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Abstract. The structural complexity and overall performance   of the adaptive 
filter depend on its structure. The number of taps is one of the most important 
structural parameters of the liner adaptive filter. In practice the system length is 
not known a-priori and has to be estimated from the knowledge of the input and 
output signals. In a system identification framework the tap length estimation 
algorithm automatically adapts the filter order to the desired optimum value 
which makes the variable order adaptive filter a best identifier of the unknown 
plant. In this paper an improved pseudo-fractional tap-length selection 
algorithm has been proposed to find out the optimum tap-length which best 
balances the complexity and steady state performance. Simulation results reveal 
that the proposed algorithm results in reduced complexity and faster 
convergence in comparison to existing tap-length learning methods.  

Keywords: Adaptive filter, tap-length, structure adaptation, least mean square 
(LMS), system identification, mean square error (MSE). 

1 Introduction 

Inherent stability and tapped delay line (TDL) feed forward structure makes finite 
impulse response (FIR) adaptive filter widely popular than its infinite impulse 
response (IIR) counterpart [1], [2]. IIR system is preferred due to its less 
computational complexity [1]. An FIR system has a finite impulse so an ideal tap-
length can be selected to match the system order in an identification application. 
Whereas the infinity impulse response of an IIR system used in a system 
identification framework makes the tap-length of the adaptive filter critical one to best 
adjust the system performance. The performance of the TDL structure of the adaptive 
filter in which the weights/tap-coefficients are recursively updated by adaptive 
algorithm such as the least mean square (LMS), recursive least square (RLS) is highly 
affected by the filter order or in other words the tap-length selection [3]. The LMS 
algorithm has been extensively used in many applications because of its simplicity 
and robustness [1]. A too short order filter results in inefficient model of the system 
and increases the mean square error (MSE) [4], [5]. In principle minimum MSE 
(MMSE) is a monotonic non increasing function of the filter order but it is not 
advisable to have a too long order filter as it introduce adaptation noise and extra 
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complexity due to more taps [6]-[9]. Therefore to balance the adaptive filter 
performance and complexity there should be an optimum order of the filter. More 
relevant work was proposed in [10] where the filter is partitioned into segments and 
order is adjusted by one segment either being added or removed from the filter 
according to the difference of the output errors from the last two segments. This 
algorithm suffers from the drawback of carefully selecting the segment parameters 
and use of absolute error rather than MSE i.e. to solve the problem of suitable tap-
length estimation it creates another issue of selecting the proper length of the 
segment.  

The fractional tap-length LMS (FT-LMS) algorithm was first proposed in [6]-[8] 
relaxing the constraint that the filter order must be an integer. This fractional order 
estimation procedure retains the advantage of both segmented filter and gradient 
decent algorithm and has less complexity than the previously proposed methods. But 
it suffers from noise level and parameter variation due to unconstrained and random 
use of the leaky factor and step size used for order adaptation [11], [12]. An improved 
variable tap-length variable step LMS (VT-VLMS) algorithm produces better 
convergence and steady state error performance than the FT-LMS algorithm [11], 
[13]. But it depends on a careful selection of leaky factor which controls the overall 
tap-length adaptation. This algorithm [11], [13] is found to be more suitable for the 
echo cancellation applications with the parameter guidelines it suggest. In this paper a 
new gradient search method based on the pseudo-fractional order estimation 
technique is proposed which finds the optimum filter order dynamically with a 
modified tap-length learning procedure. The filter order can be increased to and 
decreased from any value to achieve the desired tap-length for structure adaptation. 
There should be a trade-off between a suitable steady state tap-length and 
convergence rate. The steady state performance analysis of the proposed algorithm 
shows the importance of variable error width parameter. The proposed algorithm 
shows better performance both in convergence as well as MSE in comparison to the 
famous FT-LMS [6] and VT-VLMS algorithm [11]. It reduces the overall design 
complexity and hence proves to be a cost saving design. 

The paper is organized as follows. The tap-length optimization with an improved 
pseudo-fractional tap-length selection algorithm has been proposed in Section-2. In 
Section-3 the computer simulation setup has been designed both for FIR and IIR 
system identification frameworks. The results and discussion are given in Section-4.  

2 Pseudo-fractional Tap-Length Optimization 

Selecting the tap-length for any system identification frame work is not a trivial task. 
The selection depends on the nature of the system to be identified, memory 
requirement, desired performance, computational complexity, noise level and 
parameter variation etc. For example, in a multiuser acoustic echo cancellation 
arrangement the optimum tap-length may vary with the variation in time as echo 
length keeps changing due to the users entering and leaving the room/system [9]. In 
most filter designs unfortunately the tap-length is fixed at some fixed value creating 
the problem of too short and too long filters. 



 Reduced Complexity Pseudo-Fractional Adaptive Algorithm 453 

 

In LMS based algorithms the stability condition needs to be checked each time the 
order changes. So it is advocated to use the normalized LMS (NLMS) algorithm for 
better convergence and constant level of misadjustment [2]. 
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Here μ   is the step size for NLMS algorithm. NLMS converges to mean square for 

condition [1], 0<  μ  <2.                            

In the proposed approach NLMS is used which provides inherent stability and 
robustness again the modification to it improves the convergence [11], 
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where μ′ is a constant, )()(2 nXnX T
X =σ is the variance of input signal. )( nP is 

the instantaneous variable adaptive tap-length obtained from the proposed fractional 

order estimation algorithm. ( ) ( ),P n P nW X are the weight and input vector pertaining to 

the order )(nP .  
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where  ( ), ( )
Opt optP PW n X n   are the weight and input vector pertaining to optimum tap-

length OptP  and ( )t n is the system noise.       
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Then (2) can be written as  
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which forms a variable step  NLMS (VNLMS) algorithm where the step size depends 
on the order estimation. If the difference of the MSE output of any two consecutive 
taps of the adaptive filter falls below a very small positive value, when the tap-length 
is increased, then it can be concluded that adding extra taps added to the present order 

do not reduce the MSE. Let us define )()(1 ∞−∞=Δ − PPP JJ  as the difference between the 

converged MSE when the filter order is increased from P-1 to P. Now the optimum 

order can be defined as P that satisfies,  

                   δ≤ΔP           for  all P P>             (7) 

where δ is a very small positive number set pertaining to the system requirement. The 
cost function for tap-length selection can be defined as 1min{ | }P PP J J δ− − ≤ .The 

issue of false optimum tap-length sometimes creates confusion in the search of 
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desired optimum filter length. These pseudo tap-lengths can be defined as follows.  
Let there exist a positive integer L that satisfies, 

           PL<   and δ<ΔL                                         (8) 

where L is called the pseudo-optimum filter order . If the above condition is satisfied 
by a group of concatenated integer L, L+1,.……. L+S-1 then S+1 is called the width 
of the pseudo-optimum filter order. These taps satisfies the optimality condition but 
cannot be treated as the optimal filter order as it under model the system.  The issue of 
this pseudo-optimum tap-length can be removed by choosing a variable error width 
Δwhich is shown later in this section. 

The steady state MSE is not available usually and can be found out by exponential 
averaging, 

             )()1()1()1( 2 nJHneHnJ ++−=+                                  (9) 

where H  is the smoothing constant which control the effective memory of the 
iterative process. A smoothed estimated error can be obtained from, 
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where n is the time index, OptP  is the optimum suitable selection of tap-length. f is a 

forgetting smoothing factor which can be evaluated as, 
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 where ( )P nΔ is the variable error spacing parameter which has been evaluated in the 

next section, max min( , )Δ Δ can be set according to the system requirements. 

The MSE can be written as the sum of excess MSE (EMSE) and the system noise as, 
2 2 2
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where ( )exJ n is the EMSE which is used in updating the iteration parameter as it 

increases to large value in the early stage and later decreases to small value with the 
variation in tap-length. The performance of the squared smoothed estimated error can 
be simplified at the steady state as, [16] 
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where it is assumed that the error signal approximates to the system noise at the 
steady state. Now the algorithm for tap-length adaptation in a time varying 
environment can be defined as, 

      2 2
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Finally the tap-length ( 1)P n + in the adaptation of filter weights for next iteration 

can be formulated as follows, [11] 
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( )nfP n  is the tap-length which can take fractional values. As the actual order of the 

adaptive filter cannot be a fractional value so ( )nfP n   is rounded to the nearest integer 

value to get the suitable optimum tap-length. In (14) the factor nK is the leakage factor 

which prevents the order to be increased to an unexpectedly large value and nK   is the 

step size for filter order adaptation. In [11] the value of ( , )n nK K was based on setting 

a random leaky factor which performed well for FIR systems especially for the issues 
of acoustic echo cancellation [13]. In this paper a unique method for setting these 
parameters has been defined which can find better performance in structure adaptation 
and hence decreases the overall design complexity. 
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sspΔ defines the variable error spacing parameter at steady state tap-length ssP . At 

the steady state, [16] 
2(1 )

(1 ) ( )
ss

t
n

p

f
K

f

σ−→
+ Δ ∞

     (19) 

Similarly the adaptation step size depends on the bias between MSE values with a 

pΔ difference. If the difference is more, then adaptation should be slow and vice 

versa.   
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The variable error width parameter pΔ  decides the bias between the unknown 

optimum tap-length optP  and the steady state tap-length in a system identification 

framework. It removes the suboptimum values and finds the optimum tap-length. A 
large value of pΔ  produces large error width and brings heavy computational 

complexity whereas a small pΔ  slow down the convergence and makes it difficult to 

overcome the suboptimum values. [14], [15] 
The steady state tap-length is approximately equal to poptL Δ+ . 
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In order to maintain the trade-off between convergence and steady state error [15] 

)(ˆ)1()1(ˆˆ 222 nenee ρρ −+−=      (22)  
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where ρ is the smoothing parameter and υ is a constant which depends on the 

characteristics of the  unknown plant.   
Although different )(npΔ are needed for different applications, whereas for a 

certain application it can be easily decided in advance according to the noise 
conditions.  

3 Simulation Setup 

The simulation is performed for adaptive filter system modeling module as shown in 
Figure.1. MATLAB 7.7 platform has been chosen for simulation purpose. The input 
samples x(n) are from a white process having mean zeros and variance one. The 
proposed algorithm deals with a modified version of NLMS algorithm to avoid this 
slow convergence.  ( )x n is fed to both unknown plant as well as LMS adaptive filter. 

The output of unknown filter is mixed with a white noise ( )t n  such that the SNR 

remains as 40dB throughout the process. The unknown system is modeled as an 
Infinite Impulse Response (IIR) system. Because of infinite impulse response it is 
important to measure the optimum order in a system identification framework which 
can exactly replicate the performance of the IIR system. For simulations purpose 

1 1 2
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and has been fixed as the impulse response of the unknown 

system to be identified in the framework by an adaptive filter. The algorithm has to 
find out a filter with minimum co-efficient to completely match the impulse response 
of the plant in a time varying environment so that the structural design complexity can 
be minimized. 

For comparison of the proposed analysis with present variable tap-length 
estimation algorithms like the FT-LMS, VT-VLMS has also been implemented along 
with the proposed algorithm under various noise conditions and parameter variations. 

The value of ,maxPΔ is kept fixed at 100, υ at 0.5 for the IIR system and δ  at 1. For 

FT-LMS the step size is set at 0.005 and for VT-VLMS the leaky factor varies from  
0 to 0.6 [11]. 

4 Results and Discussion 

The adaptive filter response let’s say )(zH is matched to the unknown IIR plant in the 

system identification framework. Fig.1 depicts the performance of converged MSE 
with tap-length variation for the proposed as well as the FT-LMS [6]-[8] and VT-
VLMS [11], [13] algorithms at SNR=40dB. For the proposed variable tap-length 
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algorithm the MSE remains constant after the 20th tap whereas we get suboptimum 

order of 9 which has been removed by the use of variable error width ( )p nΔ and 

choice of parameter υ in the proposed algorithm as mentioned in (23). The optimum 
tap-length that adjusts the IIR system performance for the FT-LMS and VT-VLMS 
algorithm is obtained approximately at 48th and 35th tap respectively as shown in Fig. 
1. The MSE and tap-length optimization performance of VT-VLMS algorithm is 
proved to be better than the FT-LMS algorithm but far short than the proposed 
variable tap-length algorithm. This clearly shows that the improved tap-length 
learning method analyzed in this paper reduces the structural complexity with 15 to 
28 fewer taps. On the other hand it achieves the best MSE performance among all the 
simulated methods. The MSE performance with number of iterations has been shown 
in Fig. 2 keeping the SNR fixed at 40dB with averaging over 200 independent runs. 
The MSE decreases with increased number of iterations as per the general convention 
[1] but the proposed algorithm clearly outperforms its counterparts by achieving the 
best MSE performance and 5 to 8dB SNR improvement over 10000 iterations. 
 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1.  Converged MSE Vs Tap-length at SNR=40dB 

 
 
 
 
 
 
 
 

 
 

 

Fig. 2. Converged MSE Vs Iterations at SNR=40dB 
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The variation of error spacing parameter PΔ with increased number of iterations, 

averaged over 200 Monte Carlo runs has been shown in Fig. 3. If PΔ is being varied 

with respect to number of iterations then two transient points are noticed between 0 to 
10 and 350 to 400 numbers of iterations. These transients are shown in Fig.4 and 
Fig.5 respectively. It depicts that after some initial transition PΔ attains steady state 

value i.e. the optimum tap-length is achieved as the variation between consecutive 
converged MSE remains at a fixed value. It is discussed and mathematically analysed 
in Section 2. 

 

 

 

 

 

 

 
 
 
 

 
 
 
 
 

Fig. 3. PΔ Vs Iterations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. PΔ Vs Iterations (Transition point-1) 
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Fig. 5. PΔ Vs Iterations (Transition point-2) 

The variation for the proposed algorithm in comparison to its counterparts is 
between the minimum if we consider the absolute values. In transition point-1 the PΔ  

goes from 0 to 4, 10 and 15 for the proposed, VT-VLMS and FT-LMS respectively in 
Fig. 5 which shows a steady increase in value before achieving the steady state up to 
390 to 400 taps. Then it again decreases to -2 as shown in Fig.5 and attains that value 
till 5000 iterations which indicates that the desired optimum tap-length has been 
achieved. The proposed algorithm makes the best use of the variable error spacing 
parameter which affects the tap-length adaptation up to a large extent.  

5 Conclusion 

An improved pseudo-fractional tap-length selection for automatic structure adaptation 
in a dynamic time varying environment has been proposed. The key parameters were 
set according to the structure adaptation to best adjust the system performance and 
convergence in an identification framework. The proposed algorithm is compared 
with the existing tap-length learning algorithms and the improvements are addressed. 
The computer simulation and results are shown to verify the analysis. 
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