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Abstract. Pseudorandom number generators play an important role to
provide security and privacy on radio frequency identification (RFID)
tags. In particular, the EPC Class 1 Generation 2 (EPC C1 Gen2)
standard uses a pseudorandom number generator in the tag identifi-
cation protocol. In this paper, we first present a pseudorandom num-
ber generator, named the filtering nonlinear feedback shift register using
Welch-Gong (WG) transformations (filtering WG-NLFSR) and the fil-
tering WG7-NLFSR for EPC C1 Gen2 RFID tags. We then investigate
the periodicity of a sequence generated by the filtering WG-NLFSR by
considering the model, named nonlinear feedback shift registers using
Welch-Gong (WG) transformations (WG-NLFSR). The periodicity of
WG-NLFSR sequences is investigated in two ways. Firstly, we perform
the cycle decomposition of WG-NLFSR recurrence relations over differ-
ent finite fields by computer simulations where the nonlinear recurrence
relation is composed of a characteristic polynomial and a WG transfor-
mation module. Secondly, we conduct an empirical study on the period
distribution of the sequences generated by the WG-NLFSR. The em-
pirical study states that a sequence with period bounded below by the
square root of the maximum period can be generated by the WG-NLFSR
with high probability for any initial state.

Keywords: Nonlinear feedback shift registers, pseudorandom sequence
generators, stream ciphers, WG-7 stream cipher.

1 Introduction

A pseudorandom sequence generator is a heart of a stream cipher, which is used
for generating random-looking binary keystreams that are used to encrypt bi-
nary message streams by XORing the plaintexts with the keystreams in a bit
by bit fashion to produce the ciphertexts. In practice, linear and nonlinear feed-
back shift registers (LFSRs/NLFSRs) have been widely used as basic building
blocks for constructing stream ciphers. For instance, well-known stream ciphers,
namely Grain, Trivium and Mickey in the eSTREAM project use NLFSRs as
their building blocks [4].
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The randomness properties of a sequence generated by an LFSR have been
well studied and understood [5,6], however, the randomness properties of a se-
quence generated by an arbitrary NLFSR are not known and hard to determine.
As an example, the cycle decomposition of an arbitrary NLFSR is not well un-
derstood and it is hard to determine the number of cycles and the lengths of the
cycles in a cycle decomposition of an NLFSR. In the theory of NLFSRs, the cy-
cle decomposition of NLFSRs is an important property to investigate first, since
each cycle can be considered as a sequence and the cycles’ lengths determine the
periods of the sequences.

Several pseudorandom number generators have been proposed in the literature
for EPC C1 Gen2 RFID tags [1,12,13,17]. Che et al.’s proposal [1] consists of
an oscillator-based true random number generator (TRNG) and an LFSR of 16-
stage where the TRNG is implemented using an analog circuit. In their design,
one true random bit is added to each component of an LFSR generated 16-bit
pseudorandom number. Due to the linear structure of the PRNG, the PRNG

has been attacked by Melia-Segui et al. [13] with high success probability (n+1)
8n ,

wher n is the length of the LFSR. To avoid such an attack, Melia-Segui et al.
[13] proposed a design by employing eight primitive polynomials to an LFSR
where in each clock cycle one primitive polynomial is chosen based on a true
random number generator. In [17], Peris-Lopez et al. proposed a PRNG named
LAMED for RFID tags, which can generate 32-bit random numbers as well as
16-bit random numbers. The internal state of LAMED is 64-bit including a 32-bit
key and a 32-bit IV. LAMED always outputs a 32-bit random number, a 16-bit
number is obtained by dividing 32-bit number into two equal halves and XORing
these two halves together. Recently, Mandal et al. [12] designed a PRNG named
Warbler based on nonlinear feedback shift registers for RFID tags. In their design,
three NLFSRs are used, two of them work over the binary field and the other
one is defined over a finite field. The internal state of Warbler consists of 65 bits
and 16-bit random numbers are produced by taking disjoint sequences of 16 bits.

In this paper, we present a family of pseudorandom sequence generators,
named the filtering nonlinear feedback shift registers using Welch-Gong (WG)
transformations (henceforth called filtering WG-NLFSR) for EPC Class 1 Gen-
eration 2 RFID tags. In particular, the filtering WG7-NLFSR is composed of a
nonlinear feedback shift register of length 23 and a WG transformation module
over the field F27 . Due to the nonlinear state update of the filtering WG-NLFSR,
the period of a sequence generated by the filtering WG-NLFSR is not known
in general. We investigate the periodicity of a sequence generated by the fil-
tering WG-NLFSR by considering the model, named nonlinear feedback shift
registers using Welch-Gong (WG) transformations (WG-NLFSR). The design of
the WG-NLFSR was inspired by the key initialization phase of the WG cipher,
which was submitted to the eSTREAM project [4,15]. In the WG-NLFSR, the
nonlinear recurrence relation is composed of a primitive polynomial and a non-
linear WG permutation. Due to the nonlinear property of the recurrence relation,
the WG-NLFSR will be resistant to the powerful cryptanalytic attacks such as
algebraic attacks, cube attacks, correlation attacks, and discrete fourier transfor-
mation attacks. Another objective of this paper is to study the periodicity of an
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output sequence produced by the WG-NLFSR. The periodicity of WG-NLFSR
sequences is investigated in two steps. Firstly, we perform the complete cycle
decomposition for different nonlinear recurrence relations by computer simula-
tions. It is observed that, for a proper selection of a characteristic polynomial, a
sequence with period greater than the square root of the maximum period can
be generated by the WG-NLFSR. Secondly, we conduct an empirical study for
investigating the period distribution of WG-NLFSR sequences. In the empirical
study, we consider different WG-NLFSR recurrence relations over different finite
fields and compute the probability distribution for different cases. Our empirical
study shows that, with high probability, the WG-NLFSR generates sequences
with periods bounded below by the square root of the maximum period.

The remainder of the paper is organized as follows. In Section 2, we define
some terms and notations that will be used in the paper. In Section 3, we describe
a general model of the filtering WG-NLFSR and a pseudorandom number gen-
erator, the filtering WG7-NLFSR. In Section 4, we study the periodicity of the
WG-NLFSR sequences by performing the cycle decomposition of WG-NLFSR
recurrence relations and by conducting an empirical study on the period distri-
bution of WG-NLFSR sequences. Finally, in Section 5, we conclude the paper.

2 Preliminaries

In this section, we define the terms and notations that will be used in this paper
to describe the filtering WG-NLFSR.

Notations:

- F2 = {0, 1}: the Galois field with 2 elements.
- F2t : a finite field with 2t elements, which is defined by α with g(α) = 0,
where g(x) be a primitive polynomial of degree t over the field F2.

- p(x) = c0 + c1x+ · · ·+ cn−1x
n−1+xn : a characteristic polynomial over F2t .

- N = 2nt − 1 : the maximum period of a nonzero sequence generated by an
n-stage NLFSR over F2t .

- S = {(x0, x1, ..., xn−1) | xi ∈ F2t} : the set of all states of the WG-NLFSR
with |S| = N + 1.

The Welch-Gong (WG) Transformation

Let Tr(x) = x+x2+x22+· · ·+x2t−1

be the trace function mapping from F2t to F2.
Let t be a positive integer with t (mod 3) �= 0 and 3k ≡ 1 mod t for some integer
k. We define the function h from F2t to F2t by h(x) = x+xq1+xq2+xq3+xq4 and
the exponents are given by q1 = 2k +1, q2 = 22k +2k +1, q3 = 22k − 2k +1, q4 =
22k + 2k − 1. Then the function, from F2t to F2t , defined as

WGP(x) = h(x+ 1) + 1
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is known as the WG permutation and the function, from F2t to F2, defined by

WG(x) = Tr(WGP(x)), x ∈ F2t

is known as the WG transformation [8]. The WG transformation has good cryp-
tographic properties such as high nonlinearity, algebraic degree, and at least
1-order resiliency for a proper choice of basis. Moreover, a WG sequence has
high linear complexity.

3 The Filtering WG-NLFSR

In this section we first give a general description of the filtering WG-NLFSR,
which has two components including a characteristic polynomial and a WG
transformation module. Then we present a pseudorandom number generator
named the filtering WG7-NLFSR for EPC C1 Gen 2 RFID tags.

3.1 General Description of the Filtering WG-NLFSR

The filtering WG-NLFSR is a family of word-oriented pseudorandom sequence
generators, where an internal state consists of n cells, each of which contains t
bits. The total number of bits in an internal state of the filtering WG-NLFSR
is n · t. Moreover, the internal state is updated by a nonlinear recurrence re-
lation, which is composed of a characteristic polynomial and a nonlinear WG
permutation over F2t . An overview of the architecture is shown in Fig. 1.

Let a = {ai}i≥0, ai ∈ F2t be a sequence generated by the n-stage nonlinear
recurrence relation, which is defined as

an+k = c0ak+c1ak+1+ · · ·+cn−1an−1+k+WGP(an−1+k), ai ∈ F2t , k ≥ 0, (1)

where WGP(x) is the WG permutation and (a0, a1, ..., an−1) is the initial state.
The filtering WG-NLFSR sequence {bi} is defined by bi = WG(ai), where
WG(x) is the WG transformation.

It is not hard to show that the period of {bi} produced by the filtering WG-
NLFSR is the same as the period of a. We note that the output sequence a cannot
directly be used without applying the filter function because after n clock cycles
one can have access to the internal state of the NLFSR, which allows an attacker
to generate the whole sequence for a key.

WG 

... 

... 

a0 a1 an-1 

 

Fig. 1. Architecture of the Filtering WG-NLFSR
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3.2 The Filtering WG7-NLFSR

We now give the mathematical details of the filtering WG7-NLFSR which is
similar to the WG-7 stream cipher [11]. The main difference between the WG-7
stream cipher and the filtering WG7-NLFSR is that the WG-7 stream cipher
uses the nonlinear feedback only at the initialization phase, but the filtering
WG7-NLFSR always uses the nonlinear feedback function. The filtering WG7-
NLFSR is composed of a nonlinear feedback shift register of length 23 and the
WG transformation over the finite field F27 . The finite field F27 is defined by the
primitive polynomial t(x) = x7 + x+ 1 over F2.

Let h(x) = x+ x33 + x39 + x41 + x104. Then, the nonlinear WG permutation
with decimation 3, from F27 to F27 , is defined by WGP7(x3) = h(x3 + 1) + 1,
and the WG transformation over F27 is defined as

WG7(x) = Tr(WGP7(x3)) = Tr(x3 + x9 + x21 + x57 + x87), x ∈ F27

where Tr(x) = x+x2 +x4 +x8 +x16 +x32 +x64 is the mapping from F27 to F2.
We denote by {ai} the sequence generated by the NLFSR, which is defined as

ai+23 = γai + ai+11 +WGP7(ai+22), ai ∈ F27 (2)

where p(x) = x23 + x11 + γ is a primitive polynomial over F27 and t(γ) = 0. A
binary filtering WG7-NLFSR sequence {si} is produced by filtering through the
WG transformation WG7, i.e., si = WG7(ai), i ≥ 0.

The key length and the IV length of the filtering WG7-NLFSR are 80 bits
and 81 bits, respectively. We represent an 80-bit key as K0,1,...,79 and an 81-bit
initial vector as IV0,1,...,80. The key and an IV are loaded into the NLFSR as
follows. For 0 ≤ j ≤ 10, a2j = (K7j,7j+1,7j+2,7j+3 , IV7j,7j+1,7j+2) and a2j+1 =
(K7j+4,7j+5,7j+6, IV7j+3,7j+4,7j+5,7j+6) and a22 = (K77,78,79, IV77,78,79,80). After
loading the key and the IV, the filtering WG7-NLFSR is run for 46 clock cycles
without any output. At 47-th clock cycle, the filtering WG7-NLFSR outputs the
first bit.

Due to the nonlinear WG permutation WGP7(x) in recurrence relation (2),
the period of the sequence {ai} is not known in general and is hard to know
the exact cycle decomposition because of the large internal state. In Section 4,
we will see a general investigation of the periodicity of a sequence produced
by a nonlinear recurrence relation of the above type. As the keystream bits are
generated by a purely nonlinear feedback function, it will be resistant to powerful
cryptanalytic attacks such as algebraic attacks, correlation attacks, cube attacks
and discrete fourier transformation attacks [2,7,14,16].

The mathematical functions used in the filtering WG7-NLFSR are the same as
the functions used in the WG-7 stream cipher and the nonlinearWG permutation
feedback does not increase any extra cost (as it is implemented for the key
initialization), the implementation will be the same as the WG-7 stream cipher.
For details of the WG-7 stream cipher implementation, we refer the reader to
[11]. For easy reference, we reproduce the comparison data given in [11] in Table 8
as Appendix A, which indicates a microcontroller implementation comparison
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of the WG-7 stream cipher with other ciphers. The implementation includes the
4-bit MARC4 ATAM893-D microcontroller (a in Table 8) and the 8-bit AVR
microcontroller ATmega8 (b in Table 8) from Atmel.

3.3 Application of the Filtering WG7-NLFSR

The EPCglobal Class 1 Generation 2 (EPC C1 Gen2) is an RFID standard.
The tag identification protocol in the EPC C1 Gen2 standard uses a couple
of 16-bit random numbers for identifying low cost passive RFID tags. Passive
RFID tags get power from the reader at the beginning of the communication.
Most of the existing random number generators are based on an LFSR and
a true random number generator. Moreover, a true random number generator
consumes more power, occupies more area and the throughput is low. For such
resource-constrained environments, the filtering WG7-NLFSR can be used as a
pseudorandom number generator for generating 16-bit random numbers. The
16-bit random numbers are generated by taking disjoint 16-bit sequences from
the filtering WG7-NLFSR sequence {si}. Based on the implementation given in
[11,10], it is confirmed that the filtering WG7-NLFSR is a suitable candidate for
RFID tags.

4 Period Analysis of the WG-NLFSR

In order to study the periodicity of a filtering WG-NLFSR sequence, we need to
investigate the period property of a sequence produced by recurrence relation (1).
We redefine the nonlinear recurrence relation for the WG-NLFSR over the field
F2t as follows. Let a = {ai}i≥0, ai ∈ F2t be a sequence generated by an n-stage
nonlinear recurrence relation, which is defined as

an+k = c0ak+c1ak+1+ · · ·+cn−1an−1+k+WGP(an−1+k), ai ∈ F2t , k ≥ 0, (3)

where WGP(x) is the WG permutation, t (mod 3) �= 0, and (a0, a1, ..., an−1)
is the initial state. We call the nonlinear recurrence relation (3) a WG-NLFSR
recurrence relation. A block diagram of the WG-NLFSR sequence generator
is shown in Fig. 2. Note that a WG-NLFSR recurrence relation is uniquely
determined by the characteristic polynomial p(x) and WG permutation. For a
fixed WG permutation, the recurrence relation is different if the characteristic
polynomial is different.

Due to the nonlinear term WGP(·) in the recurrence relation (3), the period
of the sequence a is not equal to the period of the polynomial p(x). In particular,
the period of a depends on three factors: the characteristic polynomial p(x), the
WG permutation WGP(x), and the initial state. To investigate the period of
sequence a, we need to study the cycle decomposition of the recurrence relation.

Remark 1. In recurrence relation (3), any permutation over a finite field F2t can
be used. We here used WG permutation as a WG transformation has excellent
cryptographic properties and which can be used for both updating the internal
state and filtering the output sequences.
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WGP 

... 

... 

a0 a1 an-1 

 

Fig. 2. Architecture of the WG-NLFSR

4.1 Cycle Decomposition of the WG-NLFSR

It is not hard to show that the recurrence relation (3) generates sequences with
no branch. Thus, the recurrence relation partitions the whole state space S into
a finite number of disjoint cycles, which is known as the cycle decomposition
of the recurrence relation [5]. We denote by Ω the cycle decomposition of the
recurrence relation (3), where Ω = {C1, C2, · · · , Cr} with S = C1 ∪C2 ∪ · · · ∪Cr

and Ci ∩ Cj = φ, 1 ≤ i �= j ≤ r. For an arbitrary recurrence relation, the value
of r is not determined. Let Li = |Ci| be the number of states in Ci, i = 1, 2, ..., r.
Using any state of Ci, all other states in Ci can be generated by recurrence
relation (3). Thus, Ci can be considered as a sequence with period Li. (For
details of cycle decompositions, see [5].)

We here perform computer simulations for investigating the cycle structure of
recurrence relation (3). Considering recurrence relation (3) over fields F25 and
F27 , we present the cycle decompositions for different characteristic polynomials
in Tables 1 - 4, where Y represents YES and N represents NO. In tables, the
primitive elements α, β and the WG transformations over fields F25 and F27 are
defined in Section 4.2. The computer simulations show that for a fixed WGP(x)
and a proper selection of a characteristic polynomial, a sequence with period
lower bounded by

√
N can be generated by the recurrence relation (3), where

a proper selection of a characteristic polynomial is meant by a characteristic
polynomial in the recurrence relation (3) for which the lengths of all cycles are
greater than or equal to

√
N . It is noticed that the long period of a sequence

generated by recurrence relation (3) does not depend on the irreducibility of
the characteristic polynomial. In the recurrence relation, there exists a hidden
relation between the coefficients of a characteristic polynomial and the exponents
of the WG permutation and that hidden relation can determine a construction
of a nonlinear feedback function, which will generate a sequence with a bounded
period. Unfortunately, we are not yet able to explore the hidden relation.

4.2 Period Distribution of the WG-NLFSR

In this section, we conduct an empirical study on the period distribution of the
sequences generated by recurrence relation (3) by considering the recurrence
relation for different characteristic polynomials. In the cycle decomposition, we
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Table 1. Complete cycle decompositions of the WG-NLFSR for n = 3 over F25

Index Characteristic Polynomial Irreducible Cycle decomposition, Ω
1 1 + α14x+ α21x2 + x3 N 23779, 6710, 2276, 1
2 α4 + α17x+ α19x2 + x3 N 32762, 1, 4
3 α20 + α2x+ α25x2 + x3 Y 15236, 14762, 2769
4 1 + α7x+ α26x2 + x3 N 23779, 6710, 2276, 1
5 α3 + α26x+ α9x2 + x3 N 32750, 4, 2, 3, 1
6 α5 + α20x+ α15x2 + x3 Y 32754, 4, 3, 5, 1
7 α7 + α16x+ α18x2 + x3 Y 32762, 4, 1

Table 2. Complete cycle decompositions of the WG-NLFSR for n = 4 over F25

Index Characteristic Polynomial Irreducible Cycle decomposition, Ω
1 α+ α4x+ α26x2 + α25x3 + x4 N 39070, 363841, 546171, 99492, 1
2 α+ α7x+ αx2 + αx3 + x4 N 590707, 379331, 46734, 22986,

8815, 1
3 α+ α8x+ α2x2 + α4x3 + x4 N 615325, 114129, 91408, 227712, 1
4 α+ α8x+ α30x2 + α10x3 + x4 N 298643, 549045, 141353, 59533, 1
5 α+ α18x+ α4x2 + α22x3 + x4 N 664966, 54862, 268380, 34846,

25518, 2, 1
6 α+ α25x+ α7x2 + α21x3 + x4 N 430236, 609318, 3194, 5826, 1
7 α+ α28x+ α5x2 + α25x3 + x4 N 914718, 91230, 42623, 1, 3
8 α3 + α8x2 + α25x3 + x4 Y 463471, 585093, 5, 1
9 α3 + α8x+ α10x2 + α25x3 + x4 N 490152, 522883, 30947, 4592, 1
10 α3 + α20x+ α10x2 + α26x3 + x4 Y 178444, 870118, 1, 4, 3
11 α3 + α20x+ α13x2 + α18x3 + x4 N 636187, 81945, 312587, 17855, 1
12 α3 + α25x+ α18x2 + α17x3 + x4 N 62628, 105531, 880413, 2, 1
13 α3 + α25x+ α20x2 + α22x3 + x4 N 1048562, 7, 6
*14 α5 + α14x+ α12x3 + x4 N 1030097, 9736, 8742
15 α5 + α16x+ α14x2 + α3x3 + x4 N 981057, 53724, 13788, 2, 4
16 α7 + α10x+ α2x2 + α21x3 + x4 N 1048570, 4, 1
17 α7 + α17x+ α14x2 + α15x3 + x4 N 953457, 80759, 14347, 7, 2, 1
18 α7 + α19x+ α15x2 + α24x3 + x4 N 1048572, 2, 1
19 α11 + αx+ α8x2 + α8x3 + x4 N 940556, 108007, 9, 1, 2
20 α11 + α7x+ α4x2 + α28x3 + x4 N 125158, 635317, 249323, 38772, 1,

3
21 α11 + α10x+ α26x2 + α11x3 + x4 N 554609, 493933, 16, 1
22 α11 + α11x+ α2x2 + α14x3 + x4 N 696972, 337871, 13730, 1
23 α11 + α14x+ α18x2 + α8x3 + x4 N 240673, 726854, 81046, 1
24 α11 + α15x+ α3x2 + α12x3 + x4 Y 1005347, 43222, 3, 1, 2
25 α11 + α15x+ α20x2 + α9x3 + x4 N 835608, 212956, 9, 1
26 α11 + α18x+ α7x2 + α23x3 + x4 N 895975, 152596, 2, 1
27 α11 + α20x+ α21x2 + α28x3 + x4 Y 289429, 510434, 84330, 164381, 1
28 α11 + α27x+ α23x2 + α8x3 + x4 Y 835558, 213010, 2, 4, 1
29 α15 + x+ α14x2 + x4 N 1008690, 39884, 1
30 α15 + α8x+ α14x2 + α8x3 + x4 N 881607, 166967, 1
31 α15 + α15x+ α8x2 + α20x3 + x4 N 675115, 373449, 2, 3, 1
32 α15 + α16x+ α11x2 + α13x3 + x4 N 922952, 57138, 44338, 24136, 6, 4,

1
33 α15 + α24x+ α15x2 + α25x3 + x4 Y 1048571, 3, 1

have observed that there exist many characteristic polynomials for which the
recurrence relation can generate sequences with periods bounded below by

√
N ,

where N is the maximum period. However, we do not know the relation between
the WG permutation and such characteristic polynomials in general. We here
intend to study the probability distribution of period of at least

√
N . That is,



Filtering WG-NLFSR for Securing RFID Applications 651

Table 3. Complete cycle decompositions of the WG-NLFSR for n = 5 over F25

Index Characteristic Polynomial Irreducible Cycle decomposition, Ω
1 α+ α18x2 + α10x3 + α14x4 + x5 N 24934939, 8057211, 501740, 60539, 2
2 α+ α21x2 + α26x3 + α20x4 + x5 N 33324081, 215923, 14354, 6, 67
3 α+ αx+ α5x2 + α21x3 + α5x4 + x5 N 23683815, 9430226, 180678, 255311, 4401
4 α+ α28x2 + α19x3 + α19x4 + x5 Y 33137436, 416935, 29, 23, 1, 6
5 α+ x+ αx2 + α22x3 + α9x4 + x5 N 33509677, 42891, 1740, 118, 2, 1
6 α+ αx + x2 + α5x3 + α20x4 + x5 N 32438885, 802371, 136113, 154148, 22912, 1
7 α+ α4x2 + α8x3 + α18x4 + x5 N 20018544, 12576215, 661370, 252630, 45560,

111, 1
8 α+ α5x2 + α24x3 + x4 + x5 N 31853496, 1026340, 616630, 10591, 46360,

1001, 13
9 α+ α6x2 + α28x3 + α4x4 + x5 N 27060025, 539828, 5044304, 853141, 57062,

70, 1
10 α+ α13x2 + α14x3 + α4x4 + x5 N 1614083, 26744592, 5172342, 23352, 59, 2, 1
11 α+ α16x2 + α2x3 + α24x4 + x5 N 26604921, 60903, 5881770, 980844, 25982, 4,

7
12 α+ α18x2 + α20x3 + α24x4 + x5 N 13669238, 17126821, 2416848, 289074, 52395,

54, 1
13 α+ x+ α11x3 + α15x4 + x5 Y 29770970, 2699894, 1000613, 62602, 20324,

23, 5
14 α+ x+ x2 + α5x3 + α18x4 + x5 N 9244135, 9425167, 10061666, 4589985,

233472, 1, 5
15 α+ x+ x2 + α22x3 + α13x4 + x5 Y 32786392, 758058, 9835, 132, 11, 2, 1
16 α+ x+ αx2 + α16x3 + α20x4 + x5 N 33188710, 351685, 13861, 166, 6, 2, 1
17 α+ x+ α4x2 + α28x3 + α18x4 + x5 Y 33554268, 45, 17, 2, 1, 29, 3
*18 α+ x+ α11x2 + α25x3 + α19x4 + x5 N 1711633, 17174871, 11626420, 2069636,

659633, 275686, 36552
19 α+ x+ α12x2 + α30x3 + α20x4 + x5 N 26385451, 704023, 262540, 3728330, 2474077,

8, 2
20 α+ x+ α13x2 + αx3 + α17x4 + x5 N 31083249, 2470874, 281, 11, 6, 9, 1
21 α+ x+ α16x2 + α20x3 + α30x4 + x5 N 32645326, 634069, 54804, 88483, 74357,

57391, 1
22 α+ x+ α19x2 + α27x3 + α12x4 + x5 N 30290671, 609570, 384964, 554062, 1570249,

144914, 1
*23 α+ x+ α25x2 + αx3 + α27x4 + x5 N 6758906, 19951473, 853356, 5840681, 5929,

75633, 68453
24 α+ α8x2 + α21x3 + α13x4 + x5 N 31959770, 1594335, 112, 173, 7, 17, 9, 1
25 α+ x+ α2x2 + α12x3 + α20x4 + x5 N 14631594, 17557700, 1270630, 23428, 50395,

20669, 11, 2
26 α+ x+ α3x2 + α10x3 + α10x4 + x5 N 8613690, 17190010, 7681297, 17715, 34521,

17155, 41, 1
27 α+ x+ α17x2 + α10x3 + α9x4 + x5 N 31934521, 1487357, 11327, 64353, 56840, 28,

3, 1
28 α+ x+ α21x2 + α16x3 + α29x4 + x5 Y 11545515, 21015426, 720059, 240858, 32564,

3, 2, 1
29 α+ αx + α3x2 + x3 + α12x4 + x5 N 20341385, 6807881, 4023518, 1776187,

598917, 6539, 2, 1

we want to compute what the success probability is that for any initial state of
the recurrence relation, the WG-NLFSR can generate a sequence with period
lower bounded by

√
N . The main goal of performing this empirical study is that

it can convey a general behavior of this type of recurrence relations.

Procedure for Computing the Success Probability for the Period ≥√
N . We calculate the probability distribution of period as follows. For a WG-

NLFSR recurrence relation, we perform the complete cycle decomposition by
computer simulations. We first compute the complete cycle decompositions for
different characteristic polynomials with the same WG permutation, where dif-
ferent characteristic polynomials are chosen randomly. Then, using the cycle
decomposition we calculate the expected success probability and the standard
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Table 4. Complete cycle decompositions of the WG-NLFSR for n = 3 over F27

Index Characteristic Polynomial Irreducible Cycle decomposition, Ω
1 β + βx+ β116x2 + x3 Y 1972915, 124227, 9
2 β + β4x+ β2x2 + x3 N 281885, 213421, 858081, 306286, 24446,

327239, 11564, 58233, 15994, 1
3 β + β4x+ β111x2 + x3 N 1862053, 21922, 161976, 38595, 12601, 2
4 β + β7x+ β43x2 + x3 Y 1548601, 335992, 200230, 12315, 3, 1
*5 β + β21x+ β121x2 + x3 Y 1482387, 331576, 283188
6 β + β55x+ β45x2 + x3 N 2079604, 17535, 5, 3, 4
7 β + β80x+ β84x2 + x3 Y 2097095, 52, 2, 1
8 β + β81x+ β8x2 + x3 Y 245680,143280,675851,1003363, 20428,8546,1
9 β + β91x+ β7x2 + x3 N 1980490, 75492, 41167, 1
10 β3 + β2x+ x3 Y 1923727, 173414, 7, 2, 1
*11 β3 + β4x+ β83x2 + x3 N 2043475, 38142, 15534
12 β3 + β54x+ β84x2 + x3 Y 1892847, 184935, 19367, 1
13 β3 + β87x+ β38x2 + x3 N 2082246, 14900, 3, 1
14 β9 + β69x+ β69x2 + x3 N 1956446, 140682, 16, 6, 1
15 β9 + β70x+ β21x2 + x3 Y 1918311, 174964, 3872, 3, 1
16 β9 + β101x+ β84x2 + x3 Y 1955962, 141168, 14, 4, 3
17 β9 + β115x+ β29x2 + x3 Y 1610286, 486846, 16, 2, 1
18 β5 + β78x+ β118x2 + x3 N 1780061, 274339, 42749, 1
19 β9 + β20x+ β121x2 + x3 N 678904, 1418237, 4, 3
20 β11 + β30x+ β4x2 + x3 Y 624809, 1446046, 26294, 1
21 β21 + β99x+ β59x2 + x3 N 2038686, 58448, 9, 4
22 β + β25x+ β81x2 + x3 N 191464, 1328016, 460109, 117558, 4
23 β3 + β17x+ βx2 + x3 Y 1576062, 356525, 140941, 23621, 2
*24 β3 + β112x+ β44x2 + x3 Y 93674, 1203620, 395834, 392354, 11669
25 β7 + β46x+ β84x2 + x3 N 1023858, 706836, 334068, 32387, 2
*26 β11 + β53x+ β13x2 + x3 N 162697, 1628279, 72007, 114484, 119684
*27 β27 + β28x+ β90x2 + x3 N 1393588, 534559, 116786, 34123, 18095
28 β27 + β48x+ β91x2 + x3 Y 658722, 1230400, 176058, 31965, 6
29 β + β4x+ β111x2 + x3 N 1862053, 21922, 161976, 38595, 12601, 2
*30 β23 + β62x+ β46x2 + x3 N 450219, 149546, 530547, 287938, 648238,

13859, 16804
*31 β21 + β5x+ β75x2 + x3 Y 668870, 643111, 86400, 73493, 343991, 277419,

3867
*32 β19 + β118x+ β15x2 + x3 N 283412, 1296087, 431294, 23925, 25440, 24900,

12093

deviation (SD) of the period greater than or equal to
√
N . We note that the suc-

cess probability is equal to one when the lengths of all the cycles are greater than
or equal to

√
N . The details of the success probability calculation is described

in the following procedure.
LetD be a randomvariablewhich represents the number of distinct characteris-

tic polynomials of the same degree. For each characteristic polynomial, the success
probability of the period greater than or equal to

√
N is computed as follows:

Procedure 1.
1. Compute {C1, C2, ..., Cr}, which is the cycle decomposition of the
characteristic polynomial with Li = |Ci|, i = 1, 2, ..., r.

2. Add all Lj ’s which are less than
√
N and let the sum be Lsum.

3. The success probability of the period bounded below by
√
N for any

initial state is 1− Lsum

N .
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We then compute the expectation and standard deviation (SD) for the period
of D success probabilities. Let Dmean and DSD be the expectation and stan-
dard deviation, respectively. Then, we use the histogram with (Dmean, DSD) to
represent the probability distribution of the period. In the following subsection,
we present the experimental results by the above procedure.

Period Distribution of the WG-NLFSR over the Field F25 and F27 . In
this subsection, we compute the expected success probability of period by the
above Procedure 1 for the recurrence relation of length n = 3, 4 and 5 over the
field F25 and for the recurrence relation of length n = 3, 4 over the field F27 . In
Table 5, the WG permutations over fields F25 and F27 are defined.

Table 5. Parameter descriptions

t Primitive element of F2t Primitive Polynomial WG permutations
5 α α5 + α3 + 1 = 0 WGP5(x) = x+ (x+ 1)5 + (x + 1)13 + (x+ 1)19 + (x+ 1)21

7 β β7 + β + 1 = 0 WGP7(x) = x+ (x+ 1)33 + (x + 1)39 + (x+ 1)41 + (x+ 1)104

We consider the n-stage recurrence relation (3) with WGP5(x) and WGP7(x)
as the WG permutation over the field F25 and F27 , respectively. Our simulation
results for n = 3, 4 and 5 over the field F25 are given in Table 6. Similarly, the
simulation results for n = 3 and 4 over F27 are given in Table 7. In Tables 6
and 7, we provide the number of characteristic polynomials (D), the expected
success probability (Dmean), the standard deviation (DSD), and the maximum
value of the sum of all smaller length cycles which are less than

√
N (Lsum). In

addition, the average number of cycles in the cycle decomposition of the WG-
NLFSR recurrence relation is presented. Our experimental results show that the
numerical value for the average number of cycles is very close to the average
number of cycles generated by the random sampling (let rs denote the expected
number of cycles generated by the random sampling, then rs ≈ lnN , see [5]).

Table 6. The summary of simulation results over F25

Length, n Max period, N D Dmean DSD Lsum Avg.#of cycles rs
3 215 − 1 31744 0.9945 0.0039 1011 10.51 10.38
4 220 − 1 197296 0.9990 0.00069 6394 13.95 13.86
5 225 − 1 66888 0.9998 0.00012 35828 17.44 17.32

For n = 3, the success probability of period lower bounded by
√
N is depicted

in Fig. 3a in the form of a histogram. In figures, the x-axis represents the suc-
cess probability values and the y-axis represents the number of characteristic
polynomials that have been taken. In the histogram, it can be observed that
for most characteristic polynomials the recurrence relation produces sequences
with period of at least

√
N when the success probability is greater than 0.985.

The empirical result for n = 3 in Table 6 says that if an arbitrary characteris-
tic polynomial is chosen in the WG-NLFSR recurrence relation with WGP5(x),
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Table 7. The summary of simulation results over F27

Length, n Max period, N D Dmean SD Lsum Avg.#of cycle rs
3 221 − 1 294912 0.9993 0.00049 35828 14.49 14.55
4 228 − 1 7337 0.9999 0.00004 82216 19.38 19.41
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Fig. 3. Distribution of the period ≥ √
N for t = 5, (a) n = 3, (b) n = 4 and (c) n = 5

then, with expected probability 0.9945, the recurrence relation can generate a
sequence with period lower bounded by

√
N .

In a similar fashion, the probability distributions of period for n = 4 and 5
over F25 in Figs. 3b and 3c, and n = 3 and 4 over F27 in Figs. 4a and 4b are
depicted in the form of a histogram along with the expected success probability.
For n = 4 and 5, the expected success probabilities of the period are given
by 0.990 and 0.9998, respectively, which are greater than the expected success
probability for n = 3.

The empirical analysis shows that with a high probability the WG-NLFSR can
generate a sequence with period at least

√
N for a large length of the NLFSR. In
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Fig. 4. Distribution of the period ≥ √
N for t = 7, (a) n = 3, (b) n = 4
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particular, with very high probability, the filtering WG7-NLFSR can generate a
sequence with period at least 280.5.

5 Conclusions

In this paper, we presented a family of pseudorandom number generators named
the filtering WG-NLFSR and the filtering WG7-NLFSR for EPC C1 Gen2 RFID
tags. Due to the nonlinear feedback for the state update, the filtering WG-
NLFSR and filtering WG7-NLFSR will be resistant to the powerful cryptana-
lytic attacks. In order to investigate the periodicity of the filtering WG7-NLFSR
sequence, we introduced the WG-NLFSR, which generates sequences over the
finite field. The periodicity of WG-NLFSR sequences is investigated by perform-
ing the complete cycle decomposition of the WG-NLFSR recurrence relations
and by conducting an empirical study on the period distribution of WG-NLFSR
sequences. In the cycle decomposition, we observed that there are many charac-
teristic polynomials in which the cycle lengths are close to the maximum period
or bounded below by

√
N and we listed some characteristic polynomials over

the fields F25 and F27 . In the empirical study, the period distribution of the
WG-NLFSR sequences over the field F25 and F27 for different lengths of the
shift registers are conducted. Moreover, the empirical study reveals that, with
high probability, the filtering WG7-NLFSR can generate sequences with periods
bounded below by 280.5. To the best of our knowledge, this is the first study
in the literature on the cycle decomposition and the distribution of a period of
a sequence generated by the nonlinear feedback shift register over an extension
field.
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Appendix A.

We here present the performance comparison table for the WG-7 stream cipher
from [11]. Another implementation of WG-7 stream cipher can be seen in [10].

Table 8. Comparison of WG-7 and other lightweight ciphers [11]

a Cipher Cost of Resources Init. Thru.put
[cycles] [bits/sec]

Code EXP/RET
PRESENT@2MHz 841 25/4 230 2,297
PRESENT@0.5MHz 574

HB@2MHz 1,532 9/7 22,949 5543
HB@0.5MHz 1,386
WG-7@2MHz 1,097 7/4 10,084 9,852
WG-7@0.5MHz 2,463

b Flash SRAM
AES@8MHz 6,664 88 7,149 81,432

Salsa20@8MHz 3,842 258 318 83,688
XTEA@8MHz 820 0 – 51655

PRESENT@8MHz 2,398 528 – 53,361
Size+HB@8MHz 1,308 0 14,735 34,934
Speed+HB@8MHz 10,918 0 8,182 91,494
GRAIN@8MHz 778 20 107,366 12,966

TRIVIUM@8MHz 424 36 775,726 12,030
WG-7@8MHz 1,100 0 10074 280,087


	Filtering Nonlinear Feedback Shift Registers Using Welch-Gong Transformations for Securing RFID Applications

	1 Introduction
	2 Preliminaries
	3 The Filtering WG-NLFSR
	3.1 General Description of the Filtering WG-NLFSR
	3.2 The Filtering WG7-NLFSR
	3.3 Application of the Filtering WG7-NLFSR

	4 Period Analysis of the WG-NLFSR
	4.1 Cycle Decomposition of the WG-NLFSR
	4.2 Period Distribution of the WG-NLFSR

	5 Conclusions
	References




