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Abstract. Multicast is a one to the group communication which have various 
challenges such as group key management, multicast receiver access control, 
multicast finger printing and multicast source authentication. Various protocols 
introduced by many researchers to minimize the lacks such as computational, 
communication, message size and storage overheads for group key 
management, but these proposed methods still have some lack as discussed 
above, while rekeying cost is also not less. Therefore to provide a solution of 
existing problem after leaving a group, there is a need for efficient and 
improved mechanism for group key management.  

Keywords: group key management, multicast security, rekeying, 
communication overheads. 

1 Introduction 

Computer network is basically the combination of computers and different type of 
devices that are interfaced by various resources via communication channels that 
provide the communications among users and allows them facility of sharing the 
resources [23]. Multicast is one of the service that provide different type of ways for 
communication such as one to many, many to one, many to many. 

Multicast refers to the transmission of a message from one sender to multiple 
receivers or from multiple Senders to multiple receivers [14]. The advantage of 
multicast is that, it enables the desired applications to service many users without 
overloading a network and resources in the server. If the same message is to be sent to 
different destinations, multicast is preferred to multiple unicast. Group 
Communication introduces the challenging issues relating to group confidentiality and 
key management, when a source that sends data to a set of receivers in a multicast 
session. The security of the session is managed by two main functional, first is Group 
Controller (GC) responsible for authentication, authorization and access control, 
where as second is known a Key Server (KS) responsible for the maintenance and 
distribution of the required key material [11].  

Security is the one of the issue in the multicast. There are four type of multicast 
security such as multicast receiver access control, multicast source authentication, 
multicast fingerprinting and group key management. All these multicast security have 
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some issues and researchers provided solution for multicast security issues [8]. In this 
paper the authors have focused on group key management on security related issues. 
As we discuss the type of multicast communication, there are three types of multicast 
communication i.e. one-to-many, many-to-many and many-to-one. In each type of 
communication the idea is the same; the sender directs all datagram to a single IP 
address once and the datagram are delivered to every member of the multicast group 
[22].  One-to-many communication there exists only one sender and more than one 
hosts that are listening to the senders datagram. This is natural way for all types of on 
demand and file distribution services. One of the examples of one-to-many 
communications is telecast movies and all kinds of TV material. 

Many-to-many multicast communication occurs usually when we are dealing with 
group communication. Video conferencing and other conferencing services are the 
example of many to many communications. More specifically these might include 
online gaming and online mentoring systems. 

Many-to-one type of communication is very useful when we are providing high 
availability resource discovery and data collection services to large amount users. 
Auctioning services is the example of many to one communication. Multicasting is 
achieved with special routers, which keep track of all the networks within its routing 
domain that contain multicast/host group members. The routers do not have to keep 
track of all the members of multicast group. They just need to know the networks 
towards which they should copy the multicast datagram. In principle, the sender 
doesn't have to keep track of all the recipients either. But when we keep in mind the 
nature of most multicasting services, in practice there has to be some entity on behalf 
of service provider that registers all the receiving parties.  

Multicast communication suffers from receiver access problem due to forward 
secrecy, backward secrecy. The group key management is an efficient mechanism to 
handle this situation. But there are many factors which effect the communication [6, 
12, 13, and 14], computation overhead, message size, storage overhead, these factors 
are as following: 

a. Heterogeneous nature of the group membership affects the possible type of 
encryption algorithm to be used, and the length of the key that can be supported 
by an end user. 

b. The cost of setting up and initializing the entire system parameters, such as 
selection of the group controller (GC), group announcement, member join and 
initial key distribution. 

c. Administrative policies, such as those defining which members have the 
authorization to generate keys. 

d. Required level of performance of parameters, such as session sustainability, and 
key generation rates. 

e. Required additional external support mechanisms, such as the availability of a 
certificate authority (CA). 

Therefore it is required efficient group key management approach to secure the 
system and reduce the overhead in the existing approach [9]. Existing key graph [17] 
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proposes the extension of the binary key tree to 4-ary key tree and 4-ary key tree 
overcome the problem of re-keying in terms of height of the key tree. Using a greater 
degree reduces the height of the key tree and, as a result, improves re-keying 
performance. Performance of re-keying measured in terms of computation overhead, 
communication overhead, message size and storage overhead. Really, optimal results 
are gained when the tree has a degree of 4. In the figure 1(a) illustrates the logical key 
tree with two nodes when there are seven joining members (u1 through u7). When u8 
joins, the key server first attaches it to node K1,2 as shown in figure 1(b), and then, 
changes the group key KG and the node key K1,2 to K`G and K`1,2 respectively. For 
delivering them, each new key is encrypted with the previous one (KG and K1,2 
respectively), and a set of them are sent by multicast for existing members. For the 
new member they are sent by unicast being encrypted with its session key. On the 
other hand, when a member leaves the group, new keys are encrypted by their 
corresponding child keys, and a set of them are sent for remaining members by 
multicast. For example, when member u8 leaves the group shown in figure 5(b), the 
key server changes K`1,2 and K`G to K``1,2 and K``G respectively. Then, it delivers 
K``1,2 for {u5,u6,u7} being encrypted by K5, K6 and K7, and K``G for {u1,u2,u3,u4} and 
{u5,u6,u7} being encrypted by K1,1 and K``1,2 respectively. A set of these keys are sent 
by one multicast message. 

 

 

 

 

 

Fig. 1. Logical Key Tree for Key Graph (a) 4-Ary Tree for Seven Members (b) 4-Ary Tree for 
Eight Members 

2 Proposed Protocol  

It is based on the idea of key graph that manages the whole group on the basis of 
logical 4-ary key tree or key tree is the extended version of binary tree. In this 
protocol, the authors have divided whole group in several subgroups and every 
subgroup organized in a logical key hierarchy as in 4-ary key tree which reduce the 
complexity for a member join or leave from O (m) to O (log4n/m). The members in 
each subgroup contribute with each other to generate the subgroup key. This process 
delegates the key update process at a leave Process from the key server side to the 
member side. The proposed protocol works in a hierarchy of two levels of controllers; 
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the first for the group controller (GC) [3, 7] and the second is the subgroup controller 
(SC). The GC shares a symmetric key with all SCs which are trusted entities. The role 
of the SCs is to translate the data coming to their subgroups. Each SC works as the 
server of its subgroup. Figure 2: Illustrate the structure of proposed protocol. 

 

Fig. 2. Network Structure of Our Approach 

The main objective of this protocol is to management a symmetric key between all 
group members in order to preserve the security of group communication [10]. In case 
of dynamicity occurs in the group membership by joining or leaving the group, the 
group key should be updated to maintain backward secrecy and forward secrecy. The 
structure of the subgroup hierarchy in the proposed protocol is shown in figure 6. The 
subgroup is organized in a hierarchy like the LKH approach [18] and KS is the key of 
the group key. For the Process of the proposed protocol are following: 

i. In this approach key server is a trusted entity which responsible for generate 
required keys and for distributing those keys to valid group members as shown 
in the figure 6 and Every member of the group has IGMP membership [1, 2, 
16], when a new member joins a group; it sends an IGMP membership report 
message to its neighboring router to have the multicast data delivered from a 
multicast sender. Other side, the member sends a join request message to the 
key server to obtain the group key by which the multicast data is encrypted. 
This is different from other LKH approaches, in term to handle a large number 
of members efficiently; our approach divides group members into subgroups. 
For example 256 members are divided into 16 subgroups as shown in figure 3. 

ii. Our approach applies the concept of key tree in LKH to the subgroups. In the 
logical key tree, leaf nodes correspond to subgroups, not individual members. 
Similar to other LKH approaches, the root node corresponds to the group key, 
and the intermediate nodes correspond to traffic encryption key (TEK) used for 
key transfers. 

iii. The division of group members into subgroups is performed so that a balanced 
tree is constructed. In this case, by dividing n (256) members into subgroups 
whose size is m (16) members, we will have Γ݊/݉Ո subgroups, and the height 
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respectively, node key K1, 4. The members of subgroups 5,6,7,8 own subgroup keys 
K5, K6, K7 and K8 respectively, node key K5, 8. The members of subgroups 
9,10,11,12 own subgroup keys K9, K10, K11 and K12 respectively, node key K9, 12. 
The members of subgroups 13,14,15,16 own subgroup keys K13, K14, K15 and K16 
respectively, node key K13,16 and group key KG. In this process key server used pre- 
computational function (PK) for calculating key when member join or leave the group 
and by using this pre-computational function process, we have minimized the 
computational cost during key generation and the keys are calculated as follows: 

K1ؠ g ଵଵן … . .  ଵ!ୱ                             (mod p)ןଵ୫ןଵ୫ିଵן
K2ؠ g ଶଵן … . .  ଶ!ୱ                             (mod p)ןଶ୫ןଶ୫ିଵן
K3ؠ g ଷଵן … . .  ଷ!ୱ                              (mod p)ןଷ୫ןଷ୫ିଵן
K4ؠ g ସଵן … . .  ସ!ୱ                           (mod p)ןସ୫ןସ୫ିଵן
K5ؠ g ହଵן … . .  ହ!ୱ                             (mod p)ןହ୫ןହ୫ିଵן
K6ؠ g ଵן … . .  !ୱ                             (mod p)ן୫ן୫ିଵן
K7ؠ g ଵן … . .  !ୱ                            (mod p)ן୫ן୫ିଵן
K8ؠ g ଵ଼ן … . .  ୱ                            (mod p)଼!ן୫଼ן୫଼ିଵן
K9ؠ g ଽଵן … . .  ଽ!ୱ                            (mod p)ןଽ୫ןଽ୫ିଵן
K10ؠ g ଵଵן … . . ଵ୫ןଵ୫ିଵן ଵ!ୱן                     (mod p) 
K11ؠ g ଵଵଵן … . . ଵଵ୫ןଵଵ୫ିଵן ଵଵ!ୱן                        (mod p) 
K12ؠ g ଵଶଵן … . . ଵଶ୫ןଵଶ୫ିଵן ଵଶ!ୱן                       (mod p) 
K13ؠ g ଵଷଵן … . . ଵଷ୫ןଵଷ୫ିଵן ଵଷ!ୱן                        (mod p) 
K14ؠ g ଵସଵן … . . ଵସ୫ןଵସ୫ିଵן ଵସ!ୱן                     (mod p) 
K15ؠ g ଵହଵן … . . ଵହ୫ןଵହ୫ିଵן ଵହ!ୱן                    (mod p) 
K16ؠ g ଵଵן … . . ଵ!ୱןଵ୫ିଵן                              (mod p) 
K1,4ؠ gሺπ୧αଵሻሺπ୧αଶሻሺπ୧αଷሻሺπ୧αସሻ                   (mod p) 
K5,8ؠ gሺπ୧αହሻሺπ୧αሻሺπ୧αሻሺπ୧α଼ሻ                    (mod p) 
K9,12ؠ gሺπ୧αଽሻሺπ୧αଵሻሺπ୧αଵଵሻሺπ୧αଵଶሻ                  (mod p) 

KGؠ ሺPKଵଷ,ଵPKଽ,ଵଶPKହ,଼ሻభలభ ……………భలౣషభαଵ!ୱ           (mod p) 

2.1.2 Join Process 
We now use to explain how re-keying is done when a new member joins the multicast 
group. In this process key server used pre-computational function for calculating key 
when member join or leave the group and this pre-computational function process 
minimized the computational cost during key generation. The procedure is as follows: 

i. When key server receives a join request, it authenticates the member [5]. This 
may be done by the conventional approach such as remote authentication dial in 
user service (RADIUS) [4, 21], and we do not discuss this procedure. If required, 
the key server assigns the session key, and sends it to the member. 

ii. The key server determines the subgroup for the new member and assigns the 
identity within the subgroup. In this example, the new member belongs to 
subgroup 16 and its identity is m. At this time, the path set for subgroup16, the 
keys K13, K14, K15, K16 and KG need to be changed to new ones. 
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iii. The key server assigns member secret   αଵ୫  to  uଵ୫ , and calculates its inverse 
value   αଵି୫ as well. 

iv. The key server changes the server secret assigned to subgroup 16 from   ߙଵ௦  

to  ߙଵ!௦ . 
v. The key server updates K16, K13,16  and KG to K`16, K`16 and K`G using   αଵ୫   

and   αଵ!ୱ   in the following way. 

K`16ؠ g ଵଵן … . . ଵ୫ןଵ୫ିଵן ଵ!ୱן                                              (mod p) 
K`13,16ؠ gሺπ୧αଵଷሻሺπ୧αଵସሻሺπ୧αଵହሻሺπ୧αଵሻ                          (mod p) 

K`G ؠ ሺPKଵଷ,ଵPKଽ,ଵଶPKହ,଼ሻభలభ ……………భలౣషభ ଵ୫ן αଵ!ୱ             (mod p) 
 
vi. The key server encrypts {K`16, K`13,16, K`G},and the inverse values of the 

other members in that subgroup,  by  than it sends 

this encrypted message through unicast to  . It has been given below: 

S
U୬୧ୡୟ୲ሱۛ ۛۛ ሮ{ }:{( K`16, K`13,16, K`G, ) }. 

vii. Server encrypts , and K`16 by K16for subgroup 16, K`13,16 by K13,16 for 
subgroup 13,14,15, K`G by KG for subgroup 1 to 12,and distributes these 
encrypted keys through multicast for existing members. This process describe as 
following: 

S
M୳୪୲୧ୡୟୱ୲ሱۛ ۛۛ ۛۛ ሮ{Existing Members} 

{( , K`16) K16,( K`13,16) K13,16 ,( K`G) KG}. 

In this process, each updated key is encrypted by the previous one for existing 
members, and as a result, only the members who know the corresponding previous 
keys can decrypt the encrypted message containing the new keys. 

2.1.3 Leave Process 

When user  leaves the group then all member of the group affected by this change 

and key server changes the group key or path key such as K`16 to K``16, K13,16 to 
K``13,16 and KG to K``G. According to our protocol, these updated keys do not need 
to be sent to the remaining members. Instead, the key server just prepares one 
message for subgroup 16 indicating  leaves and delivers  for subgroup 1 to 15. 

The value of  is encrypted into multiple copies by K15 and K13,16, for subgroup 
15 and 1 to 14 respectively. The key server sends this message through multicast. 
This process describe as following: 

S
ெ௨௧௦௧ሱۛ ۛۛ ۛۛ ሮ{Remaining members} 

:{( ) K15, ( ) K13,16}. 
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When the remaining members receive this message, they decrypt it by the 

corresponding keys and then Use  to update those keys. 

K``16  (K`16)                                                   (mod p) 

                                (mod p) 

K``16                               (mod p) 

K``13,16  (K`16)
                                                      (mod p) 

                     (mod p) 

                    (mod p) 

K``G  (K`G)                                                  (mod p) 

          (mod p) 

                (mod p) 

As we notice, the key server does not need to generate new keys (TEK and group key) 
after a leave. Instead, it just sends the inverse value of leaving member to remaining 
members. Then, the remaining members update the necessary keys. In this way, 
updating the keys after a leave is shifted to member’s side which improves the 
efficiency of re-keying at leave. 

3 Comparison with Exist One 

In the comparison, n denotes the number of members in the group, the number after a 
join and before a leave in a strict numbers, called group size. We define m as the 
number of members in a subgroup, called subgroup size only for our proposal. We 
also show some numerical results for the overhead by changing the group sizes from 
16 to 1048576. To evaluate our proposal, we use subgroup size is i.e. 256. 

We are using a binary tree for LKH and OFT, and our proposal is based on 4-ary 
key tree. In case of simple app. height of the tree h=2 and height LKH=OFT=logଶn. 
The height of the key tree for our proposal under the condition of n ≤ m will be equal 
to 1 and under the condition of n>2m will be log4 ┌n/m┐. In general, the number of 
node keys is proportional to the height of the key tree in LKH based protocols, in 
other words, a protocol with smaller height has fewer nodes along the path. In our 
approach we have minimized the height of the tree along the key path and number of 
key generation, encryption/decryption also minimized. Due to this reason the 
performance of the system will be improve. 
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3.1.1 Computational Overhead 
Computational overhead depending on the Key generation overhead and 
encryption/decryption overhead as following: 

3.1.1.1. Key Generation Overhead. It is the overhead at the key server and member 
node along the path to the root at each join or leave. The number of key generations at 
the key server is almost equal to the height of the key tree. First of all, Simple App. 
has the smallest overhead at the key server both join and leave process. Our approach 
minimizes number of key generation at the key server both join and leave process as 
compare to LKH and OFT. By contrast, because of smaller size of hsg, the key server 
generates fewer keys at join. Most importantly, the key server does not need to 
generate new keys for the members at leave. 

On the other hand in simple application and LKH, a member node does not 
generate any keys by it at each event, but in OFT the new member at join and a 
remaining member node along the path at leave need generate new node keys by 
mixing two hash values. At a member leave process the group and subgroup 
controller doesn't generate any keys. Instead it multicasts the identity of the leaving 
member to all the group and subgroup members to be factored from the subgroup key 
by using the leaving member's inverse value. Figure 4(a) and 4(b) shows comparative 
result of number of key generation overhead on the basis of group size and number of 
key generated at the key server.  

From the figure 4(a) one can notice that the proposed protocol has minimized 
overhead at the join process because the key server reduced the height of key tree by 
using 4-ary key tree. From the figure 4(b) one can notice that the proposed protocol 
has the smallest overhead at the leave process because the key server doesn't generate 
any keys in that case.  

 

Fig. 4. (a): Key Generation Overhead at the Key Server during Join Process 
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Fig. 4. (b): Key Generation Overhead at the Key Server during Leave Process 

Figure 5(a) and 5(b) shows comparative result of number of key generation 
overhead on the basis of group size and number of key generated at the member node. 

 
Fig. 5. (a): Key Generation Overhead at the Member Node during Join Process 

 

Fig. 5. (b): Key Generation Overhead at the Member Node during Leave Process 
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The key generation overhead for our protocol is 0 at join, but proportional to the 
height of the key tree at leave as shown in the table 1 at member node. In fact, a 
member node renews the node keys along the path to the root by modular 
exponentiation. 

3.1.1.2. Encryption/Decryption Overhead. Encryption overhead at the key server (left 
side) and decryption overhead at a member node (right side) at each join and leave. 
The values for join process at the key server are the sums of the number of 
encryptions for existing members and a new member. Although the overhead at the 
key server for Simple App. is the smallest value at join, it is the largest one of all at 
leave. In simple App. the key server has to perform n-1encryptions for the remaining 
members at leave, when n are the number of members. This is the problem we 
mentioned in Section 4; in which other protocols have tried to solve this problem by 
introducing the 4-ary key tree. 

At the key server, LKH involves two separate encryptions per node, one for each 
of its two children, compared to OFT which involves one encryption per node. 
Therefore, even with the same height of LKH = height of OFT, the encryption 
overhead for LKH is larger than of that for OFT. By contrast, because of the small 
height of subgroup (hsg) and small height of group hg, the key server performs fewer 
encryptions at join and leave for our protocol compared with LKH, OFT. The 
encryption /decryption formula for proposed approach and previous approaches as 
shown in the table 3, according to our approach number of encryption will be 
minimize at the key sever at the time of both join and leave process. On the other 
hand number of decryption at the member node also minimized at the joining time as 
compared to LKH and OFT.  

 

 

Fig. 6. (a): Number of Encryption at the Key Server during Join Process 
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Fig. 6. (b): Number of Encryption at the Key Server during Leave Process 

Figure 6 (a) and 6(b) show the number of encryption at the key server at join and 
leave process respectively. At a member node, the decryption overhead at join is 
proportional to height of the key tree for all protocols, in which simple app. has 
smallest overhead, but LKH and OFT have the largest overhead. Because of height of 
LKH and OFT is largest as compare to propose approach. So, that proposed approach 
minimize the number of decryption at the member node.  

 

Fig. 7. (a): Number of Decryption at the Member Node during Join Process 

 

Fig. 7. (b): Number of Decryption at the Member Node during Leave Process 
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Figure 7 (a) and 7(b) show the number of encryption at the member node at join 
and leave process respectively. 

3.1.1.3. Communication Overhead. Communication overhead at join and leave for 
multicast communication as shown in table 4. As described above, this is measured by 
the number of transmitted control messages. Figure 8(a) and 8(b) illustrate numerical 
results at join and leave, respectively. At join, Simple App., and our proposal have a 
small overhead. LKH has the largest overhead and OFT has half of that. On the other 
hand, at leave, Simple App. has an extremely large overhead and our protocol have a 
small overhead. 

 

 

Fig. 8. (a): Communication Overhead at Server during Join Process 

On the basis of comparative results our protocol the best in terms of the 
communication overhead. Because of this is send all key information in one multicast 
message to existing members at join, and to remaining members at leave. It should be 
noticed that the message size is different as shown later; it is bigger for LKH than for 
our protocol. 

 
Fig. 8. (b): Communication Overhead at Server during Leave Process 
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4 Conclusion 

We have discussed different type of security in the multicast such as multicast 
receiver access control, multicast source authentication, multicast fingerprinting and 
group key management. We have selected group key management area of multicast 
security and we can say group key management is the part of multicast security. We 
have found different type of issues such as computational overhead, communicational 
overhead, message size and storage overhead in the group key management and many 
researchers provided LKH, OFT etc. solutions for these issues but these issues are not 
solved. Therefore, in this dissertation, we have proposed a security improvement in 
group key management approach to solve the problem of distributing a symmetric key 
between the whole group members for secure group communication. The 
performance of the proposed protocol is compared with that of the Simple App., OFT 
and LKH protocols. The comparison is undertaken according to the computational 
overhead, communication overhead, storage overhead, and message size. The results 
show that the proposed protocol improves the group performance in terms of 
computation overhead, message size and communication overhead. 
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