

K. Singh, A.K. Awasthi, and R. Mishra (Eds.): QSHINE 2013, LNICST 115, pp. 951–961, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Evaluation of Understandability
of Object-Oriented Design

Devpriya Soni

Department of Computer Science and Engineering
Jaypee Institute of Information Technology, Noida, sec- 128, India

devpriyasoni@gmail.com

Abstract. Quality of software design directly affects the understandability of
the software developed. As the size and complexity of the software increases it
drastically affects quality attributes, especially understandability. The direct
measurement of quality is difficult because there is no single model that can be
applied in all situations. Models proposed by various researchers are not
comprehensive. Quantitative measurement of an operational system's
understandability is desirable both as an instantaneous measure and as a
predictor of understandability over time. This work proposes the method of
measuring understandability using Logical Scoring of Preferences (LSP)
method. I have also evaluated one design through this model.

Keywords: Software Quality, Quantitative Measurement, LSP.

1 Introduction

The demand of the quality software is increasing at rapid pace due to the society’s
increasing dependence on software. Measuring quality in the early stage of software
development is the key to develop high-quality software. Wrong interpretations can
lead to misunderstandings and to faulty development results. It is difficult to manage
and improve the process without understanding and the ability to properly express the
process in use Therefore, the readability and understandability of the software has a
lot of influence on the factors that directly or indirectly affect software quality.
Complex design may lead to poor testability, which in turn leads to ineffective testing
that may result to severe penalties and consequences. It is well understood fact that
flaws of design structure have a strong negative impact on quality attributes. But,
structuring a high-quality design continues to be an inadequately defined process [1].
Therefore, software design should be built in such a way so as to make them easily
understandable, testable, alterable, and preferably stable. This work focuses on the
understandability assessment during the design phase to produce quality software.

Our methodology for the quantitative evaluation of software’s understandability in
the design phase is based on the core evaluation models and procedures are grounded
in the LSP model and continuous preference logic as mathematical background [2].
Kumar and Soni [4] have proposed a hierarchical model of quality attributes. This is
used to evaluate quality of human resource system design which was proposed by
Kumar and Gandhi [3].

952 D. Soni

2 Previously Proposed Quality Models for Object- Oriented
Software Products

One of the earliest software product quality model was suggested by McCall et.al.[5].
They defined software product qualities as a hierarchy of factors, criteria and metrics.
The McCall’s quality factors are correctness, reliability, efficiency, integrity, usability
and maintainability. Boehm [6] described a set of quality characteristics. International
bodies ISO/IEC came up with ISO9126 model for ensuring quality in software
products. The ISO9126 [7, 17] model defines six quality attributes namely
functionality, reliability, efficiency, usability, maintainability and portability. They
are further subdivided into 26 sub-attributes (criteria) and nearly 100 sub-criteria or
metrics. All these models were developed for structured methodology of software
product development.

Even though there are many object-oriented analysis and design methodologies,
languages, database management systems and tools, relatively less work has been
done in the area of object-oriented design quality assurance [7, 8]. However, many
metrics were developed to measure size and complexity of an object-oriented
software system. One of the most popular set of metrics (commonly know as CK
Metrics suite) was proposed by Chidamber and Kemerer [9]. The same suite was later
refined and presented with empirical validation by Chidamber and Kemerer [10].
Basili et.al. [11, 12] also performed the empirical validation of CK metrics suite.

A framework for building product based quality models has been developed by
Dromey [13,14]. The framework is a methodology for development of quality models
in a bottom-up fashion, providing an approach that will ensure that the lower-level
details are well specified and computable [12]. Bansiya et.al. [15] extended this
methodology to develop the hierarchical Quality-Model for Object-Oriented Design
(QMOOD) assessment. In the Quality Model for Object-Oriented Design (QMOOD),
Bansiya et.al [15] identified the initial set of design quality attributes as: functionality,
effectiveness (efficiency), understandability (maintainability), extendibility
(portability), reusability and flexibility.

Further, Keller and Cockburn [16] organized a workshop, in which one group
agreed upon following list of perspectives, with each having substantial influence on
the quality of design artifacts: maintainability, documentation, extensibility, cost,
reliability, ease of use, internationalization, usability, market goals, performance,
team structure.

The second group discussed design properties that are of interest for project
participants (developers) and gave following attributes: clarity, simplicity, scalability,
modifiability, extendibility, reusability, effectiveness, reliability, robustness, security,
and cost.

The metrics proposed by Bansiya et.al. [15] are quite general in nature and they
have not provided the methodology to measure these metrics. Keller and Cockburn
[16] have observed that there was no consensus on the quality attributes. However,
they prescribed attributes and metrics that are very broad in nature and are not in
conformance with ISO/IEC 9126 standards.

 Evaluation of Understandability of Object-Oriented Design 953

The author in her previous work [4] has given a generic model which assesses quality
of design in early stage of software product development life cycle. This hierarchical
model is based on five factors, their sub-factors and metrics and shown in Figure 2.1.
These five-factors for design quality assessment are: functionality (modifiability),
effectiveness (efficiency), understandability (usability), reusability, and
maintainability (flexibility).

3 Steps for the Evaluation of Design Quality

Steps required for the evaluation of design quality are:

1. Consider a hierarchical model for quality characteristics and attributes (i.e.
A1 …. An): here, evaluators should define and specify the quality characteristics and
attributes, grouping them into a model. For each quantifiable attribute Ai, we can
associate a variable Xi, which can take a real value: the measured value.

2. Defining criterion function for each attribute and applying attribute
measurement: In this process, the evaluators should define the basis for elementary
evaluation criteria and perform the measurement sub-process. An elementary
evaluation criterion specifies how to measure quantifiable attributes. The result is an
elementary preference, which can be interpreted as the degree or percentage of
satisfied requirement. For each variable Xi , i = 1, ...,n it is necessary to establish an
acceptable range of values and define a function, called the elementary criterion. This
function is a mapping of the measured value in the empirical domain [18] into the
new numerical domain. Then the final outcome is mapped in a preference called the
elementary quality preference, EQi. We can assume the elementary quality preference
EQi as the percentage of requirement satisfied by the value of Xi . In this sense, EQi =
0% denotes a totally unsatisfactory situation, while EQi = 100% represents a fully
satisfactory situation [2]. Ultimately, for each quantifiable attribute, the measurement
activity should be carried out.

3. Evaluating elementary preferences: In this task, the evaluators should prepare
and enact the evaluation process to obtain an indicator of partial preference for design.
For n attributes, the mapping produces n elementary quality preferences.

4. Analyzing and assessing partial quality preferences: In this final step, the
evaluators analyze and assess the elementary, partial and total quantitative results
regarding the established goals.

3.1 Establishing Elementary Criteria for Understandability

The significance of understandability is very obvious that can be perceived as ‘If we
can't learn something, we won't understand it. If we can't understand something, we
can't use it - at least not well enough to avoid creating a money pit. We can't maintain
a system that we don't understand - at least not easily. And we can't make changes to
our system if we can't understand how the system as a whole will work once the
changes are made’ [22]. Understandability of software documents is thus important as
‘the better we know what the thing is supposed to do, the better we can test for it’.

954 D. Soni

A good software design with manageable complexity usually provides proper data
abstraction; it reduces coupling while increasing cohesion that make them easily
understandable. As advocated by researchers and practitioners that understandability
aspect of software is highly desirable and significant for developing quality

1. Functionality
1.1 Design Size

1.1.1 Number of Classes (NOC)
1.2 Hierarchies
 1.2.1 Number of Hierarchies (NOH)
1.3 Cohesion

1.3.1 Cohesion Among Methods of Class (CAM)
 1.4 Polymorphism
 1.4.1 Number of Polymorphic Methods (NOP)
 1.5 Messaging
 1.5.1 Class Interface Size (CIS)
2. Effectiveness
 2.1 Abstraction
 2.1.1 Number of Ancestors (NOA)
 2.1.2 Number of Hierarchies (NOH)
 2.1.3 Maximum Depth of Inheritance (MDIT)
 2.2 Encapsulation

2.2.1 Data Access Ratio (DAR)
 2.3 Composition
 2.3.1 Number of aggregation relationships (NAR)
 2.3.2 Number of aggregation hierarchies (NAH)

 2.4 Inheritance
 2.4.1 Functional Abstraction (FA)
 2.5 Polymorphism

2.5.1 Number of Polymorphic Methods (NOP)
3. Understandability

3.1 Encapsulation
 3.1.1 Data Access Ratio (DAR)

3.2 Cohesion
 3.2.1 Cohesion Among Methods of Class (CAM)
 3.3 Inheritance

3.3.1 Functional Abstraction (FA)
 3.4 Polymorphism
 3.4.1 Number of Polymorphic Methods (NOP)

 5.6.1 Number of aggregation relationships (NAR)
 5.3.2 Number of aggregation hierarchies (NAH)

 Evaluation of Understandability of Object-Oriented Design 955

4. Reusability
4.1 Design Size

4.1.1 Number of Classes (NOC)
4.2 Coupling

4.2.1 Direct Class Coupling (DCC)
4.3 Cohesion

 4.3.1 Cohesion Among Methods of Class (CAM)
 4.4 Messaging

4.4.1 Class Interface Size (CIS)
5. Maintainability

5.1 Design Size
5.1.1 Number of Classes (NOC)

5.2 Hierarchies
5.2.1 Number of Hierarchies (NOH)

 5.3 Abstraction
 5.3.1 Number of Ancestors (NOA)

5.4 Encapsulation
5.4.1 Data Access Ratio (DAR)

5.5 Coupling
5.5.1 Direct Class Coupling (DCC)
5.5.2 Number of Methods (NOM)

5.6 Composition
 5.6.1 Number of aggregation relationships (NAR)

 5.3.2 Number of aggregation hierarchies (NAH)
5.7 Polymorphism

5.7.1 Number of Polymorphic Methods (NOP)
5.8 Documentation

5.8.1 Extent of Documentation (EOD)

Fig. 2.1. Hierarchical design quality assessment model

software. Through the findings of literature survey there are various aspects of
software that either directly or indirectly influences quality of software design
including understandability factor [19], [20].

Therefore, out of the five factors of the hierarchical model [4] I have focused on
the understandability aspect in this work. Understandability is further decomposed
into four sub factors namely: encapsulation, cohesion, inheritance and polymorphism.
However, I have measured only three sub-factors in this work and they are:
encapsulation, cohesion and polymorphism.

For each attribute Ai we can associate a variable Xi which can take a real value by
means of the elementary criterion function. The final result represents a mapping of
the function value into the elementary quality preference, EQi. The value of EQi is a
real value that ‘fortunately’ belongs to the unit interval. As stated by Dujmovic et al.
in [2]:

“the elementary preference is interpreted as a continuous logic variable. The value
0 denotes that Xi does not satisfy the requirements and the value 1 denotes a perfect
satisfaction of requirements. The values between 0 and 1 denote a partial satisfaction
of requirements. Consequently, all preferences are frequently interpreted as a
percentage of satisfied requirements, and defined in the range [0, 100%]”.

956 D. Soni

Further, the preference can be categorized in three rating levels namely:
satisfactory (from 60 to 100%), marginal (from 40 to 60%), and unsatisfactory (from
0 to 40%). For instance, a marginal score for an attribute could indicate that a
correction action to improve the attribute quality should be taken into account by the
manager or developer. Figure 3.1, shows two elementary criteria for attributes of
understandability. There are two major categories to classify elementary criteria, that
is, absolute and relative criteria. Moreover, regarding the absolute elementary criteria,
these are further decomposed in continuous and discrete variables.

The preference scale for the Data Access Ratio (DAR) metric is a multi-level
discrete absolute criterion defined as a subset, where 0 implies ratio is less then 5%;
80% or more implies satisfactory (100%) ratio.

The resulting value of this discrete multivariable absolute criterion could be
between 0 (completely unsatisfactory) and Xmax (completely satisfactory). If the
measured value of X is above Xmax, the corresponding elementary preference X will
be equal to Xmax. Similar criteria were followed for other metrics as well.

3.2 Computing Partial Preference for Maintainability

In this process, the evaluators should define and prepare the evaluation process to
obtain a quality indicator for each competitive system. Applying a stepwise
aggregation mechanism, the elementary quality preferences can be accordingly
structured to allow the computing of partial preferences. Thereby global preferences
can be obtained through repeating the aggregation process at the end. The global
quality preference represents the global degree of satisfaction of all involved
requirements. Here I am computing partial preferences for understandability. In this
study, we use a logical scoring of preferences model called LSP model. A broad
treatment of LSP relationships and continuous Logic Preference (CLP) operators
could be found in [2, 21], as well as the mathematical background.

The strength of LSP resides in the power to model different logical relationships to
reflect the stakeholders’ needs, namely:

• Simultaneity, when is perceived that two or more input preferences must be
present simultaneously

• Replaceability, when is perceived that two or more attributes can be replaced
(there exist alternatives, i.e., a low quality of an input preference can always be
compensated by a high quality of some other input).

• Neutrality, when is perceived that two or more input preferences can be grouped
independently (neither conjunctive nor disjunctive relationship)

• Symmetric relationships, when is perceived that two or more input preferences
affect evaluation in the same logical way (tough may be with different weights)

• Asymmetric relationships, when mandatory attributes are combined with
desirable or optional ones; and when sufficient attributes are combined with
desirable or optional ones.

 Evaluation of Understandability of Object-Oriented Design 957

Figure 3.2, depicts the aggregation structure for understandability characteristic. The
stepwise aggregation process follows the hierarchical structure of the hierarchical
model from bottom to top. The major CLP operators are the arithmetic means (A) that
models the neutrality relationship; the pure conjunction (C), and quasi-conjunction
operators that model the simultaneity one; and the pure disjunction(D), and quasi-
disjunction operators that model the replaceability one. With regard to levels of
simultaneity, we may utilize the week (C-), medium (CA), and strong (C+) quasi-
conjunction functions. In this sense, operators of quasi-conjunction are flexible and
logic connectives. Also, we can tune these operators to intermediate values. For
instance, C-- is positioned between A and C- operators; and C-+ is between CA and C
operators, and so on. The above operators (except A) mean that, given a low quality
of an input preference can never be well compensated by a high quality of some other
input to output a high quality preference. For example at the end of the aggregation
process we have the sub-characteristic coded 3.1 (called Encapsulation in the
hierarchical Model, with a relative importance or weight of 0.3), and 3.2 sub-
characteristic (Cohesion, 0.4 weighted), and 3.4 sub-characteristic (polymorphism, 0.3
weighted).

Data Access Ratio

A = Availability
0= Not Available
0.8=Partially
 Available
1=Totally Available

100 100

50

0% 0

Cohesion Among
Methods of Class(CAM)

0= Not Available
1= Cohesion between 5
or more classes

100 Xmax

50

0% 0

Fig. 3.1. Sample elementary criteria defined as preference scales taken from the hierarchical
model

All these sub-characteristic preferences are input to the C-- logical function, which
produce the partial global preference coded as 3, (called Understandability).

Fig. 3.2. Structure of Partial Logic Aggregation for Understandability

3

3.1

3.1.1

3.2.1

3.4.1

3.2

3.4

C--

0.3

0.4

0.3

958 D. Soni

Similarly, we can also utilize the quasi-disjunction operators in a range of strong
(D+), medium (DA), and week (D-) or polarization, and also their intermediate
values. For instance, D-- is positioned between A and D- operators; and D-+ is
between DA and D- operators; and D+- is between D+ and DA operators; and
finally, D++ is between D+ and D operators. D operator represents the pure
disjunction.

4 Assessing Understandability of the Design Selected

Figure 4.1 shows the design of human resource management information system,
which is developed to take care of the important function of the Human Resource
Development. The system keeps record of the employees both regular and ad-hoc
along with their qualification details, the designation at the time of joining the
organization, the present designation and number of promotions any employee
has been given since he joined the organization. It keeps the detailed record
of employee family members, medical facilities along with his telephone number,
job responsibilities of each and every employee and the reporting officer/person
of each employee is also maintained and several other information as shown in
Fig 4.1.

In the evaluation process, I decided the elementary criterion for each metric, as
shown in fig 3.1. I then confronted partial preferences as shown the section 3.2 and
fig 3.2.

The partial outcomes for each subfactor and the total outcome for understandability
is shown in Table 1.

This shows that the design of the human resource information system is falling into
a satisfactory level because it has 85.79% of the quality preference.

Table 1. Detailed result of partial quality preferences after computing the aggregated criteria
function of the design

Characteristics and Sub-characteristics Values
3. Understandability
3.1 Encapsulation
3.1.1 Data Access Ratio (DAR)

.8

3.2 Cohesion
3.2.1 Cohesion Among Methods of Class (CAM)

.8

3.4 Polymorphism
3.4.1 Number of Polymorphic Methods (NOP)

1

Partial Quality Preference
85.79

 Evaluation of Understandability of Object-Oriented Design 959

Fig. 4.1. Class Diagram for Human Resource Information System

5 Conclusion

In this work we have proposed a methodology, for the quantitative evaluation of
software’s understandability in the design phase. The core evaluation model and
procedures are grounded in the LSP model and continuous preference logic. The
attributes and metrics of understandability are measured from the hierarchical model
proposed by Kumar and Gandhi [3]. The weights assigned for preferences are

5. CONCLUSION:

Communication

phone residence
phone office
pbx residence
pbx office
e mail
fax number
mobile

Employee

name
sex
ex-serviceman
date of birth
date of joining
blood group
security number
shoes number
west size
identification mark

Updation

date
time
description
terminal no.

Allotment

allotment date
leaving date
leaving reason

Quarter

total area
built up area
rooms
rent

User

password

Religion

religion-
description

Caste

caste-
description

Unit

unit-
description

Location

location-
description

State

state-
description

Department

division
department-
description

Mode of
appointment

mode-
description

Designation

designation-
description
no. of year for –
promotion
grade
pay scale

Cadre

cadre-
description

Family

name
sex
date of birth
birth place
marital status

Specialization

subject-
description

Qualification

level-
description

Personnel
manager

manager-
description

Personnel
cell

cell-
description

Function

function-
description

Training

from date
to date

Leave

leave from
leave to
reason
prefix
suffix

Training
title

training-
description

Training
agency

name
address
city
pin code
phone

Leave
type

leave-
description

Service detail

date of service-
growth
old basic
new basic

Qualification
detail

name
year
institution
course duration

Medical

date admit
date discharge
problem details
next appointment
date
ward number
bed number

Doctor

name
address home
specialization
phone residence
mobile
e mail
fax

Hospital

Name
address
phone no.
e mail
fax
capacity
superintendent
name

960 D. Soni

arbitrary and can be changed according to the requirement. I have found that the
understandability of design [3] came out to be 85.79 which means that the system will
be easy to understand.

The method is suitable for comparing alternative designs of a system for
understandability aspect. This will help choose a design that is most suited for
understanding especially when the software has been deployed.

References

1. Valdaliso, C., Eljabiri, O., Deek, F.P.: Factors Influencing Design Quality and Assurance
in Software Development: An EmpiricalStudy. In: Electronic Proceedings of the First
International Workshop on Model-based Requirements Engineering (MBRE 2001), San
Diego, California, pp. 78–82 (2001)

2. Dujmovic, J.J.: A Method for Evaluation and Selection of Complex Hardware and
Software Systems. In: Proceedings of the 22nd International Conference for the Resource
Management and Performance Evaluation of Enterprise CS, CMG 1996, vol. 1,
pp. 368–378 (1996)

3. Kumar, M., Gandhi, S.K.: Object-Oriented Modeling Design Approach to General Human
Resource System. Journal of MACT 2, 34–35 (2003-2004)

4. Kumar, M., Soni, D.: Observations on Object-Oriented Design Assessment and Evolving
New Model. In: Proc of the National Conference on Software Engineering, pp. 161–164
(2007)

5. McCall, J.A., Richards, R.K., Walters, G.F.: Factors in Software Quality, National Tech.
Information Service, Springfield, Va, vols. 1,2, and 3 (1977), AD/A-049-014/015/055

6. Boehm, B.W.: Characteristics of Software Quality. TRW Inc. (1978)
7. Software Product Evaluation - Quality Characteristics and Guidelines for Their Use,

ISO/IEC Standard ISO-9126 (1991),
http://www.cse.dcu.ie/essiscope/sm2/9126ref.html

8. Olague, H.M., Etzkorn, L.H., Messimer, S.L., Delugach, H.S.: An Empirical Validation of
Object-Oriented Class Complexity Metrics and their Ability to Predict Error-prone Classes
in Highly Iterative, or Agile Software: a Case Study. Journal of Software
Maintenance 20(3), 171–197 (2008)

9. Chidamber, S.R., Kemerer, C.F.: Towards a Metric Suit for Object-Oriented Design. In:
Proc. of Sixth Object-Oriented Programming Systems, Languages and Applications,
pp. 197–211 (1991)

10. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite For Object-Oriented Design. IEEE
Trans. Software Eng. 20(6), 476–493 (1994)

11. Basili, V., Briand, L., Melo, W.: A Validation of Object-Oriented Design Metrics as
Quality Indicators. IEEE Transactions of Software Engineering 22(10), 751–761 (1996)

12. Elish, M.O., Elish, K.O.: Application of TreeNet in Predicting Object-Oriented Software
Maintainability: a Comparative Study. In: Proc. of European Conference on Software
Maintenance and Reengineering (CSMR 2009), March 24-27, pp. 69–78 (2009)

13. Dormey, G.R.: A Model for Software Product Quality. IEEE Trans. Software Eng. 21(2),
146–162 (1995)

14. Dormey, G.R.: Cornering the Chimera. IEEE Software 13(1), 33–43 (1996)
15. Bansiya, J., Davis, C.G.: A Hierarchical Model for Object-Oriented Design Quality

Assessment. IEEE Transactions on Software Engineering 28(1), 4–17 (2002)

 Evaluation of Understandability of Object-Oriented Design 961

16. Keller, R.K., Cockburn, A.: Object-Oriented Design Quality. In: OOPSLA, Workshop#12,
Atlanta, Georgia, pp. 63–67 (1997)

17. Antonellis, P., Antoniou, D., Kanellopoulos, Y., Makris, C., Theodoridis, E., Tjortjis, C.,
Tsirakis, N.: A Data Mining Methodology for Evaluating Maintainability According to
ISO/IEC-9126 Software Engineering Product Quality Standard. In: Proc. 11th IEEE
Conference on Software Maintenance and Reengineering (CSMR 2007), March 21-23,
pp. 35–42 (2007)

18. Fenton, N.E., Pfleeger, S.L.: Software Metrics: a Rigorous and Practical Approach, 2nd
edn. PWS Publishing Company (1997)

19. Gao, J., Ming-Chih, S.: A Component Testability Model for Verification and
Measurement. In: Proceedings of the 29th Annual International Computer Software and
Applications Conference, pp. 211–218. IEEE Computer Society (2005)

20. Jimenez, G., Taj, S., Weaver, J.: Design for Testability. In: The Proceedings of the 9th
Annual NCIIA Conference (2005)

21. Olsina, L.S.: Web-site Quality Evaluation Method: a case Study on Museums. In: ICSE
1999 – 2nd Workshop on Software Engineering over the Internet (1999)

22. Jacob, B., Niklas, L., Waldermarsson, P.: Relative Indicators for Success in software
development. In: Department of Communication Systems. Lund University (2001)

	Evaluation of Understandability of Object-Oriented Design
	1 Introduction
	2 Previously Proposed Quality Models for Object- Oriented Software Products
	3 Steps for the Evaluation of Design Quality
	3.1 Establishing Elementary Criteria for Understandability
	3.2 Computing Partial Preference for Maintainability

	4 Assessing Understandability of the Design Selected
	5 Conclusion
	References

