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Abstract. Firewalls are the frontier defense in network security. Fire-
walls provide a set of rules that identify how to handle individual data
packets arriving at the network. Firewall configuration is increasingly be-
coming difficult. Filter properties called anomalies hint at possible con-
flicts between rules. An argumentation framework could provide ways
of handling such conflicts. Verification of a firewall involve finding out
whether anomalies exist or not. Reconfiguration involves removing crit-
ical anomalies discovered in the verification phase. In this paper, we
show how a Defeasible Logic Programming approach with an underly-
ing argumentation based semantics could be applied for verification and
reconfiguration of a firewall.

Keywords: Defeasible Logic Programming, stateless firewall, stateful
firewall, anomaly, argumentation.

1 Introduction

Firewalls are the frontier defense in network security. Firewalls filter out un-
wanted packets coming from or going to the secured network. Firewall rules are
specified in order of priority and are of the form:

<order> : if <network-conditions> take <action>
However, managing firewall configuration is increasingly becoming complex. Er-
rors in firewall configuration includes conflict among the existing rules, failing to
specify all the required rules that enforce a certain level of security, inappropriate
rule ordering, invalid syntax etc. The complexity and interdependency of policy
rules makes firewall policy management a challenging task; continuous evolu-
tion of networks making it even more difficult. Filter properties called anomalies
that hint at possible misconfiguration have therefore been introduced by Net-
work Management researchers [1]. Verification of a firewall involves finding out
whether anomalies exist or not. Anomalies make a firewall do not conform to the
policy specification [2]. Reconfiguration of a firewall involves removing critical
anomalies discovered in the verification phase.
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Formal methods have been used in firewall anomaly detection. Considerable
work on approaches based on logic has been undertaken. A formal logic in un-
derstanding meaning of firewall rules was proposed [3]. One of the earliest ap-
proach proposed in [4] represents firewall rule sets as Binary Decision Diagrams
(BDDs), allowing the rule set to be analysed as boolean expressions. Similar to
this, Multi Terminal Interval Decision Diagrams were used [12] to enable efficient
packet classification. [7] presented a tool based on constraint logic programming
(CLP) for analyzing firewall rules. More recently, firewalls anomalies are being
seen as spatial properties. Thanasegaran et al [11] explored the spatial relation-
ships amongst rules in a bit-vector based spatial calculus, BISCAL to detect
and classify the conflicts. Villemaire and Hallé [8] and Hazarika [10] showed that
the condition part of a rule in a rule-based firewall can be viewed as a spatial
region while their sequential application lends a temporal aspect. With this no-
tion they introduced spatio-temporal logics for firewalls; anomalies are properties
within the logic. Model-checking such properties can account for anomalies in
a firewall. [9] proposed a logic based on notions related to visibility for defin-
ing firewall anomalies. [5] describes technique based on argumentation for Logic
Programming with Priorities. [6] use a system of meta-level argumentation for
firewall configuration and resolving conflict.

In this paper, we show how defeasible argumentation could be applied in the
firewall domain to yield interesting results through representation and reasoning
about conflicts and reconfiguration. Our work differs from previous approaches
using argumentation [5,6], as we express firewall properties within a defeasible
logic in order to explore defeasibility in firewall policy. Defeasible rules are de-
fined as rules that provide a weak link liable to defeat or overrule by some rule
after all has been considered; e.g. check a rule for anomaly if only it is causing
conflict with some rule in the rules set. It is unnecessary to go and check each
rule for anomaly. Under a consideration that each rule is conflict free unless it is
defeated by some conflict; we show how Defeasible Logic Programming (DeLP)
could be exploited for validation and reconfiguration of a firewall.

2 Background: DeLP and Firewall Anomalies

2.1 Defeasible Logic Programming

DeLP [15] is an alternative form of declarative programming. DeLP is a blend of
Logic Programming with Defeasible Argumentation, allowing representation of
tentative knowledge and leaving for the inference mechanism the task of finding
the conclusions that the knowledge base warrants. Two kinds of rules considered
by DeLP, makes it different from Logic Programming, from which it inherits
the formal characterization of programs as sets of rules. The rules considered in-
clude strict rules and defeasible rules. Strict rules are assumed to represent sound
knowledge. Defeasible rules are assumed to represent tentative knowledge which
may be defeated by other information. DeLP functions by answering queries (Q).
Warranted arguments constructed using rules and facts (considered as special
cases of strict rules) specify the answer to the query. An answer is yielded by
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the inference mechanism based on the warrant procedure that is run upon gen-
eration of all the possible arguments. The generated arguments may support or
contradict the query Q. The characteristic warrant procedure of DeLP, based on
Defeasible Argumentation, enables comparison as well as selection of only one
of the two contradicting arguments.

Definition 1. Defeasible Logic Program: A Defeasible Logic Program P is a set
(Π,Δ), where Π stands for the union of strict rules ΠR and facts ΠF; Δ denotes
defeasible rule. Strict Rules are rules in the classical sense, i.e., whenever the
permission of the rules is given, we are allowed to apply the rule and get the
conclusion. Strict rule are of the form p ← q1, q2, q3,.., qn−1, qn. Defeasible
Rules are of the form p −≺ q1, q2, q3,.., qn−1, qn. Defeasible Rules are contingent
rules that get defeated by contrary evidence. Facts (strict rules with empty body)
are known truth that are treated as ground literals.

Construction of arguments in DeLP is a result of the literal derivation and pro-
vides a tentative support for the claims. An argument A for a query Q, (denoted
〈A,Q〉) can be considered as a proof for Q where A is a set (possibly empty) of
ground defeasible rules in conjunction with a set that satisfy the additional con-
straints of non-contradiction (i.e.an argument s should not allow the derivation of
contradictory literals) and minimality (i.e., the set of defeasible information used
to derive Q should be minimal). Mechanism similar to the usual query-driven
SLD derivation from logic programming involving backward chaining on both
strict and defeasible rules is used to obtain arguments. Incomplete and tentative
information of a program P may lead to an attack on argument 〈A,Q〉 by other
arguments which may be derived from the same program P . An argument〈B,R〉
is considered to be a counter-argument for 〈A,Q〉 if a subargument 〈A′,Q′〉 (with
A′ belonging to A) in 〈A,Q〉 exists, such that 〈B,R〉 and 〈A′,Q′〉 cannot be ac-
cepted simultaneously as acceptance of both will allow inference of contradictory
conclusions from Π ∪ A′ ∪ B. The attacking argument 〈B,R〉 is termed defeater
for 〈A,Q〉 if 〈B,R〉 is preferred over 〈A′,Q′ 〉. Specificity is the commonly used
criterion, however, other criteria can also be adopted.

A recursive process is prompted by the search for defeaters in DeLP thus
resulting in the formation of a dialectical tree. The original argument at issue
forms the root and every defeater of the root argument forms a children node.
To avoid circular situations during computation of branches in the dialectical
tree additional restrictions are added which guarantee that the tree is finite.
The children nodes in the tree can be marked as defeated (D nodes) or as
undefeated(U nodes). Marking of the dialectical tree is similar to the AND-OR
tree where leaves are always marked as undefeated nodes; inner nodes can be
marked as undefeated or as defeated. An undefeated root (original argument,
〈A,Q〉 ) of the tree, after being subjected to the above process, is deemed as
acceptable or warranted. DeLP solving for a query Q with respect to a given
program P accounts for determining whether Q is supported by a warranted
argument. Given query Q there are four possible answers. ’Yes’ if there is at
least one warranted argumentQ that follows from P .; ’No’ if there is one warrant
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argument for ∼Q; ’Unknown’ if Q is not present in the program; ’Undecided’ if
neither Q nor ∼Q are supported by warranted arguments in P .

To bring home the point of argumentation in DeLP, let us discuss the argu-
mentation of buying a used car. The car is to be brought only if it is in good
condition. The DeLP program has five defeasible rules and three facts.
R1: goodCondition(X) −≺ well maintain(X)
R2: ∼goodCondition(X) −≺ longrun(X)
R3: goodCondition(X)−≺ well maintain(X),longrun(X)
R4: buy(X)−≺car(X),good condition(X)
R5: ∼buy(X) −≺ car(X),∼good condition(X)
F1: car(ford)
F2: well maintain(ford)
F3: longrun(ford)
Rules R1 and R3 represent the good condition of the car, if the car is well main-
tained irrespective of long run. Rule R2 states that car is not in good condition
if it runs long distance. Rules R4 states that we can buy when it is used but
well maintained. Rule R5 represent the scenario when we should not buy the
car. Facts F1, F2 and F3 represents that ford is a well maintained car though it
runs quite a long distance. DeLP program help us to conclude by performing the
query ’buy(ford)’ that we have a warranted argument supporting that we should
buy that car. The dialectical tree is shown in Figure 1. Dialectical tree shows

Fig. 1. Dialectical analysis associated with the query ’buy(ford)’
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how DeLP, which has support for both logical programming and argumentation,
can be used for commonsense reasoning of buying a car.

2.2 Firewall Anomalies

Firewall is a set of ordered filtering rules configured primarily based on predefined
security policy. Table 1 shows an example of a basic firewall policy. Each rule is
formed of a condition and an action. The most common and basic firewall are
based on mainly five fields: protocol, source IP address, source port, destination
IP address, destination port. A rule condition is a set of fields; any fields in IP,
UDP or TCP headers may be used. An action is taken for the packets matching
these fields. Filtering actions are either to accept, which passes the packet or to
deny, which causes the packet to be discarded.

Table 1. A basic firewall policy example.

Order Protocol Source IP Source Port Destination IP Destination Port Action

R1 TCP 150.172.37.20 any *.*.*.* 80 deny
R2 TCP 150.172.37.* any *.*.*.* 80 accept
R3 TCP 150.172.37.[10,30] any 171.120.32.[10,40] 21 accept
R4 TCP 150.172.37.* any 171.120.32.40 80 deny
R5 TCP 150.172.37.30 any *.*.*.* 21 deny
R6 TCP 150.172.37.[30,60] any 171.120.32.[40,80] 21 accept
R7 TCP 150.172.37.[25,45] any 171.120.32.[30,65] 21 deny
R8 TCP *.*.*.* any *.*.*.* any deny
R9 UDP 150.172.37.* any 171.120.32.40 53 accept
R10 UDP *.*.*.* any 171.120.32.40 53 accept
R11 UDP *.*.*.* any *.*.*.* any deny
R12 TCP 150.172.37.[20,80] any *.*.*.* any deny
R13 TCP 150.172.37.[20,35] any 171.120.32.[50,65] 21 accept
R14 TCP 192.168.37.[15,40] any 171.120.32.[150,165] 21 accept
R15 TCP 192.168.37.[25,60] any 171.120.32.[120,155] 21 deny

In order to build a model for intra-firewall anomaly, one need to determine
all relations that may exist between two filtering rules. This has been addressed
among other by [1]; and a set of five relations have been identified. Filtering
policy within a firewall is dependent on the ordering of filtering rules. Note that
for a set of completely disjoint filter rules, the ordering is insignificant. This is
not usually the case and therefore ordering is important. Else, some rules may
always be ‘screened’ by other rules producing an incorrect policy. Intra-firewall
policy anomaly is the existence of such discrepancies. Anomalies are properties
of filters that hint at possible misconfiguration.

3 Formal Characterization

In order to model the firewall within our framework, we derive a formal char-
acterization of the firewall rules and anomalies. Depending on the relation that
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exists between two rules or a combination of rules with another rule, their orders
and their actions, the nature of the anomaly may vary.

Definition 2. A stateless firewall rule of order i, is given as Ri = 〈f1, f2, f3, f4,
f5, Action〉; where each fj is a filtering field. The filtering fields are: protocol,
source IP, source port, destination IP and destination port. Action ∈ {allow,
deny} describes the action to be taken if a packet matches the filtering fields in
the rule.

3.1 Anomalies

Simple Anomalies. The set-theoretic relations between the filtering fields of
two rules enables one to determine all the relations that can exist between two
rules. Al-Shaer et al [1] defined five possible relations that may exist between
filtering rules such that there exists exactly one relation between two rules.
These result in simple anomalies as listed below. Al-Shaer et. al. [1] give formal
definitions of possible anomalies between rules in terms of rule relations.

Definition 3. Simple Shadowing Anomaly: A rule Y is simply shadowed if there
is rule X, preceding Y in firewall rule set, such that all the packets that match Y
already match X and specify incompatible action.

Definition 4. Simple Redundancy Anomaly: A redundant rule X perform same
action on same set of packets as another rule Y; therefore it the redundant rule
is removed, the security policy will not be affected.

Definition 5. Generalization: A rule Y is generalization of a rule X, preceding
Y in firewall rule set, such that all the packets of Y is a superset match of X and
specify incompatible action.

Definition 6. Correlation Anomaly: Rule X and Y are correlated if some fields
of X are subset to corresponding fields in Y.

Second Order Anomalies. Alfaro et al [16] have shown that there could be
anomalies where more than a pair of rules are involved. We refer to these as
second order anomalies.

Definition 7. Second-order generalization: A rule X and a group of rules Y
exhibit second-oder generalization, if decision of rule X is overridden by combi-
nation of later rules Y1 ... Yn .

Definition 8. Second-order shadowing: A rule X and a group of rules Y exhibit
second-oder shadowing, if rule X is shadowed by a combination of later rules Y1

... Yn .
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Intra-state Protocol Anomalies. Apart from the above mentioned anomalies
another type of anomaly viz. intra-state protocol anomalies may be observed in
the stateful filters [17]. This anomaly is basically related to the inner logic of
transport layer protocol states1.

Definition 9. A stateful firewall rule of order i, is given as Ri = (f1, f2, f3,
f4, f5, state, Action) where each fj is a filtering field. The filtering fields are: pro-
tocol, source IP, source port, destination IP and destination port. state ∈ {New,
Establish,Related}. Action ∈ {allow, deny} describes the action to be taken if
a packet matches the filtering fields in the rule.

For example in web applications TCP is used as a transport layer for three way
handshake connection establishment with the server. The following operations
may be distinguished in three way handshake connection scheme to establish
connection between the client and the server.

-To start the connection the client sends a SYN packet to a server at LISTEN
stage;
-The client waits till it receives the proper SYN-ACK packet from the server;
-As and when the client receive the ACK reply from the server, it again sends
back an ACK packet to the server and goes to the ESTABLISHED state of con-
nection.

Table 2. Firewall Rule Table

Rule Protocol SrcIPt SrcPort DestIP DestPort State Action
R1 tcp 192.168.10.[10,20] any 10.1.2.1 80 New, Establish accept
R2 tcp 10.1.2.1 any 192.168.10.[10,20] 80 New deny

The problem occurs, for instance, when the two rules R1 and R2 are present
in the firewall. In this case the client will be able to send the SYN packet to the
server due to the rule R1. Once this initial SYN packet from the client is received
by the firewall it make an entry in the state table and wait for the ACK packet
from the server till timeout. But the ACK packet sent back by the server will be
filtered out by the firewall rule R2. This will always prevent the establishment
of the protocol and will create an overhead in the state table by unnecessarily
occupying an entry. In this scenario either both the rules should deny or accept
the packets.

1 Eventhough, a great amount of work has been done for detection of anomalies in fire-
wall configuration, majority of the methods have been limited to stateless cases c.f.
[1,13]. Few approaches [18] involve description of stateful firewall models. However,
most often than not, this involved straight forward adaptation of the management
processes which were previously designed for stateless firewalls. The principle of the
approach described here is similar to [17], and derives its origin from the specification
of a general automata which describes the different states involved in traffic pack-
ages throughout the filtering processing. In our approach,we use defeasible reasoning
technique to detect and resolve intra state anomaly in case of stateful firewall
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3.2 Anomaly Removal Policies

Given the anomalies stated above, we adopt the following anomaly removal
policies.

Policy 1. Shadowing Anomaly Removal: If rule Y is shadowed by X. Swap
between two rules to remove the shadowing anomaly without affecting firewall
policy. From Table 1,we can find that Rules R4 is shadowed by Rule R2.To
remove shadow anomaly,we should swap their poistion R2 and R4 in rule set If
rule Y is shadowed by set of rules Xi ,Xi+1 , . . .Xj such that i<j, placing the rule
Y above Xi removes shadowing anomaly. For instance from Table 1 , combination
of R3 and R6 shadows R7,therefore to remove the anomaly we have to swap the
position and rule set.

Policy 2. Redundancy Anomaly Removal: If rule Y is redundant with X. De-
pending on various conditions, following actions are required

a. If rule X exactly match with rule Y, then we can remove rule X. Removal of
rule will not affect the underlying security policy.

b. If rule Y is a subset of X, then security policy will not be affected by removal
of Y.

c. If rule Y is redundant with set of rules Xi, Xi+1, . . . Xj such that i < j, then
remove Y.
This may be elucidated by the following example from Table 1.If Rule R13
is a subset of Rule R3 and R6 then the rule set fire wall policy will remain
unaffected if we remove Rule R13.Similarly R5 can be removed from rule set
without effecting firewall policy as R5 is a subset of R12.

Policy 3. Correlated Anomaly Removal: If rule X is correlated with Y, then we
needed to split the overlapping portion of the rule X and Y to construct a new
rule . For Example,to remove the correlated anomaly existing between R14 and
R15 we split the rule into three different rules such that the overlapping portion
is transformed into a new rule Rule new and the unintersecting part of the two
rules R14 and R15 are termed as R14NEW and R15NEW respectively.

Policy 4. Protocol Anomaly: If there is a protocol anomaly between rule X and
Y. It can be resolved by the following steps:

a. If we find protocol anomaly rule pairs in firewall, then we compare the risk
value of the destination hosts; preference will be given to the action associated
with the destination with greater risk value.

b. If risk value of both the host are equal then priority of both the host are con-
sidered; preference will be given to the action associated with the destination
with greater priority value.

For example in above scenario hosts A and B have priority values pi and pj
respectively in such a way that pi < pj . In that case the action of the rule where
B is the destination will replace the action of the rule where A is the destination.
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Fig. 2. Corelated Rule Spliting: R14NEW ; R15NEW and rule for overlap portion to
replace R14 and R15

4 Using DeLP for Verification and Reconfiguration

4.1 DeLP Based Architecture

Figure 3 presents a framework for anomaly detection and removal using de-
feasible argumentation. A Rule Relation Analysis Engine (RRAE) determines
the relation between the filtering fields of the rules to derive the ground facts.
Anomaly detection and anomaly removal is through DeLP program specifically
written for each. These DeLP program are interpreted over a DeLP Interpreter2

A Rule Analysis and Reconfiguration Engine (RARE) queries the DeLP Inter-
preter.

Generating the Ground Facts. RRAE generates the facts either through
pairwise interaction of fields of the rules OR through a nested operation when
correlated rules exists. The basic firewall rule relation provision (Definition 10),
specifies the set of ground literals for the defeasible logic program. This is for
detection of simple anomalies.

Definition 10. A basic firewall rule relation provision is a four tuple 〈R, R̄,
δ,ΠF〉 where, R = (R1 . . . Rn) is the set of n rules in the firewall; R̄ = (Ri+1 . . .
Rn) for every Ri from R, i � 1. δ maps set-theoretic relations between each field
of Ri and Rj; i < j � n; Rj ∈ R (ground facts) to ΠF.

For second order anomalies, we would generate the relation between a set of
correlated rules and a third rule. This is stated by the following formal charac-
terization of another firewall rule relation provision.

Definition 11. A secondary firewall rule relation provision is a four tuple
〈R,CR,P, δ,ΠF〉 where, R = (R1 . . . Rn) is the set of n rules in the firewall;
CR = (CR1 . . . CRn−1), where CRi is the set of correlated rule pairs of Ri in

2 The DeLP Interpreter used here has been developed at LIDIA Universidad Nacional
del Sur, Bahia Blanca, Argentina.
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Fig. 3. Architecture of the DeLP Based Verification and Reconfiguration Framework

R i.e., CRi = {Rj . . . Rm}(j > i;m ≤ n). P is the set of linear combination of
elements of each CRi i.e, P = {Ri∪Rj , Ri∪Rj ∪Rj+1, . . . , Ri∪∪Rj . . .∪Rm}.
δ maps set-theoretic relations (ground facts) between each field of elements of P
and Rk ∈ R; where Rk is after Rm (i.e., k ≥ m+ 1; Rk, Rm ∈ R.

Suppose rule Ri and Rj where i<j represent two rules in a firewall rule set.
P=(Π, �) represent the defeasible program in context of rule Ri and Rj where
Π is the set of facts representing relation between corresponding fields. � is
the set of defeasible rules to detect anomaly between Ri and Rj. We perform
Q = 〈∼conflictfreerule(Ri)〉 on P . If answer for Q is 〈yes〉 then we run a query
sequence Qs =〈 shadowing(Ri ,Rj), redundant(Ri,Rj), correlated (Ri,Rj), gen-
eralization (Ri,Rj), protocolanomaly(Ri,Rj) 〉. To illustrate the working of the
DeLP framework, we present below representative queries, one each for detection
and reconfiguration. Without loss of generality, these are based on the example
firewall in Table 1 and Table 2.

Example 1. For query 〈∼conflictfreerule(R2)〉; Argument A1 is undefeated
by A2 and A3. Argument A1 is attacked by argument A2 which is properly
defeated by A 1. On the other hand A1 is blocking defeater of A3. As seen from
the dialectical tree in Figure 4, answer for query 〈∼conflictfreerule(R2)〉 is yes.
Answer for query 〈shadowing(R2,R4)〉 is ’yes’; argument A4 defeat A5 properly.
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Table 3. Δ1: Defeasible Rule Table for Verification

Rule
conflictfreerule(X)≺validrule(X)

∼conflictfreerule (X)−≺ redundant(X,Y),validrule(X)
∼conflictfreerule (X)−≺ shadowing(X,Y),validrule(X)
∼conflictfreerule (X)−≺ correlated(X,Y),validrule(X)
∼conflictfreerule (X)−≺ generalization(X,Y),validrule(X)
∼conflictfreerule (X)−≺ protocolanomaly(X,Y),validrule(X)

validrule(X) ← hasprotocol(X),hassourceip(X),hasdestinationip(X),
hasdestinationport(X),hassourceport(X),hasaction(X)

redundant(X,Y)−≺equalprotocol(X,Y),subsetsrcip(X,Y),subsetdestip(X,Y),
subsetsrcport(X,Y),subsetdestport(X,Y),equalaction(X,Y)

shadowing(X,Y) −≺ equalprotocol(X,Y),subsetsrcip(X,Y),subsetdestip(X,Y),
subsetsrcport(X,Y),subsetdestport(X,Y),differentaction(X,Y)

∼shadowing(X,Y) −≺ correlated(X,Y)
correlated(X,Y)−≺ equalprotocol(X,Y),subsetsrcip(X,Y),

subsetsrcport(X,Y),differentaction(X,Y)
correlated(X,Y)−≺ equalprotocol(X,Y),subsetdestip(X,Y),

subsetdestport(X,Y),differentaction(X,Y)
correlated(X,Y)−≺equalprotocol(X,Y),subsetsrcip(X,Y),subsetsrcport(X,Y),

subsetdestip(X,Y),differentaction(X,Y)
correlated(X,Y)−≺ equalprotocol(X,Y),subsetdestip(X,Y),subsetdestport(X,Y),

subsetportip(X,Y),differentaction(X,Y)
generalization(X,Y)−≺ equalprotocol(X,Y),supersetsrcip(X,Y),supersetdestip(X,Y),

supersetsrcport(X,Y),supersetdestport(X,Y)
protocolanomaly(X,Y)−≺ equalprotocol(X,Y),srcdestip(X,Y),

destsrcip(X,Y),differentaction(X,Y)

A1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∼ conflictfreerule(R2)−≺shadowing(R2, R4),

validrule(R2)

shadowing(R2, R4)−≺equalprotocol(R2, R4),

subsetsrcip(R2, R4), subsetdestip(R2, R4),

subsetsrcport(R2, R4), subsetdestport(R2, R4),

differentaction(R2, R4)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

A2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∼ shadowing(R2, R4)−≺correlated(R2, R4)

correlated(R2, R4)−≺equalprotocol(R2, R4),

subsetsrcip(R2, R4), subsetsrcport(R2, R4)

differentaction(R2, R4)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

A3 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

conflictfreerule(R2)≺validrule(R2)

validrule(R2)−≺hasprotocol(R2)

hassourceip(R2), hasdestinationip(R2),

hasdestinationport(R2), hassourceport(R2)

hasaction(R2)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
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Fig. 4. DeLP dialectical tree on the left support the conclusion that rule R2 is not
conflictfree; whereas the DeLP dialectical tree on the right support the conclusion
’shadowing(R2,R4)’.

A4 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

shadowing(R2, R4)−≺equalprotocol(R2, R4)

subsetsrcip(R2, R4), subsetdestip(R2, R4),

subsetsrcport(R2, R4), subsetdestport(R2, R4)

differentaction(R2, R4)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

A5 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∼shadowing(R2, R4)−≺correlated(R2, R4)

correlated(R2, R4)−≺equalprotocol(R2, R4),

subsetsrcip(R2, R4), subsetsrcport(R2, R4),

differentaction(R2, R4)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

4.2 DeLP for Anomaly Removal

The defeasible program P2(Π,�2) is used to remove anomalies among rules in
the firewall rule set. Whenever ’∼conflictfreerule’ is true, we have information
about type of anomaly. Depending on the ’type’ we have different reconfiguration
policies which is reflected in the rule set in Table 4. Associated information with
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regards to ’type’ of anomaly such as ’risk value’ and ’priority’ between rules is
used here analogous to ’contextual query’ of [14].

Table 4. Δ2: Defeasible Rule Table for Reconfiguration

Rule
split (X)−≺ reconfigure(X),correlated(X,Y)

split (X)−≺ reconfigure(X),correlated(X,Y),groupofRule(X)
remove (X)−≺ reconfigure(X),redundant(X,Y)

∼remove (X)−≺ reconfigure(X),redundant(X,Y),subset(X,Y)
remove (Y)−≺ reconfigure(X),redundant(X,Y),subset(X,Y),∼remove (X)

remove (X)−≺ reconfigure(X),redundant(X,Y),subset(Y,X)
remove (X)−≺ reconfigure(X),redundant(X,Y),equal(X,Y)
∼remove (Y)−≺ reconfigure(X),redundant(X,Y),subset(X,Y)
∼remove (X)−≺ reconfigure(X),redundant(X,Y),equal(X,Y)
changeaction(X)−≺ reconfigure(X),protocolanomaly(X,Y)

∼changeaction(X)−≺ reconfigure(X),protocolanomaly(X,Y),riskvaluegreater(X,Y)
changeaction(Y)−≺ reconfigure(X),protocolanomaly(X,Y),riskvaluegreater(X,Y),∼changeaction(X)

changeaction(X)−≺ reconfigure(X),protocolanomaly(X,Y),riskvalueequal(X,Y)
changeaction(Y)−≺ reconfigure(X),protocolanomaly(X,Y),
riskvalueequal(X,Y),prioritygreater(X,Y),∼changeaction(X)

reconfigure(X)−≺ ∼conflictfreerule (X)
∼reconfigure(X)−≺ ∼conflictfreerule (X),generalization(X,Y)

Example 2. Reconfiguration of rule R1 depends on whether it is involved in
conflict with any other rules or the type of conflict it is involved in. For query
<reconfiguration(R1)> answer is no as argument A6 is properly defeated by
argument A7. See dialectical tree in Figure 5. Dialectical tree on the left sup-
port to conclude that eventhough ’∼conflictfreerule’ is true, in presence of ’gen-
eralization’, ’∼reconfigure’ is warranted. Similarly dialectical tree on the right
supports the conclusion that rule R12 need not be ’remove’ eventhough ’re-
dundant(R12,R5)’ is true; whereas ’remove(R5) is warranted. Answer for query
<remove(R5)> is yes as argument A8 is defeated by A9 which is defeated by
A10. Since defeater for A10 is not present, A9 is reinstated.

A6 =
{
reconfigure(R1)−≺∼conflictfreerule(R1)

}

A7 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∼reconfigure(R1)−≺∼conflictfreerule(R1),

generalization(R1, R2)

generalization(R1, R2)−≺equalprotocol(R1, R2),

supersetsrcip(R1, R2), supersetdestip(R1, R2),

supersetsrcport(R1, R2), supersetdestport(R1, R2)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

A8 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

remove(R5)−≺reconfigure(R12),

redundant(R12, R5), subset(R12, R5),

∼remove(R12)

reconfigure(R12)−≺∼conflictfreerule(R12)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
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Fig. 5.DeLP dialectical tree on the left supporting the conclusion that rule R1 need not
be ’reconfigure’. DeLP dialectical tree on the right showing ’remove(R5)’ is warranted.

A9 =

⎧
⎪⎨

⎪⎩

remove(R12)−≺reconfigure(R12),

redundant(R12, R5)

reconfigure(R12)−≺∼conflictfreerule(R12)

⎫
⎪⎬

⎪⎭

A10 =

⎧
⎪⎨

⎪⎩

remove(R12)−≺reconfigure(R12),

redundant(R12, R5), subset(R12, R5)

reconfigure(R12)−≺∼conflictfreerule(R12)

⎫
⎪⎬

⎪⎭

5 Summary and Final Comments

We have discussed how a DeLP approach with an underlying argumentation
based semantics could be applied for verification and reconfiguration of a fire-
wall. We have demonstrated with illustrative examples that the DeLP based
architecture is capable of performing firewall analysis. Firewall anomalies iden-
tified in the literature can be automatically detected. DeLP uses argumentation
reasoning and exhibit rules that support a conclusion; leading to identification
of source of anomalous configuration of the firewall. Further, under a given set of
anomaly resolution policies, firewalls can be automatically reconfigured without
violation of initial firewall policies. Defeasible argumentation in reconfiguration
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recommends the action regarding how to resolve conflicts by considering differ-
ent facts associated with the rules. Table 5 shows the firewall of Table 1 after
verification and reconfiguration.

Table 5. Firewall after verification and reconfiguration

Order Protocol Source IP Source Port Destination IP Destination Port Action

R1 TCP 150.172.37.20 any *.*.*.* 80 deny
R4 TCP 150.172.37.* any 171.120.32.40 80 deny
R7 TCP 150.172.37.[25,45] any 171.120.32.[30,65] 21 deny
R3 TCP 150.172.37.[10,30] any 171.120.32.[10,40] 21 accept
R2 TCP 150.172.37.* any *.*.*.* 80 accept
R6 TCP 150.172.37.[30,60] any 171.120.32.[40,80] 21 accept
R8 TCP *.*.*.* any *.*.*.* any deny
R9 UDP 150.172.37.* any 171.120.32.40 53 accept
R10 UDP *.*.*.* any 171.120.32.40 53 accept
R11 UDP *.*.*.* any *.*.*.* any deny
R12 TCP 150.172.37.[20,80] any *.*.*.* any deny

R14NEW TCP 192.168.37.[15,25] any 171.120.32.[155,165] 21 accept
R15 NEW TCP 192.168.37.[40,60] any 171.120.32.[120,150] 21 deny
RNEW TCP 192.168.37.[26,39] any 171.120.32.[151,154] 21 deny

In context of defeasible argumentation, the work presented here follow the
general idea of an argumentative framework as in [15]. As far as our knowledge
this is the first adaptation of an argumentation framework for verification and
reconfiguration of a firewall. This is worthwhile for the very fact that the main
advantage of this approach is the ability of defeasible argumentation to deal with
the exponentially increasing size of the firewall policy by reducing unnecessary
checks. We have a prototype implementation. The implementation of the sys-
tem was developed using primarily Java 1.6. This includes many new features
of the language including enhance version of collection framework, performance,
network interface and serialization which are extensively used in our implemen-
tation. Swing is used for development of user interface. Eclipse IDE is used for
development of java programs. For defeasible argumentation an abstract machine
called Justification Abstract Machine (JAM)3 is used.

The present work is limited to detection and reconfiguration of intra-firewall
anomalies. We envisage that a defeasible argumentative framework can be effec-
tively used for verification and reconfiguration of inter-firewall anomalies, i.e.,
anomalies arising out of two or more firewalls operating together in a network.
Such a framework could be along the lines of meta-level argumentation [6]. This
is part of ongoing research.

3 JAM was specially developed by LIDIA Universidad Nacional del Sur(Bahia
Blanca,Argentina) for efficient implementation of DeLP. It is available online.
(http://lidia.cs.uns.edu.ar/delp_client) [15].

http://lidia.cs.uns.edu.ar/delp_client
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