, MRSH-v2 has a better false positive
rate as shown in Sec. 5.6.

In order to insert the chunk hash value into a Bloom filter, we use the least
significant k · log2(m) bits (MRSH divides the chunk hash values). As a conse-
quence our chunk Hash Function needs at least so many bits which is fulfilled
by FNV-1a using the default setting k = 5, m = 2048. A performant proceeding
is given in Algorithm 2. In addition the design of MRSH-v2 allows to change the
parameters like k,m or the chunk Hash Function.

5 Experimental Results and Evaluation

The following sections discuss the properties from Sec. 2.1 with respect to our
algorithm. Furthermore we compare MRSH-v2 to sdhash, bbHash and ssdeep.



176 F. Breitinger and H. Baier

Algorithm 2. Insertion of a chunk hash into a Bloom filter

h is the chunk hash value

k = 5 � Amount of sub-hashes
m = 0x7FF � m = 2048 − 1
shiftOps = 11 � Calculated by log2(m+ 1)

for i = 0 → k − 1 do � Create k sub hashes
bit = (h >> (shiftOps · i)) & m
setBitInBloomFilter(bit)

end for

All experimental tests were performed on a 64Bit Mac OS X with a 2.4 GHz
Intel Core 2 Duo processor.

5.1 P1 - Compression

Due to the design of ssdeep and thus of MRSH-v2, the hash value length depends
on the blocksize b, the amount of chunks per Bloom filter BFmax and the size of
a Bloom filter m (in bits). Each Bloom filter represents approximately BFmax · b
bytes of a given input and thus the compression ratio is m

8 · 1
BFmax·b .

As discussed in Sec. 4.2 we use m = 2048 bits and BFmax = 160. Assuming
these values, the compression ratio is 2048

8 · 1
160·b = 8

5·b for b > 0 and therefore
adjustable by changing b. Table 1 shows the proportion between blocksize b and
the expected hash value length. For instance, by default we set b = 320 and thus
the compression ratio is at 0.5%.

Table 1. Proportion between blocksize b and the hash value length in percent

b 128 160 256 320 512

expected length in % 1.250 1.000 0.625 0.500 0.313

ssdeep produces outputs having at most 100 Base64 characters. This rather
good compression implies a security drawback as discussed in [11]. Put simply,
if there are too many chunks, the last chunks are combined into one large one.
Due to the poor result in the security analysis we neglect ssdeep and focus on
two other approaches.

The hash values of bbHash and sdhash are proportional to the input length,
where the proportionality factor is 0.5% and 3.3%, respectively. However, the
performance of bbHash isn’t acceptable wherefore we come up with the follow-
ing classification: 1. MRSH-v2 (0.5%), 2. sdhash (3.3%), 3. bbHash (0.5%) and
ssdeep.



SPH: Properties and MRSH-v2 177

5.2 P2 - Ease of Computation

This section is roughly divided into two parts. First, we analyze MRSH-v2 itself as
the performance of MRSH-v2 is based on two issues: the pseudo random function
(PRF) and the chunk hash function. Second, we compared our implementation
against other existing algorithms.

All tests are based on a 500MiB file from /dev/urandom.

PRF. In the following we show that the rolling_hash is faster than djb2. In
order to test both algorithms we separated them, run them ‘stand-alone’ and
used all optimizations modes of the gcc compiler11. Of course, both versions
are improved for performance, e.g., the struct of the rolling_hash from
ssdeep was removed. The result is given in Table 2 12.

Table 2. Performance of two possible pseudo random function (PRF)

optimization mode - O1 O2 O3

djb2 23.620s 11.021s 1.236s 1.241s

rolling hash 9.835s 4.315s 1.138s 1.085s

djb2 / rolling hash 2.402 2.554 1.086 1.143

Actually we cannot explain these serious differences. We recognized them by
comparing
– djb2 (8.532s) and rolling_hash (3.808s) within MRSH-v2 and
– djb2 (1.241s) and rolling_hash (1.085s) as ‘stand-alone’.

Chunk Hash Function. As discussed in Sec. 4.2 we decided for FNV-1a in-
stead of the cryptographic Hash Function MD513. To test MD5 we took a
library provided by OpenSSL and used an optimized version of FNV-1a. The
test is focused on the algorithm time (read-in time is neglected) and solved
using the clock()-function from C++. The result is 10−6s from FNV vs.
1.354s of MD5. Using these functions within MRSH-v2 it is 5.235s vs. 6.569s.

The second part of this section is the comparison against other existing algo-
rithms. We skipped bbHash as its performance is not acceptable and focused on
ssdeep and sdhash. Furthermore we also included SHA-1 as a reference time.
All times were measured using the time command and the algorithm CPU-time
(time denotes this by user-time). The results are shown in Table 3.

As expected SHA-1 outperforms every similarity preserving Hash Function
and sdhash is the slowest one due to the high complexity. The difference between
MRSH-v2 and ssdeep relies on the minimum chunk size which allows to skip some
calculations and an improved implementation of the rolling_hash.

11 http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html ; visited 21.6.2012
12 We do not measure the time it takes to read the file into a buffer.
13 Due to the minimum hash value length of 55 bits (see Sec. 4.2, Bloom filters) it is

not possible to use djb2 which would be even faster.
14 We used sdhash with 2 threads.

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


178 F. Breitinger and H. Baier

Table 3. Performance comparison of similarity preserving Hash Functions and SHA-1

SHA-1 MRSH-v2 sdhash 2.0 sdhash 2.014 ssdeep 2.8

runtime 2.549s 5.235s 28.641s 28.493s 7.131s

algorithm / SHA-1 1.000 2.054 11.236 11.178 2.798

5.3 P3 - Similarity Score

Our algorithm MRSH-v2makes use of the Bloom filter comparison algorithm from
Sec. 2.3 and findings from [17, Sec. 4.3] including an own improvement. In a first
step we show that the existing algorithm is well suited for fragment detection,
but has drawbacks for file similarity detection. As a result we recommend to use
the original comparison function of sdhash for fragment detection. However, we
modify the algorithm to decide about file similarity, too.

Fragment Detection. We discussed the original comparison algorithm in Sec. 2.3.
We explain its shortcomings in what follows based on an example (a generaliza-
tion is easy). As a result MRSH-v2 makes use of this comparison algorithm for
fragment detection only.

Let f and f ′ be two files where f ′ is a fragment of f , e.g. the first 25% of f .
Let SD = {bf1, bf2} be the hash value of f and let SD′ = {bf∗

1 } be the hash
value of f ′ where |bf∗

1 | < |bf1|.
To receive the similarity score we first have to identify the best matching

Bloom filters where the filter similarity is identified by Eq. (4). Recall,

SFscore(bf, bf
′) =

{
0, if e ≤ C

[100 e−C
Emax−C ], otherwise .

(4)

In case of fragments we have e = Emax as e = |bf ∩ bf ′| = |bf ′| and Emax =
min(|bf |, |bf ′|) = |bf ′|. Thus the SFscore(bf

∗
1 , bf1) = 100.

Knowing the best matching Bloom filters, the final similarity score is gener-
ated using Eq. (5). Recall,

SDscore(SD1, SD2) =
1

s

s∑
i=1

max
1≤j≤r

SFscore(bfi, bf
′
j) , (5)

where s = |SD′|, r = |SD| (s needs to be smaller). As s = 1, the SDscore is 100
1 .

To sum it up, we compared two obviously different hash values and resulted in a
100% match score. As f ′ is a fragment of f this algorithm is perfect for fragment
detection.

File Similarity Detection. Besides fragments we also interested in identifying
similar files. Taking the aforementioned example concerning f, f ′ we expect a
file similarity of 25%, if |bf1|, |bf2| are at their maximum and |bf∗

1 | = bf1
2 . In

order to achieve file similarity, there are two adaptations:



SPH: Properties and MRSH-v2 179

1. As proposed in [17] MRSH-v2 makes use of a new function E′
max =

max(|bf |, |bf ′|) in Eq. (4) (the min function is replaced by the max func-
tion).

2. Additionally we replace 1
s by 1

r within Eq. (5). As s ≤ r all Bloom filters
are considered (in contrast to [17], where only the first s Bloom filters are
relevant).

To receive the final similarity score, we first have to generate the SFscore defined
by SFscore = [100 e−C

E′
max−C ]. Thus we need to determine e, E′

max and C where

– e = |bf1 ∩ bf∗
1 | = |bf∗

1 |,
– E′

max = max(|bf1|, |bf∗
1 |) = |bf1| and

– C = α · (Emax − Emin) + Emin where

• Emax = min(|bf1|, |bf∗
1 |) = |bf∗

1 |) and
• Emin = m · (1− pk·bf1 − pk·bf∗

1 + pk·(bf1+bf∗
1 )) = 117.548

We first estimate the amount of bits set to be one using the following

|bf1| = m ·
(
1− (1− 1

m
)k·|bf1|

)
= 2048 · (1− 0.999511725·160) = 662.386

|bf∗
1 | = m ·

(
1− (1− 1

m
)k·|bf

∗
1 |
)

= 2048 · (1− 0.999511725·80) = 363.442

and calculate C by

C = 0.3(363.442− 117.548) + 117.548 = 191.316

To sum it up, we result in

SFscore = [100
e− C

E′
max − C

] = 100 · 363.442− 191.316

662.386− 191.316
= 100 · 172.126

471.0698
= 36.539.

In the very last step we use the adopted version Eq. (5) (instead of 1
s we use

1
r . Thus we have to divide SFscore by 2 and result in a final similarity score of
18.270.

Implementation. These properties allow to extend our algorithm to have two
modes as listed in Fig. 1.

Regular mode (default setting) is used to identify the similarity between two
files.

Fragment mode (use -f option) is the fragment mode and used to find smaller
parts of a file.



180 F. Breitinger and H. Baier

$ dd if=/dev/urandom of=2MiB bs=1m count=2

$ split -b 512k 2MiB

$ ./mrsh-v2 2MiB xaa

Similarity of files 2MiB and xaa is: 27.113835

$ ./mrsh-v2 -f 2MiB xaa

Similarity of files 2MiB and xaa is: 99.417396

Fig. 1. A sample for fragment and similar file detection

5.4 P4 - Coverage

Full coverage means that every byte of an input should influence the output.
By design all bytes influence the final hash value and therefore especially some
greater random changes influence the final hash value. Recall, a high similarity
score (e.g., 100) means that two inputs are very similar but it does not imply
that they are completely identical.

ssdeep and MRSH-v2 have a better (full) coverage compared to sdhash, as
[17] shows that there are bytes which don’t influence the similarity digest at all.
bbHash claims to have a full coverage but this is not attest.

5.5 P5 - Obfuscation Resistance

Obfuscation resistance is the difficulty to achieve a non-match. Thus we roughly
analyze the amount of changes an active adversary has to do in order to overcome
this approach. However, this section does not replace a comprehensive security
analysis.

The most obvious attack is to change one byte within each chunk which will
change all chunk hash values. Recall, the chunk size in bytes is approximately
the blocksize b. Let b = 320. Assuming a file of 1048576 bytes (=1 MiB), this
result in 1,048,576

320 = 3276.8 changes. Due to the comparison algorithm it is not
necessary to have changes within each chunk.

[17] showed the possibility of ‘Bloom filter shifts’. It is possible to reduce the
similarity score down to approximately 25 by inserting data at the beginning of
a file. However, the authors also present a first idea to solve this issue which will
be analyzed for the next upcoming version of MRSH-v2.

Nevertheless the possibility to make changes within a specific file depends on
the file type. Generally we classify files in one of the following categories.

Locally sensitive file types (e.g., jpg, pdf, zip, exe) nearly impossible to manipu-
late at each position (e.g., [11] showed that the jpg-header allows changes).
A flipped bit can have ‘global’ consequences such that the file is not readable



SPH: Properties and MRSH-v2 181

anymore. We believe that an active adversary will not overcome MRSH-v2 for
these kind of types15.

Locally non sensitive file types (e.g., txt, doc, bmp) are mostly small (e.g., doc,
txt) and sometimes not so wide-spread (e.g., bmp). Manipulations only in-
fluence the local area e.g., changing a letter within a txt file. For small files,
reducing b increases granularity of the hash value and force an attacker to
do more changes. Of course there are also large doc-files but they mostly
contain images (which give them their unique characteristic).

5.6 False Positive Rate

Within 4.2 we explained that we have to find a good trade-off between compres-
sion and false positive rate. Due to the changes from [k = 4, BFmax = 256] to
[k = 5, BFmax = 160] we reduced the false positive rate

(
1−

(
1− 1

m

)k·BFmax
)k

=

(
1−

(
1− 1

2048

)4·256)4

= 0.0240 (6)

down to(
1−

(
1− 1

m

)k·BFmax
)k

=

(
1−

(
1− 1

2048

)5·160)5

= 0.0035 . (7)

which is a factor of approximately 7.

6 Conclusion

Currently there are no constant naming, definition or properties for Similarity
Preserving Hashing which are necessary to classify them. But due to the in-
creasing amount of data, it is necessary to rate different approaches. Thus this
paper at hand presents 5 properties: 3 general properties and 2 security related
properties. As a conclusion, the identified properties coincide only partially with
traditional Hash Functions which comes due to the different use cases.

Additionally we improved an existing Approach for Similarity Preserving
Hashing from 2007 with respect to performance and introduced MRSH-v2. We
briefly compared it against other algorithms based on the properties. As a re-
sult MRSH-v2 outperforms existing algorithms with respect to performance. The
hash value length is at 0.5% and only surpassed by ssdeep which failed a secu-
rity analysis. As a highlight MRSH-v2 is the first algorithm that has two modes:
fragment detection and similar file detection.

There are three next steps: First, we like to complete the functions of our
implementation (e.g., read directory) . Second, a detailed security analysis of
MRSH-v2 is needed. And third, we would like to implement sdhash using FNV
and analyze the performance.

15 We focused on the binary level and not on a semantic level where it is possible to
rotate an image.



182 F. Breitinger and H. Baier

Acknowledgments. This work was partly funded by the EU (integrated project
FIDELITY, grant number 284862) and supported by CASED (Center for Ad-
vanced Security Research Darmstadt).

We thank Mustafa Karabat for supporting us with programming and testing.

References

1. NIST, “National Software Reference Library” (May 2012),
http://www.nsrl.nist.gov

2. Kornblum, J.: Identifying almost identical files using context triggered piecewise
hashing. In: Digital Forensic Research Workshop (DFRWS), vol. 3S, pp. 91–97
(2006)

3. Roussev, V.: Data fingerprinting with similarity digests. In: Chow, K.-P., Shenoi,
S. (eds.) Advances in Digital Forensics VI. IFIP AICT, vol. 337, pp. 207–226.
Springer, Heidelberg (2010)

4. Breitinger, F., Baier, H.: A Fuzzy Hashing Approach based on Random Sequences
and Hamming Distance. In: ADFSL Conference on Digital Forensics, Security and
Law, pp. 89–101 (May 2012)

5. Roussev, V., Richard, G.G., Marziale, L.: Multi-resolution similarity hashing. In:
Digital Forensic Research Workshop (DFRWS), pp. 105–113 (2007)

6. Roussev, V.: Scalable data correlation. International Conference on Digital Foren-
sics (IFIP WG 11.9) (January 2012)

7. Tridgell, A.: Spamsum. Readme (2002),
http://samba.org/ftp/unpacked/junkcode/spamsum/README

8. Chen, L., Wang, G.: An Efficient Piecewise Hashing Method for Computer Foren-
sics. In: Workshop on Knowledge Discovery and Data Mining, pp. 635–638 (2008)

9. Seo, K., Lim, K., Choi, J., Chang, K., Lee, S.: Detecting Similar Files Based on
Hash and Statistical Analysis for Digital Forensic Investigation. In: Computer Sci-
ence and its Applications (CSA 2009), pp. 1–6 (December 2009)

10. Breitinger, F., Baier, H.: Performance Issues About Context-Triggered Piecewise
Hashing. In: Gladyshev, P., Rogers, M.K. (eds.) ICDF2C 2011. LNICST, vol. 88,
pp. 141–155. Springer, Heidelberg (2012)

11. Baier, H., Breitinger, F.: Security Aspects of Piecewise Hashing in Computer Foren-
sics. In: IT Security Incident Management & IT Forensics (IMF), 21–36 (May 2011)

12. Breitinger, F.: Security Aspects of Fuzzy Hashing. Master’s thesis, Hochschule
Darmstadt (February 2011), https://www.dasec.h-da.de/offerings/theses/

13. Roussev, V.: Building a Better Similarity Trap with Statistically Improbable Fea-
tures. In: 42nd Hawaii International Conference on System Sciences, pp. 1–10
(2009)

14. SHS, “Secure Hash Standard” (1995)
15. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-

nications of the ACM 13, 422–426 (1970)
16. Roussev, V.: An evaluation of forensic similarity hashes. In: Digital Forensic Re-

search Workshop, vol. 8, pp. 34–41 (2011)
17. Breitinger, F., Baier, H., Beckingham, J.: Security and Implementation Analysis of

the Similarity Digest sdhash. In: First International Baltic Conference on Network
Security & Forensics (NeSeFo) (August 2012)

18. Noll, L.C.: Fowler / Noll / Vo (FNV) Hash (2001),
http://www.isthe.com/chongo/tech/comp/fnv/index.html

http://www.nsrl.nist.gov
http://samba.org/ftp/unpacked/junkcode/spamsum/README
https://www.dasec.h-da.de/offerings/theses/
http://www.isthe.com/chongo/tech/comp/fnv/index.html

	Similarity Preserving Hashing: Eligible Properties and a New Algorithm MRSH-v2
	1 Introduction
	2 Foundations of Similarity Preserving Hashing
	2.1 Properties of Similarity Preserving Hash Functions
	2.2 Use Cases
	2.3 Bloom Filters and the Comparison Function

	3 Related Work
	4 Multi-Resolution Similarity Hashing (MRSH)
	4.1 Foundations of MRSH
	4.2 MRSH Version 2

	5 Experimental Results and Evaluation
	5.1 P1 - Compression
	5.2 P2 - Ease of Computation
	5.3 P3 - Similarity Score
	5.4 P4 - Coverage
	5.5 P5 - Obfuscation Resistance
	5.6 False Positive Rate

	6 Conclusion
	References




