
WG-8: A Lightweight Stream Cipher

for Resource-Constrained Smart Devices

Xinxin Fan, Kalikinkar Mandal, and Guang Gong

Department of Electrical and Computer Engineering
University of Waterloo

Waterloo, Ontario, N2L 3G1, Canada
{x5fan,kmandal,ggong}@uwaterloo.ca

Abstract. Lightweight cryptographic primitives are essential for secur-
ing pervasive embedded devices like RFID tags, smart cards, and wire-
less sensor nodes. In this paper, we present a lightweight stream cipher
WG-8, which is tailored from the well-known Welch-Gong (WG) stream
cipher family, for resource-constrained devices. WG-8 inherits the good
randomness and cryptographic properties of the WG stream cipher fam-
ily and is resistant to the most common attacks against stream ciphers.
The software implementations of the WG-8 stream cipher on two popu-
lar low-power microcontrollers as well as the extensive comparison with
other lightweight cryptography implementations highlight that in the
context of securing lightweight embedded applications WG-8 has favor-
able performance and low energy consumption.

Keywords: Lightweight stream cipher, resource-constrained device,
cryptanalysis, efficient implementation.

1 Introduction

The Internet of Things (IoT) is an emerging computing and communication
paradigm in which smart devices (e.g., RFID tags, smart cards, wireless sensor
nodes, etc.) are linked through both wired and wireless networks to the Inter-
net. Those smart devices interact and cooperate with each other to conduct
complicated tasks such as sensing the environment, interpreting the data, and
responding to events. While the IoT provides new and exciting experience for
end users, it also opens up new avenues to hackers and organized crime. Recent
attacks to a wide range of smart devices [13, 39] have emphasized that without
adequate security the IoT will only become pervasive nightmare.

The challenges for deploying security solutions for smart devices are three-
fold: 1) The overhead (i.e., the gate count in hardware or the memory footprint
in software) of security solutions should be minimal due to the low-cost na-
ture of smart devices; 2) The power consumption of security solutions should
be minimal due to the low-power characteristic of smart devices; and 3) The
performance of security solutions should be reasonable to support applications
and end-user requirements. To address the aforementioned challenges for secur-
ing smart devices, a new research direction called lightweight cryptography has

K. Singh, A.K. Awasthi, and R. Mishra (Eds.): QSHINE 2013, LNICST 115, pp. 617–632, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



618 X. Fan, K. Mandal, and G. Gong

been established which focuses on designing novel cryptographic algorithms and
protocols tailored for implementation in resource-constrained environments.

A host of lightweight symmetric ciphers that particularly target for resource-
constrained smart devices have been proposed in the past few years. Early work
focuses on optimizing hardware implementations of standardized block ciphers
such as AES [17], IDEA [25] and XTEA [22]. Later on, researchers have shown
how to modify a classical block cipher like DES [24] for lightweight applications.
Recent proposals deal with new low-cost designs, including lightweight block
ciphers PRESENT [5], KATAN/KTANTAN [6], PRINTcipher [23], LED [20], and
Piccolo [36], lightweight stream ciphers Grain [21], Trivium [7], and MICKEY [3],
as well as a lightweight hybrid cipher Hummingbird/Hummingbird-2 [15, 16]. A
good research survey about recently published lightweight cryptographic imple-
mentations can be found in [14].

In this paper we present the stream cipherWG-8, which is a lightweight variant
of the well-known WG stream cipher family [29] as submitted to the eSTREAM
project. WG-8 inherits good randomness properties of the WG stream cipher
family such as period, balance, ideal two-level autocorrelation, ideal tuple distri-
bution, and exact linear complexity. Moreover, WG-8 is able to resist the most
common attacks against stream ciphers including algebraic attack, correlation
attack, differential attack, cube attack, distinguish attack, discrete fourier trans-
form attack, and time-memory-data tradeoff attack, thereby providing adequate
security for lightweight embedded applications.

We also propose several techniques for efficient implementation of the stream
cipher WG-8 on two low-power microcontrollers, including an 8-bit microcon-
troller ATmega128L from Atmel and a 16-bit microcontrollerMSP430 from Texas
Instruments. Our experimental results show thatWG-8 can achieve high through-
put of 185.5 Kbits/s and 95.9 Kbits/s on the above two microcontrollers with
energy efficiency of 458 nJ/bit and 125 nJ/bit, respectively. When compared to
other lightweight cryptography implementations in the literature, the through-
put of the WG-8 is about 2 ∼ 15 times higher and the energy consumption is
around 2 ∼ 220 times smaller than those of most previous ciphers.

The remainder of this paper is organized as follows. Section 2 gives a de-
scription of the lightweight stream cipher WG-8. Subsequently, in Section 3 we
analyze the security of the WG-8 against the most common attacks to stream ci-
phers. Section 4 describes efficient techniques for implementing the WG-8 stream
cipher on low-power microcontrollers and reports our experimental results and
comparisons with previous work. Finally, Section 5 concludes this contribution.

2 The Lightweight Stream Cipher WG-8

2.1 Preliminaries

We define the terms and notations that will be used to describe the lightweight
stream cipher WG-8 and its architecture as well as to characterize its randomness
and cryptographic properties.



WG-8: A Lightweight Stream Cipher 619

– F2 = {0, 1}, the Galois field with two elements 0 and 1.
– p(x) = x8 + x4 + x3 + x2 + 1, a primitive polynomial of degree 8 over F2.
– F28 , the extension field of F2 defined by the primitive polynomial p(x) with

28 elements. Each element in F28 is represented as an 8-bit binary vector.
Let ω be a primitive element of F28 such that p(ω) = 0.

– Tr(x) = x+ x2 + x22 + · · ·+ x27 , the trace function from F28 �→ F2.
– l(x) = x20 + x9 + x8 + x7 + x4 + x3 + x2 + x+ ω, the feedback polynomial

of LFSR (which is also a primitive polynomial over F28).

– q(x) = x+x23+1+x26+23+1+x26−23+1+x26+23−1, a permutation polynomial
over F28 .

– WGP-8(xd) = q(xd + 1) + 1, the WG-8 permutation with decimation d from
F28 �→ F28 , where d is coprime to 28 − 1.

– WGT-8(xd) = Tr(WGP-8(xd)) = Tr(x9 + x37 + x53 + x63 + x127), the WG-8
transformation with decimation d from F28 → F2, where d is coprime to
28 − 1.

– Polynomial basis (PB) of F28 : A polynomial basis of F28 over F2 is a basis
of the form {1, ω, ω2, · · · , ω7}.

– Normal basis (NB) of F28 : A normal basis of F28 over F2 is a basis of the

form {θ, θ2, · · · , θ27}, where θ = ω5 (i.e., a normal element) is used in this
work.

– Autocorrelation: The autocorrelation of a binary sequence with period T is
defined as the difference between the agreements and disagreements when
the symbol 0 maps to 1 and 1 maps to −1. If all the out-of-phase auto-
correlation is equal to −1, then the sequence is said to have ideal two-level
autocorrelation.

– Linear span (LS): The linear span or linear complexity of a binary sequence
is defined as the length of the smallest linear feedback shift register (LFSR)
which generates the entire binary sequence.

– Nonlinearity: The nonlinearity of a function f is defined as the minimum
distance from f to any affine function with the same number of variables.

– Algebraic immunity (AI): The algebraic immunity of a function f is defined
as the minimum degree of an annihilator Boolean function g such that g is
equivalent to either f or the complement of f (i.e., fg = 0 or (f + 1)g = 0).
In the ideal case, the algebraic immunity of a function f is equal to the
degree of f , thus making it immune to algebraic attacks.

– ⊕, the bitwise addition operator (i.e., XOR).
– ⊗, the multiplication operator over F28 .

2.2 The Description of the Stream Cipher WG-8

WG-8 is a lightweight variant of the well-knownWelch-Gong (WG) stream cipher
family with 80-bit secret key and 80-bit initial vector (IV), which can be regarded
as a nonlinear filter generator over finite field F28 . The stream cipher WG-8
consists of a 20-stage LFSR with the feedback polynomial l(x) followed by a WG-
8 transformation module with decimation d = 19, and operates in two phases,
namely an initialization phase and a running phase.



620 X. Fan, K. Mandal, and G. Gong

S0S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16S17S18S19

⊕

8

8

88

WGP-8(x19) WGP-8(x19): WG-8 Permutation Module with Decimation d = 19

⊕
⊕

8

⊕
8

88 ⊕
8

⊕
8

⊕
8

88 ⊗⊕
8

8

8

8 ω8

Fig. 1. The Initialization Phase of the Stream Cipher WG-8

Initialization Phase. The key/IV initialization phase of the stream cipher
WG-8 is shown in Fig. 1.

Let the 80-bit secret key be K = (K79, . . . ,K0)2, the 80-bit IV be IV =
(IV79, . . . , IV0)2, and the internal state of the LFSR be S0, . . . , S19 ∈ F28 , where
Si = (Si,7, . . . , Si,0)2 for i = 0, . . . , 19. The key and IV initialization process
is conducted as follows: S2i = (K8i+3, . . . ,K8i, IV8i+3, . . . , IV8i)2 and S2i+1 =
(K8i+7, . . . ,K8i+4, IV8i+7, . . . , IV8i+4)2 for i = 0, . . . , 9.

Once the LFSR is loaded with the key and IV, the apparatus runs for 40
clock cycles. During each clock cycle, the 8-bit internal state S19 passes through
the nonlinear WG-8 permutation with decimation d = 19 (i.e., the WGP-8(x19)
module) and the output is used as the feedback to update the internal state of
the LFSR. The LFSR update follows the recursive relation:

Sk+20 = (ω ⊗ Sk)⊕ Sk+1 ⊕ Sk+2 ⊕ Sk+3 ⊕ Sk+4 ⊕
Sk+7 ⊕ Sk+8 ⊕ Sk+9 ⊕WGP-8(S19

k+19), 0 ≤ k < 40.

After the key/IV initialization phase, the stream cipher WG-8 goes into the
running phase and 1-bit keystream is generated after each clock cycle.

Running Phase. The running phase of the stream cipher WG-8 is illustrated in
Fig. 2. During the running phase, the 8-bit internal state S19 passes through the
nonlinear WG-8 transformation with decimation d = 19 (i.e., the WGT-8(x19)
module) and the output is the keystream. Note that the only feedback in the
running phase is within the LFSR and the recursive relation for updating the
LFSR is given below:

Sk+20 = (ω ⊗ Sk)⊕ Sk+1 ⊕ Sk+2 ⊕ Sk+3 ⊕ Sk+4 ⊕ Sk+7 ⊕ Sk+8 ⊕ Sk+9, k ≥ 40.

The WG-8 transformation module WGT-8(x19) comprises of two sub-modules: a
WG-8 permutation module WGP-8(x19) followed by a trace computation mod-
ule Tr(·). While the WGP-8(x19) module permutes elements over F28 , the Tr(·)
module compresses an 8-bit input to 1-bit keystream.

2.3 Randomness Properties of the WG-8 Keystream

The keystream generated by the stream cipher WG-8 has the following desired
randomness properties [8]:



WG-8: A Lightweight Stream Cipher 621

Tr(·)

8

1

8

WGP-8(x19)

8

WGT-8(x19)

keystream

WGT-8(x19): WG-8 Transformation Module with Decimation d = 19

WGP-8(x19): WG-8 Permutation Module with Decimation d = 19

Tr(·): Trace Computation Module

⊕
8

8⊕
8

⊕
8

88 ⊕
8

⊕
8

⊕
8

88 ⊗⊕
8

8

8

8 ω8

S0S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16S17S18S19

Fig. 2. The Running Phase of the Stream Cipher WG-8

1. The keystream has a period of 2160 − 1.
2. The keystream is balanced, i.e., the number of 0’s is only one less than the

number of 1’s in one period of the keystream.
3. The keystream is an ideal two-level autocorrelation sequence.
4. The keystream has an ideal t-tuple (1 ≤ t ≤ 20) distribution, i.e., every pos-

sible output t-tuple is equally likely to occur in one period of the keystream.
5. The linear span of the keystream can be determined exactly, which is 233.32.

3 Cryptanalysis of the Stream Cipher WG-8

In this section, we analyze the security of the stream cipher WG-8 under the
context of lightweight embedded applications.

3.1 Algebraic Attack

The algebraic attack is a powerful attack against LFSR based filtering sequence
generators [11]. The goal of the algebraic attack is to form a lower degree mul-
tivariate equation by multiplying the filtering function by a low-degree multi-
variate polynomial. This gives an overdefined system of nonlinear equations for
sufficiently many keystreams, which can be solved to recover the internal state
of the LFSR. The algebraic immunity of the WGT-8(x19) is equal to 4. Accord-
ing to the algebraic attack, the time complexity and the data complexity for

recovering the internal state of the LFSR are about 7
64 ·

(
160
4

)log2 7
= 266.0037 and(

160
4

)
= 224.65, respectively. For applying the fast algebraic attacks [10] to the

stream cipher WG-8, one needs to respectively find two multivariate polynomials
g and h of degree e and d (e < d) such that f · g = h. For the WGT-8(x19) and
e = 1, there does not exist a multivariate polynomial h in 8 variables with de-
gree less than 7. Hence, in order to launch the fast algebraic attack one needs to
obtain more keystream bits with a higher complexity. For lightweight embedded
applications, it is hard for an attacker to obtain about 224.65 keystream bits.
Even if the attacker can get those many bits for a fixed key and IV, he needs
to perform the operations with the time complexity 266.0037, which completely
defeats this attack.



622 X. Fan, K. Mandal, and G. Gong

3.2 Correlation Attack

In the correlation attack, the objective of an attacker is either to find the correla-
tion between a keystream and an output sequence of an LFSR or to find the corre-
lation among the keystreams [9,27,37]. The stream cipher WG-8 is secure against
the correlation among the keystreams as it produces keystreams with 2-level au-
tocorrelation. We now consider the fast correlation attack in which the keystream
of the stream cipher is considered as a distorted version of the LFSR output. In
the fast correlation attack, the linear approximation of WGT-8(x19) can be used
to derive a generator matrix of a linear code that can be decoded by a maximum
likelihood decoding (MLD) algorithm. Letting f(x) be a linear function in 8

variables, we have Pr(WGT-8(x19)(x) = f(x)) = (28−108)
28 = 0.578125. Applying

the results of [9] for t = 3, the amount of keystream (denoted by N) required for

the attack to be successful is given by N ≈ (k · 12 · ln 2) 1
3 · ε−2 · 2 160−k

3 and the
decoding complexity is given by Cdec = 2k ·k· 2 ln 2

(2ε)6 , where ε = (Pr(WGT-8(x19) =

f(x)) − 0.5) = 0.078125 and k is the number of LFSR internal state bits recov-
ered. If we choose a small value of k (e.g., k = 7), the number of bits required to
launch the attack is about 260.31, which is not possible in practice. Similarly, if
we choose a large value of k (e.g., k = 80), the number of bits required to mount
the attack is about 237.15. However, the decoding complexity of the attack is
approximately 2102.68, which is worse than the exhaustive search. Hence, the
stream cipher WG-8 is secure against the fast correlation attack.

3.3 Differential Attack

The initialization phase in the first design of the WG stream cipher was vul-
nerable to the chosen IV attack [40], where an attacker can distinguish several
output bits by building a distinguisher based on the differential cryptanalysis.
This weakness has been fixed in the later design by placing the WG permu-
tation module at the last position of the LFSR [29]. For the proposed stream
cipher WG-8, the differential distribution of the WGP-8(x19) is 8-uniform, which
provides a maximum 2−5 possibility for differential characteristic. During the
initialization phase the WGP-8(x19) is applied for 40 times. Thus, after the ini-
tialization phase, it would be quite hard for an attacker to distinguish the output
keystream since the differentials become complex and contain most key/IV bits.

3.4 Cube Attack

Cube attack [12] is a generic key-recovery attack that can be applied to any
cryptosystem, provided that the attacker can obtain a bit of information that
can be represented by a low-degree decomposition multivariate polynomial in
Algebraic Normal Form (ANF) of the secret and public variables of the target
cryptosystem. Note that the nonlinearity of WGP-8(x19) is 92 and the algebraic
degrees of the component functions of WGP-8(x19) are 7. Moreover, the ANF
representations of 8 component functions contain 133, 113, 146, 124, 137, 109,



WG-8: A Lightweight Stream Cipher 623

122, and 120 terms, respectively, and only the ANF of the second component
contains 7 linear terms and other terms are of degree greater than or equal to
2. In the WG-8 stream cipher, after 40 rounds of the initialization phase, the
degree of the output polynomial can be very high. As a result, it would be hard
for an attacker to collect low-degree relations among the secret key bits.

3.5 Distinguishing Attack

Recently, a distinguishing attack has been proposed against the stream cipher
WG-7 [30]. Due to the small number of tap positions in the LFSR of the WG-7,
the characteristic polynomial of the LFSR allows an attacker to build a distin-
guisher for distinguishing a keystream generated by WG-7 from a truly random
keystream. For the WG-8 cipher, the characteristic polynomial of the LFSR con-
sists of 8 tap positions and a similar distinguisher as in [30] can be built as

F (Si, ..., Si+4, Si+7, ..., Si+9) = WGT-8(ω ⊗ Si ⊕ Si+1 ⊕ Si+2 ⊕ Si+3 ⊕ Si+4 ⊕ Si+7

⊕ Si+8 ⊕ Si+9)⊕WGT-8(Si)⊕WGT-8(Si+1)⊕WGT-8(Si+2)⊕WGT-8(Si+3)⊕
WGT-8(Si+4)⊕WGT-8(Si+7)⊕WGT-8(Si+8)⊕WGT-8(Si+9),

which is a Boolean function in 64 variables. For the distinguisher F , the proba-
bility Pr(F (x) = 0) = 1

2 ± ε, where x = (a0, ..., a7), ai ∈ F28 . Note that the value
of ε will be quite small due to a huge number of variables in the distinguisher,
which requires an attacker to obtain more keystream bits for distinguishing the
keystream. However, the computation of the exact value of ε is infeasible in this
case because the number of possible values of x is 264. Hence the WG-8 stream
cipher is resistant to the distinguishing attack. Note that this type of distinguish-
ing attacks can also be extended to the case in which a distinguisher can be built
using a linear relation of a remote term of the LFSR, say Sτ for not large τ , and
the sequences addressed in a subset of tap positions of the LFSR, denoted by
I = {i1, · · · , it} ⊂ {0, 1, · · · , 19}. In other words, a distinguisher could be built
using the linear relation Sτ = Si1 + · · · + Sit . Since this property is controlled
by the characteristic polynomial of the LFSR, it can be easily teared done by a
proper selection of the characteristic polynomial of the LFSR. For our selection
of the characteristic polynomial l(x), there is no remote term Sτ for 20 ≤ τ ≤ 234

for which the size of set I is less than 5. Thus, the WG-8 stream cipher is also
resistant to this general distinguishing attack.

3.6 Discrete Fourier Transform Attack

The Discrete Fourier Transform (DFT) attack is a new type of attack to recover
the internal state of a filtering generator, which was first proposed by Rønjom
and Helleseth in [34] and extended to attacking filtering generators over F2n

by Gong et al. in [19]. For mounting the DFT attack against the WG-8 stream
cipher, an attacker needs to obtain 233.32 (i.e., the linear complexity) consecutive
keystream bits. Hence, the online complexity of this attack for recovering the
internal state is 233.32, after an offline computation with complexity 248.49. For



624 X. Fan, K. Mandal, and G. Gong

typical lightweight embedded applications like RFID systems, a reader and a tag
only exchange 32-bit random numbers in each communication session. Hence, an
attacker can never obtain 233.32 consecutive keystream bits.

3.7 Time-Memory-Data Tradeoff Attack

The Time-Memory-Data (TMD) tradeoff attack [4] is a generic cryptanalytic
attack that is applicable to any stream cipher, especially those with low sampling
resistance. The complexity of the TMD tradeoff attack is O(2

n
2 ), where n is the

size of the internal state. For the WG-8 stream cipher, the size of the internal
state is 160-bit and thus the complexity of launching a TMD attack is at least
280. Moreover, the sampling resistance of the WG-8 stream cipher is high due to
the usage of the WGT-8(x19) as the filtering function. The ANF representation
of the WGT-8(x19) contains 109 terms, among which only four terms are linear
and other terms have degree greater than 2 and less than 8. Hence, only by fixing
7 out of 8 variables can one obtain a linear equation.

4 Efficient Implementation of the Stream Cipher WG-8

In this section, we address efficient implementation of the WG-8 cipher on low-
power microcontrollers. For each platform we provide three implementation vari-
ants that deal with trade-offs among speed, code size, and energy consumption.

4.1 Implementation of the WG-8 Permutation Module WGP-8(x19)

The most complicated WGP-8(x19) module can be implemented using three dif-
ferent methods: a) a 256-byte direct look-up table; b) a 34-byte coset leader
based look-up table; or c) tower field (TF) arithmetic.

Directly Look-up Table (DLT) Approach. Depending on the bases used,
one can precompute the WG-8 permutation with decimation d = 19 by

WGP-8(x19) = q(x19 + 1) + 1

for all elements x ∈ F28 . Hence, a 256-byte look-up table TWGP-8 can be generated
to compute WGP-8(x19).

Coset Leader Based Look-up Table (CLT) Approach. This approach
assumes that a normal basis is used to represent elements in F28 and uses the
essential property of the WG-8 permutation with decimation d below:

WGP-8
(
(x2i )d

)
= q

(
(x2i )d + 1

)
+ 1 = q

(
(xd)2

i

+ 1
)
+ 1

=
(
q(xd + 1)

)2i
+ 1 =

(
q(xd + 1) + 1

)2i
=

(
WGP-8(xd)

)2i
(1)



WG-8: A Lightweight Stream Cipher 625

for x ∈ F28 and i = 0, 1, . . . , 7. According to the Equation (1), if we know theWG-
8 permutation WGP-8(xd) for an element x ∈ F28 , we can easily obtain the WG-8

permutation WGP-8((x2i )d) for the entire conset {x2, x22 , . . . , x27} of x by cycli-
cally shifting WGP-8(xd) to the right by i positions, provided that a normal basis
is employed to represent finite field elements. The complete cosets and coset lead-
ers of F28 (in hexadecimal notation) are shown in Table 1. We note that under the
normal basis representation the elements in F28 have been grouped into 34 differ-
ent cosets except for 0 and 1. Since WGP-8(0) = 0x00 and WGP-8(1) = 0xFF, we
only need to generate a 34-byte look-up table TCo-WGP-8 for storing the WG-8 per-
mutation results for each coset leader. Here we present the following Algorithm 1
that uses the table TCo-WGP-8 to compute WGP-8(xd) for any x ∈ F28 .

Table 1. The Cosets and Coset Leaders of F28

Coset Leader Coset Coset Leader Coset

0x00 – – – – – – – 0x27 0x4E 0x9C 0x39 0x72 0xE4 0xC9 0x93
0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x40 0x2B 0x56 0xAC 0x59 0xB2 0x65 0xCA 0x95
0x03 0x06 0x0C 0x18 0x30 0x60 0xC0 0x81 0x2D 0x5A 0xB4 0x69 0xD2 0xA5 0x4B 0x96
0x05 0x0A 0x14 0x28 0x50 0xA0 0x41 0x82 0x2F 0x5E 0xBC 0x79 0xF2 0xE5 0xCB 0x97
0x07 0x0E 0x1C 0x38 0x70 0xE0 0xC1 0x83 0x33 0x66 0xCC 0x99 – – – –
0x09 0x12 0x24 0x48 0x90 0x21 0x42 0x84 0x35 0x6A 0xD4 0xA9 0x53 0xA6 0x4D 0x9A
0x0B 0x16 0x2C 0x58 0xB0 0x61 0xC2 0x85 0x37 0x6E 0xDC 0xB9 0x73 0xE6 0xCD 0x9B
0x0D 0x1A 0x34 0x68 0xD0 0xA1 0x43 0x86 0x3B 0x76 0xEC 0xD9 0xB3 0x67 0xCE 0x9D
0x0F 0x1E 0x3C 0x78 0xF0 0xE1 0xC3 0x87 0x3D 0x74 0xF4 0xE9 0xD3 0xA7 0x4F 0x9E
0x11 0x22 0x44 0x88 – – – – 0x3F 0x7E 0xFC 0xF9 0xF3 0xE7 0xCF 0x9F
0x13 0x26 0x4C 0x98 0x31 0x62 0xC4 0x89 0x55 0xAA – – – – – –
0x15 0x2A 0x54 0xA8 0x51 0xA2 0x45 0x8A 0x57 0xAE 0x5D 0xBA 0x75 0xEA 0xD5 0xAB
0x17 0x2E 0x5C 0xB8 0x71 0xE2 0xC5 0x8B 0x5B 0xB6 0x6D 0xDA 0xB5 0x6B 0xD6 0xAD
0x19 0x23 0x64 0xC8 0x91 0x23 0x46 0x8C 0x5F 0xBE 0x7D 0xFA 0xF5 0xEB 0xD7 0xAF
0x1B 0x36 0x6C 0xD8 0xB1 0x63 0xC6 0x8D 0x6F 0xDE 0xBD 0x7B 0xF6 0xED 0xDB 0xB7
0x1D 0x3A 0x74 0xE8 0xD1 0xA3 0x47 0x8E 0x77 0xEE 0xDD 0xBB – – – –
0x1F 0x3E 0x7C 0xF8 0xF1 0xE3 0xC7 0x8F 0x7F 0xFE 0xFD 0xFB 0xF7 0xEF 0xDF 0xBF
0x25 0x4A 0x94 0x29 0x52 0xA4 0x49 0x92 0xFF – – – – – – –

Algorithm 1. Coset Leader Based Look-up Table Approach

Input: x ∈ F28 , a decimation d, a look-up table TCo-WGP-8

Output: WGP-8(xd)

1: if x = 0x00 or x = 0xFF then
2: return x
3: end if
4: Find the coset leader xc of x by cyclically shifting x to the right by i positions,

where 0 ≤ i ≤ 7 (i.e., xc is the smallest odd integer in the coset containing x.)
5: Find the position j of xc being in the table TCo-WGP-8

6: a← TCo-WGP-8[j]
7: return a ≪ i

Tower Field Arithmetic (TFA) Based Approach. The software implemen-
tation of the WGP-8(x19) module involves the arithmetic (i.e., addition, multi-
plication, and exponentiation) over finite field F28 . Although we can directly



626 X. Fan, K. Mandal, and G. Gong

implement all the operations over F28 , it is well known that using the isomor-
phic tower constructions of F28 might save the memory consumption. Therefore,
we investigate the tower construction F(24)2 in this work.

Tower Construction F(24)2 and Its Arithmetic. To obtain the tower construction
F(24)2 , we first construct F24 by using an irreducible polynomial e(X) of degree
4 over F2, and then construct F(24)2 by using a certain irreducible polynomial
f(X) of degree 2 over F24 . In our tower construction, we use e(X) = X4+X3+1
with its polynomial basis {1, α, α2, α3} for F24 and f(X) = X2 +X +α with its
normal basis {β, β16} for F(24)2 , where α = ω119 ∈ F24 and β = ω7 ∈ F(24)2 are
zeros of the polynomials e(X) and f(X), respectively.

Arithmetic operations in F24 . The arithmetic in F24 is conducted with the aid
of a 4 × 4 exponentiation table Texp and a 4 × 4 logarithm table Tlog. While
the table Texp stores exponentiation αi, i = 0, 1, . . . , 14, the table Tlog keeps the
exponent i for each αi, i = 0, 1, . . . , 14. Let A = a0 + a1α + a2α

2 + a3α
3 and

B = b0 + b1α + b2α
2 + b3α

3 be two non-zero elements in F24 , where ai, bi ∈
F2, i = 0, 1, 2, 3. We can perform the arithmetic in F24 as follows:

AB = Texp[(Tlog[(a0, a1, a2, a3)] + Tlog[(b0, b1, b2, b3)]) mod 15],

A2 = Texp[(Tlog[(a0, a1, a2, a3)] � 1) mod 15],

αA = Texp[(Tlog[(a0, a1, a2, a3)] + 1) mod 15].

Arithmetic operations in F(24)2 . Let A = a0β + a1β
16 and B = b0β + b1β

16,
where a0, a1, b0, b1 ∈ F24 . A multiplication AB in F(24)2 is computed as follows:

AB = (a0β + a1β
16)(b0β + b1β

16) = (cα⊕ a0b0)β + (cα⊕ a1b1)β
16,

where c = (a0 ⊕ a1)(b0 ⊕ b1). For a non-zero element A ∈ F(24)2 , the squaring of
A is calculated as follows:

A2 = (a0β + a1β
16)2 = [(a0 ⊕ a1)

2α⊕ a20]β + [(a0 ⊕ a1)
2α⊕ a21]β

16.

The Frobenius mapping of A with respect to F24 , which is the 16th power oper-
ation, is computed as follows:

A24 = (a0β + a1β
16)16 = a0β

16 + a1β
256 = a1β + a0β

16.

Implementation of WGP-8(x19) Module. For an element x ∈ F28 , theWGP-8(x19)
can be computed as follows:

WGP-8(x19) = q(x19 +1)+1 = y+ y2
3+1 + y2

6

(y2
3+1 + y2

3−1)+ y2
3(23−1)+1+1,

where y = x19 + 1 = x24 · x2 · x+ 1. Note that for the tower construction F(24)2 ,
1 can be denoted by the vector (1, 0, 0, 0, 1, 0, 0, 0). Therefore, the addition with
1 under the TF representation is equivalent to XORing with a constant 0x88.



WG-8: A Lightweight Stream Cipher 627

Table 2. Trace Computation of an Element x ∈ F28 Using Different Bases

Basis Element Representation Tr(x)

Polynomial Basis (PB) x0 + x1ω + · · ·+ x7ω
7 x5

Normal Basis (NB) x0θ + x1θ
2 + · · ·+ x7θ

27
⊕7

i=0 xi

Tower Field (TF)
(x0 + x1α+ x2α

2 + x3α
3)β+

x1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x7
(x4 + x5α+ x6α

2 + x7α
3)β16

4.2 Implementation of the Trace Computation Module Tr(·)
Depending on the bases chosen, the trace of an element x ∈ F28 can be computed
as shown in Table 4.2.

4.3 Implementation of the Multiplication by ω Module

The multiplication by ω module can be implemented using either finite field
arithmetic or an 8× 8 look-up table.

Multiplication by ω Using Finite Field Arithmetic. We consider the
following three cases when the PB, NB, and TF are used to represent finite
field elements, respectively. With the PB representation, the multiplication of
an element x ∈ F28 by ω can be computed as follows:

x · ω = x0ω + x1ω
2 + · · ·+ x6ω

7 + x7ω
8

= x7 + x0ω + (x1 ⊕ x7)ω
2 + (x2 ⊕ x7)ω

3 +

(x3 ⊕ x7)ω
4 + x4ω

5 + x5ω
6 + x6ω

7. (2)

Therefore, the result of x·ω is represented as an 8-bit vector (x7, x0, x1⊕x7, x2⊕
x7, x3 ⊕ x7, x4, x5, x6) with respect the PB.

With the NB representation, the multiplication of an element x ∈ F28 by ω
can be calculated as follows:

x · ω = (x0θ + x1θ
2 + · · ·+ x6θ

26 + x7θ
27) · ω = M · (x0, x1, · · · , x6, x7)

T , (3)

where the matrix M is given below.
With the TF representation, the multiplication of an element x ∈ F28 by ω

can be calculated as follows:

x · ω = [(x0 + x1α+ x2α
2 + x3α

3)β + (x4 + x5α+ x6α
2 + x7α

3)β16] · ω
= M′ · (x0, x1, · · · , x6, x7)

T , (4)

where the matrix M′ is given below.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1 0 1 1
0 0 0 0 1 1 1 0
1 0 1 0 1 0 0 1
1 0 1 1 1 0 0 0
0 0 1 0 1 1 1 0
0 1 1 0 0 1 1 1
1 0 1 1 1 1 0 0
0 1 1 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and M′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1 0 0 1
0 1 0 1 1 1 0 0
1 0 1 0 0 1 1 0
0 1 1 0 0 0 1 0
1 0 0 1 0 1 1 1
1 1 0 0 0 0 1 1
0 1 1 0 0 0 0 1
0 0 1 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.



628 X. Fan, K. Mandal, and G. Gong

Multiplication by ω Using Look-Up Tables. Based on the Equations (2)–
(4), one can generate 256-byte look-up tables with respect to the chosen bases.

4.4 Implementation Platforms and Development Tools

In this section, we briefly describe two low-power microcontrollers for implement-
ing the WG-8 stream cipher as well as the corresponding development tools.

8-Bit Microcontroller ATmega128L and Development Tool. The low-
power 8-bit microcontroller ATmega128L [1] from Atmel is based on the AVR
enhanced RISC architecture with 128 Kbytes of In-System Self-Programmable
Flash, 4 Kbytes EEPROM and 8 Kbytes Internal SRAM. It is equipped with 133
highly-optimized instructions and most of them can be executed within one clock
cycle. Moreover, the clock frequency of the ATmega128L can run from 0 to 8 MHz
and the power supplies can go from 2.7 to 5.5 V. We use the latest integrated
development environment Atmel Studio 6.0 [2] from Atmel for implementing and
testing the performance of the WG-8 on the target platform.

16-Bit Microcontroller MSP430F1611 and Development Tool. The 16-
bit microcontroller MSP430F1611 [38] from Texas Instruments has a traditional
von-Neumann architecture with 48 Kbytes Flash memory and 10 Kbytes RAM.
All special function registers, peripherals, RAM and Flash/ROM share the same
address space. The clock frequency of the MSP430F1611 ranges from 0 to 8 MHz
and the power supplies can go from 1.8 to 3.6 V. The MSP430F1611 features
27 instructions and 7 different addressing modes that provide great flexibility in
data manipulation. To implement and simulate the WG-8 on the target platform,
we use the CrossWorks for MSP430 Version 2.1 from Rowley Associates [35].

4.5 Experimental Results and Comparisons

In this section, we report our experimental results for implementing the stream
cipher WG-8 on the low-power microcontrollers ATmega128L and MSP430F1611
and compare our results with other lightweight-cryptography implementations
on the same or similar platforms. We focus on three major performance crite-
ria for implementing cryptographic primitives on resource-constrained environ-
ments, namely throughput, code size, and energy consumption (i.e., energy/bit).
Table 3 compares our implementation results with previous work in terms of the
aforementioned three performance criteria. Note that we estimate the per bit
energy consumptions by the formula: energy/bit = Supply Voltage×Current×Cycles

Clock Frequency×Number of Bits ,
which is based on the typical current consumption of a low-power microcontroller
for the given clock frequency and supply voltage.

From Table 3, we note that on 8-bit ATmega microcontrollers the throughput
of WG-8 is about 2 ∼ 15 times higher than that of stream ciphers Grain, Triv-
ium, Salsa20, and WG-7, block ciphers PRESENT-80 and XTEA as well as the
hybrid cipher Hummingbird, whereas the energy consumption of WG-8 is around



WG-8: A Lightweight Stream Cipher 629

Table 3. Performance Comparison of Lightweight-Cryptography Implementations on
Low-Power Microcontrollers

Low-Power Cryptographic Clock Freq. Opt. Goal/ Memory Usage Setup Throughput Energy/Bit
Microcontroller Primitive [MHz] Method [byte] [cycle] [Kbits/sec] [nJ]

Flash SRAM

ATmega

AES [31]

8 MHz

RAM 1, 912 176 789 475.6 179
Speed 1, 912 256 747 513.8 165

PRESENT-80 [33]
Size 1, 474 32 – 0.99 85, 819
Speed 2, 398 528 – 66.7 1, 274

Hummingbird [15]
Size 1, 308 – 14, 735 34.9 2, 433
Speed 10, 918 – 8, 182 91.5 929

Hummingbird-2 [16]
RAM 3, 600 114 2, 970 171.8 495
Speed 3, 200 1, 500 1, 800 258.6 329

XTEA [32] Speed 820 – – 51.7 1, 645
Grain [32] Speed 778 20 107, 336 12.9 6, 556
Trivium [32] Speed 424 36 775, 726 12.0 7, 066
Salsa20 [28] Speed 3, 842 258 318 83.7 101, 564
WG-7 [26] Size 938 – 20, 917 34.0 2, 497

WG-8
TFA 2,450 20 99,702 3.58 23,739
CLT 2,238 148 10,683 31.7 2,683
DLT 1,984 20 1,379 185.5 458

MSP430

PRINTcipher-48 [18]

8 MHz

Speed 6, 424 48 – 4.5 153
AES [18] Speed 10, 898 218 – 78.0 154

PRESENT-80 [18] Speed 6, 424 288 – 19.4 619
KLEIN-64 [18] Speed 6, 424 288 – 65.0 185

Hummingbird [15]
Size 1, 064 – 9, 667 53.0 226
Speed 1, 360 – 4, 824 104.9 114

Hummingbird-2 [16]
Size 770 50 5, 984 84.2 143
Speed 3, 648 114 1, 361 356.5 34

WG-7 [26] Size 1, 050 – 18, 379 21.0 572

WG-8
TFA 2,110 20 127,944 2.44 4,926
CLT 2,628 148 15,265 10.8 1,107
DLT 1,558 20 3,604 95.9 125

2 ∼ 220 times smaller than that of those ciphers. Moreover, WG-8 has the com-
parable throughput and energy efficiency with the hybrid cipher Hummingbird-2
(optimized with assembly language). On the 8-bit platform, WG-8 is less efficient
than AES in terms of throughput and energy consumption. The main reason is
that WG-8 is a bit-oriented stream cipher whereas AES is a block cipher with
block size 128-bit. Furthermore, the code size of WG-8 is medium and the SRAM
usage of WG-8 is small among all the lightweight implementations.

On 16-bit MSP430 microcontrollers, the throughput of WG-8 is about 1 ∼ 20
times higher than that of the stream cipher WG-7 as well as block ciphers
PRINTcipher-48,AES, PRESENT-80, and KLEIN-64, whereas the energy efficiency
is comparable with that of those ciphers. While WG-8 has similar throughput
and energy efficiency as the hybrid cipher Hummingbird, it is less efficient when
compared to the Hummingbird-2 cipher. The main reason comes from the opti-
mization with the assembly language in the speed-optimized Hummingbird-2 im-
plementation. Furthermore, the code size of WG-8 is about 2 ∼ 7 times smaller
than block ciphers PRINTcipher-48, AES, PRESENT-80, and KLEIN-64 as well
as the hybrid cipher Hummingbird-2, and is comparable with the Hummingbird
cipher. Regarding to the SRAM usage, the stream cipher WG-8 is superior to
other block cipher and stream ciphers.



630 X. Fan, K. Mandal, and G. Gong

In addition, for the three implementation variants, we note that on both 8-bit
and 16-bit platforms the DLT method is consistently better than both CLT and
TFA methods with respect to throughput and energy consumption. The reason
lies in the efficient memory access for look-up tables on both microcontrollers.

5 Conclusion

In this paper, we present a lightweight stream cipher WG-8 targeted for resource-
constrained devices like RFID tags, smart cards, and wireless sensor nodes, which
inherits all the good randomness and cryptographic properties of the well-known
WG stream cipher family. A detailed cryptanalysis shows that WG-8 is resistant
to the most common attacks against stream ciphers. Moreover, the software im-
plementations on low-power microcontrollers demonstrate the high performance
and low energy consumption of the WG-8 stream cipher, when compared to most
of previous block ciphers and stream ciphers. Therefore, the stream cipher WG-8
is a competitive candidate for securing pervasive embedded applications.

References

1. Atmel Corporation, ATmega128(L): 8-bit Atmel Microcontroller with 128 KBytes
In-System Programmable Flash (2011),
http://www.atmel.com/Images/doc2467.pdf

2. Atmel Corporation, Atmel Studio 6 – The Integrated Development Environment
(2012), http://www.atmel.com/microsite/atmel_studio6/

3. Babbage, S., Dodd, M.: The Stream Cipher MICKEY 2.0, ECRYPT Stream Cipher
(2006), http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf

4. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

5. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

6. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

7. De Cannière, C., Preneel, B.: Trivium – A Stream Cipher Construction In-
spired by Block Cipher Design Principles. ECRYPT Stream Cipher (2005),
http://www.ecrypt.eu.org/stream/papersdir/2006/021.pdf

8. Chen, L., Gong, G.: Communication System Security. Chapman & Hall/CRC, Boca
Raton (2012)

9. Chepyzhov, V.V., Johansson, T., Smeets, B.: A Simple Algorithm for Fast Correla-
tion Attacks on Stream Ciphers. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978,
pp. 181–195. Springer, Heidelberg (2001)

10. Courtois, N.T.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer,
Heidelberg (2003)

http://www.atmel.com/Images/doc2467.pdf
http://www.atmel.com/microsite/atmel_studio6/
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/021.pdf


WG-8: A Lightweight Stream Cipher 631

11. Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

12. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

13. Driessen, B., Hund, R., Willems, C., Paar, C., Holz, T.: Don’t Trust Satellite
Phones: A Security Analysis of Two Satphone Standards. In: The 33th IEEE Sym-
posium on Security and Privacy - S&P 2012, pp. 128–142 (2012)

14. Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., Uhsadel, L.: A Survey of
Lightweight-Cryptography Implementations. IEEE Design & Test of Computers
24(6), 522–533 (2007)

15. Engels, D., Fan, X., Gong, G., Hu, H., Smith, E.M.: Hummingbird: Ultra-
Lightweight Cryptography for Resource- Constrained Devices. In: Sion, R., Curt-
mola, R., Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) RLCPS,
WECSR, and WLC 2010. LNCS, vol. 6054, pp. 3–18. Springer, Heidelberg (2010)

16. Engels, D., Saarinen, M.-J.O., Schweitzer, P., Smith, E.M.: The Hummingbird-2
Lightweight Authenticated Encryption Algorithm. In: Juels, A., Paar, C. (eds.)
RFIDSec 2011. LNCS, vol. 7055, pp. 19–31. Springer, Heidelberg (2012)

17. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES Implementation on a Grain of
Sand. IEE Proceedings Information Security 15(1), 13–20 (2005)

18. Gong, Z., Nikova, S., Law, Y.: KLEIN: A New Family of Lightweight Block Ciphers.
In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer,
Heidelberg (2012)

19. Gong, G., Rønjom, S., Helleseth, T., Hu, H.: Fast Discrete Fourier Spectra Attacks
on Stream Ciphers. IEEE Transactions on Information Theory 57(8), 5555–5565
(2011)

20. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED Block Cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

21. Hell, M., Johansson, T., Meier, W.: Grain: A Stream Cipher for Constrained En-
vironments. International Journal of Wireless and Mobile Computing 2(1), 86–93
(2007)

22. Kaps, J.-P.: Chai-tea, Cryptographic Hardware Implementations of xTEA. In:
Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365,
pp. 363–375. Springer, Heidelberg (2008)

23. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: A
Block Cipher for IC-Printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)

24. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

25. Liu, D., Yang, Y., Wang, J., Min, H.: A Mutual Authentication Protocol for RFID
Using IDEA, Auto-ID Labs White Paper, WP-HARDWARE-048 (March 2009),
http://www.autoidlabs.org/uploads/media/AUTOIDLABS-WP-HARDWARE-048.pdf

26. Luo, Y., Chai, Q., Gong, G., Lai, X.: WG-7: A Lightweight Stream Cipher with
Good Cryptographic Properties. In: IEEE Global Communications Conference –
GLOBECOM 2010, pp. 1–6 (2010)

27. Meier, W., Staffelbach, O.: Fast Correlation Attacks on Certain Stream Ciphers.
Journal of Cryptology 1(3), 159–176 (1989)

http://www.autoidlabs.org/uploads/media/AUTOIDLABS-WP-HARDWARE-048.pdf


632 X. Fan, K. Mandal, and G. Gong

28. Meiser, G., Eisenbarth, T., Lemke-Rust, K., Paar, C.: Efficient Implementation of
eSTREAM Ciphers on 8-bit AVR Microcontrollers. In: International Symposium
on Industrial Embedded Systems – SIES 2008, pp. 58–66 (2008)

29. Nawaz, Y., Gong, G.: WG: A Family of Stream Ciphers with Designed Randomness
Properties. Information Science 178(7), 1903–1916 (2008)

30. Orumiehchiha, M.A., Pieprzyk, J., Steinfeld, R.: Cryptanalysis of WG-7: A
Lightweight Stream Cipher. Cryptography and Communications 4(3-4), 277–285
(2012)

31. Osvik, D.A., Bos, J.W., Stefan, D., Canright, D.: Fast Software AES Encryption.
In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 75–93. Springer,
Heidelberg (2010)

32. Otte, D.: AVR-Crypto-Lib (2012),
http://www.das-labor.org/wiki/AVR-Crypto-Lib/en

33. Poschmann, A.: Lightweight Cryptography – Cryptographic Engineering for a Per-
vasive World, Ph.D. Thesis, Department of Electrical Engineering and Information
Science, Ruhr-Universitäet Bochum, Bochum, Germany (2009)

34. Rønjom, S., Helleseth, T.: A New Attack on the Filtering Generator. IEEE Trans-
actions on Information Theory 53(5), 1752–1758 (2007)

35. Rowley Associates, CrossWorks for MSP430 (2012),
http://www.rowley.co.uk/msp430/

36. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An Ultra-Lightweight Blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

37. Siegenthaler, T.: Decrypting a Class of Stream Ciphers Using Ciphertext Only.
IEEE Transactions on Computers 34(1), 81–85 (1985)

38. Texas Instuments Inc., MSP430F15x, MSP430F16x, MSP430F161x Mixed Signal
Microcontroller (2011), http://www.ti.com/lit/ds/symlink/msp430f1611.pdf

39. Verdult, R., Garcia, F.D., Balasch, J.: Gone in 360 Seconds: Hijacking with Hitag2.
In: The 21st USENIX Security Symposium - USENIX Security 2012, pp. 237–252.
USENIX Association (2012)

40. Wu, H., Preneel, B.: Chosen IV Attack on Stream Cipher WG, ECRYPT Stream
Cipher Project Report, 2005/045, http://cr.yp.to/streamciphers/wg/045.pdf

http://www.das-labor.org/wiki/AVR-Crypto-Lib/en
http://www.rowley.co.uk/msp430/
http://www.ti.com/lit/ds/symlink/msp430f1611.pdf
http://cr.yp.to/streamciphers/wg/045.pdf

	WG-8: A Lightweight Stream Cipher for Resource-Constrained Smart Devices

	for Resource-Constrained Smart Devices
	1 Introduction
	2 The Lightweight Stream Cipher
	2.1 Preliminaries
	2.2 The Description of the Stream Cipher
	2.3 Randomness Properties of the

	3 Cryptanalysis of the Stream Cipher
	3.1 Algebraic Attack
	3.2 Correlation Attack
	3.3 Differential Attack
	3.4 Cube Attack
	3.5 Distinguishing Attack
	3.6 Discrete Fourier Transform Attack
	3.7 Time-Memory-Data Tradeoff Attack

	4 Efficient Implementation of the Stream Cipher
	4.1 Implementation of the
	4.2 Implementation of the Trace Computation Module Tr(.)

	4.3 Implementation of the Multiplication by
	4.4 Implementation Platforms and Development Tools
	4.5 Experimental Results and Comparisons

	5 Conclusion
	References




