Real Time Object Tracking: Simulation
and Implementation on FPGA Based Soft Processor

Manoj Pandey', Dorothi Borgohain®, Gargi Baruah®, J.S. Ubhi’,
and Kota Solomon Raju’

!B K Birla Institute of Engineering and Technology, Pilani-333031
2 DSG, Council of Scientific and Industrial research (CSIR) —Central Electronics Engineering
Research Institute (CEERI) CSIR-CEERI, Pilani-3330311,
* ECE, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Pb
{manoj2pandey, js_ubhi}@yahoo.com, dorothi.s@gmail.com,
solomon@ceeri.ernet.in

Abstract. Adaptive systems are being easy to design using reconfiguration
facility on Field programmable gate arrays (FPGAs). In this paper, Kernel based
Mean shift algorithm is used for tracking a moving object. First it is simulated on
Matlab and then implemented on microblaze soft processor based FPGA board.
Tracking is observed for two similar objects crossing each other moving with
uniform speed in a stored video as well as real time video. Object tracking, when
it comes to implement on pure software (SW) in real time becomes difficult task
due to certain limitations of SW. This paper shows how the mean shift algorithm
is implemented on Xilinx Spartan 6 FPGA board using EDK. Once the complete
algorithm is implemented on microblaze soft processor then some of the
mathematical functions of algorithm are calculated on hardware to use HW-SW
co-designing methodology to enhance the performance of the system.

Keywords: Kernel, Mean Shift, Real Time Tracking, EDK, FPGA, Spartan6.

1 Introduction

Object tracking is one of the fundamental component of computer vision that can be
very beneficial in applications such as unmanned vehicles, surveillance, automated
traffic control, biomedical image analysis and intelligent robots, to name a few.
Tracking aims to generate the trajectory of objects across video frames. Object tracking
is used for identifying the trajectory of moving object in video frame sequences. Like
most computer vision tasks, object tracking involves intensive computation in order to
extract the desired information from high volume video data. In addition, the real time
processing requirements of different computer vision applications stress the need for
high performance object tracking implementations. Implementation of vision systems
in real time requires high performance HW with flexibility to incorporate the change
after the design has been freezed. GPPS and DSPs give flexibility but not high
performance while ASICS gives performance but not flexibility.

Latest technologies give performance and flexibility of FPGAs more and rugged
with the use of Reconfigurable Computing System (RCS) facilities. Additionally,

K. Singh, A.K. Awasthi, and R. Mishra (Eds.): QSHINE 2013, LNICST 115, pp. 441-050] 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



442 M. Pandey et al.

most FPGAs support dynamic partial reconfiguration (DPR) [1] to provide higher
flexibility. With this benefit it is possible to reconfigure a part of the FPGA during
run time. The other part of the FPGA 1is unaffected by this process and continues to
run. Reconfigurable Computing offers cost-effective solution for computationally
intensive application through reuse of hardware. Using dynamic programming, RCS
is efficient in terms of hardware utilization without degrading its performance [2].

In this paper, we presents the simulation of Kernel based mean shift algorithm for
object tracking and implementation on FPGA board. Objects as a person is used for
the tracking, considering the case of overlapping and scale changing. The aim is to
allow designers of applications that benefit from FPGA implementation, to leverage
this capability for reconfigurable architecture. In Section 2, the tracking algorithms
and its FPGA implementations are presented along with a review of existing hardware
(HW) approaches. Section 3 gives basic steps of algorithm and 4 introduce about the
HW 1IPs and their FPGA oriented design. Section 5, presents simulation and
implementation results. Finally, Section 6 concludes this paper.

2 Related Work

Several implementations of object tracking for FPGAs exist. A soft-processor based
object tracking system on FPGAs are carried out in ref [3, 4]. In this paper Xilinx 32
bit Microblaze soft processor is used to implement the tracking algorithm. The rest of
the FPGA is used for the frame grabber and visualization of the video stream. A
multi-object-tracking architecture for FPGAs or ASICs based on image segmentation
is used in [5]. The algorithm is fixed one for a given constraints. If any constraints
change after the design, the system does not work effectively. These systems have
some restrictions. The main disadvantage is the restriction of the systems to one
algorithm. If the constraints are changing the settings of an algorithm has to be
changed. In the worst case the algorithm gets completely improper. To avoid these
problems, the implementation of the system with reconfiguration facility is able to
provide required change by replacing with additional flexibility in algorithm. Author
in [6] implemented a hardware detection system based on the Active Shape Model
(ASM) algorithm, and they reported speedup up to 15X compared to software
execution. However, their implementation does not include tracking. Schlessman in
[7] discusses a practical design based on a hardware/software co-design to realize an
optical flow tracking system, which puts the KLT portion that consumes much
processing time to FPGA-based hardware implementation as optimization.
Christopher in [8] introduces an object tracking hardware design based on color
features. Due to the advantages offered by FPGAs in compute intensive applications,
several object tracking algorithms have been implemented on reconfigurable devices
in recent researches. Nevertheless, one of the biggest challenges of custom hardware
implementations is mapping complex algorithms onto reconfigurable fabric
architectures that can offer good performance under rigid resource constraints.

For object tracking purposes, numerous algorithms have been proposed in the
literatures and are implemented on FPGAs. Object tracking is a complex task which
comprises two main subtasks: i) object detection and ii) tracking. In [9] object
detection algorithms are classified into point detection, background subtraction



Real Time Object Tracking: Simulation and Implementation on FPGA 443

techniques, and supervised learning techniques. Furthermore, the tracking portion of
object tracking can be performed either separately or jointly with object detection.
Alper Yilmaz [10] has characterized tracking algorithms across three main categories:
i) point tracking, ii) kernel tracking and iii) silhouette tracking. Using these tracking
techniques various tracking algorithms are developed /used for clustering and tracking
of non rigid objects. Some of these popular algorithms are KLT-tracker [11], mean
shift [12], mean shift with motion vector [13], kernel based Mean shift [14], eigen
tracking [15], optical flow tracking [16], fast object tracking using adaptive block
matching [17], heuristic methods for object tracking [18], Kalman filter [19], particle
filter [20] etc, which are used for various image processing applications instead of
only object tracking. The preliminary work for the system presented in this paper was
published in [10]. The proposed work was purely SW based and implement on EDK
based design.

3 Mean Shift Algorithm

Mean shift is a nonparametric density gradient statistical method which considers
feature space as an empirical probability density function (PDF). If the input is a set
of points, then mean shift considers them as sampled from the underlying density
function. In mean shift trackers, objects of interest are characterized by the probability
density functions (pdfs) of their colour or texture features. A spatially-smooth
similarity function between the original object as candidate and target are defined as a
masking distributions with a monotonically decreasing kernel. Mean shift iterations
are then used as a local maximum of this similarity function as an indicator of the
direction of target’s movement. In order to apply a mean shift calculation, the set of
histogram values is weighted by Epanechnikov kernel to yield a smoothed set of
values. It defines an ellipsoidal region and gives more weights to pixel closer to the
center of the kernel. The rationale for using a kernel to assign smaller weights to
pixels farther from the centre is that those pixels are the least reliable, since they are
the ones most affected by occlusion or interference from the background. A kernel
with Epanechnikov profile was essential for the derivation of the smooth similarity
function between the distributions. Since its derivative is constant; the kernel masking
lead to a function suitable for gradient optimization, which gave us the direction of
the target’s movement. The search for the matching target candidate in that case is
restricted to a much smaller area and therefore it is much faster than the exhaustive
search. The number of bins in the histogram representation for the target is defined by
the user. This allows for simpler histograms in cases where the image sequence
features highly distinctive colors and is devoid of collision events between like-
colored objects. Likewise a larger number of bins may be used if the range of colors is
limited or the target and background colors are nearby in normalized RGB. Thus
algorithm completes its processing mainly in six steps. In First step we initialize the
location of target in current frame. In step two, it computes PDF for target and
candidate. In the same step it also computes the similarity between them using
Bhattacharya Coefficient. In step third and forth, computes the weights and then
apply the mean shift to find the new location respectively. Finally, in step five finds
the new location of object in reference to the centre candidate and in step sixth iterate
the algorithm for all the frames of video streaming.



444 M. Pandey et al.

4 FPGA Implementation

4.1 Base System Builder

All EDK designs are built on a Base System Builder (BSB) platform which provides a
common base and building blocks. Each of the EDK reference designs included with
the IVK is built from the base platform. The Base Platform is not a separate design
that is delivered with this kit, rather it is the starting point from which all the other
designs were built. The board we have used is Xilinx Industrial Video Processing Kit
(IVK) Spartan-6 XC6SLX150T-3FGG676C- based embedded platform as shown in
fig. 1. It provides two FMC LPC general-purpose I/O expansion connectors, and a
memory of 128 MB DDR3 SDRAM. For communication we used RS-232 serial
port. The hardware for the implementation of mean shift is made by adding various
IPs and peripherals. These are Micro Blaze™ 32-bit soft microprocessor, Local
Memory Bus (LMB), LMB Block RAM controller, Block RAM block memory,
Processor Local Bus (PLB46), XPS UARTIite, Xilinx Platform Studio (XPS) General
Purpose Input/Output (GPIO), XPS Inter-Integrated Circuit (IIC) Controller, External
Multi-port Memory Controller (MPMC), MDM MicroBlaze Debug Module, Clock
Generator, Processor System Reset and finally the DDR3 block representing the
external memory.

AVNET

Fig. 1. Xilinx Spartan6 IVK FPGA board setup

The image sensor video input source enters the Camera Input PCORE [21]. This
PCORE decodes the BT656 codes to generate synchronization signals and formats the
video as an XSVI bus interface. The Video Detect PCORE does not alter the video,
but monitors the VSYNC and ACTIVE VIDEO signals to determine the dimensions
of the active video streaming through the FPGA. It also generates Video DMA
compatible bus interface used to write video data to external memory. The Video
DMA PCOREs, in collaboration with the Video Frame Buffer Controller (VFBC)
[21] interfaces on the Multi-Port Memory Controller (MPMC), perform the actual
transfers to/from external memory. These cores are extremely flexible and are
configured via the Micro Blaze processor. The GENLOCK port indicates where the



Real Time Object Tracking: Simulation and Implementation on FPGA 445

first Video DMA has written the incoming frames. The second Video DMA reads
video frames from memory based on the GENLOCK information. After that the
histogram calculation IP and later the mean shift block gets the pixel data and takes
the RGB values, each of 8 bit. It takes the pre-calculated kernel values and finds out
the histogram of the target and the candidate model and they compute the
displacement in the mean shift block of the target object in each frame. Since the
output frame rate is higher than the input frame rate, frames are duplicated when
necessary. The Video Generate PCORE, under control of the Micro Blaze, generates
video timing for the output. It also generates a Video DMA compatible bus interface
used to read video data from external memory. The DVI Output PCORE takes an
XSVI bus interface as input and optionally drives the pins of the DVI output interface.
This output to the FMC connector will only be driven once the FMCIMAGEOV
module has properly been identified. The video capture is at 1280x720P @ 30Hz and
video playback at 1280x720P @ 60Hz. These resolutions are configured by the
embedded processor (Micro Blaze) and can be modified to support other resolutions
(limited by the image sensor used).

4.2  Compute Displacement (HW)

To accelerate the computing faster, compute displacement function is replaced with
HW designed IP compute_dis_25 as shown in fig 2. The displacement dx and dy is
calculated with the input functions Kernel derivative function (S1) and weight
function (S2). These values are stored in BRAM segmented memory locations (160 X
80) To store values S1 and S2 before computing the displacement. The counter I logic
and j logic are used to multiply the element by element of S1 and S2 and then added
the pixel values as shown in block diagram in fig 2.

i logic counter I= m
Multiplier I_L. Adder
T

2 Div

BRAM - 2
KernelDeriv E . I&I
-

] |
darray

(160x80)

Weight
_sum

Multiplier 1

|
BRAM | kD_array I

Weights
(160%80) L Multiplier Adfcr L Div

3 2 dy

| Wyc_sum I

jlogic counter

Fig. 2. Data flow diagram of Compute displacement module



446 M. Pandey et al.

5 Simulation and Implementation Results

5.1 Simulation Results

To evaluate and compare the system performance of tracking algorithm, first the
algorithm is simulated on Matlab tool. In the simulation of the tracker, we have
choose RGB color space as a feature space, in which chosen feature space was
quantized into 5 x 5 x 5 bins. The set of histogram values is weighed by
Epanechnikov kernel which yields a smoothed set of values. A constant kernel
derivative is used in the calculation of the kernel profile. The value of Cd =2 and d=1
is used. The algorithm is executed comfortably at 75 frames per second (fps) on 2.70
GHz PC, Matlab (version 7.60). The Matlab simulation results are shown in fig 3.1,
fig 3.2 and fig 3.3. The first result in fig 3.1, states that when we increase bin number
from 5 to 25 to 50 of the target, then there is slight difference between the trajectory
of the object in different bins condition but this difference is too less. It means on
increasing the bins there is a separation between the object being tracked and
background, which shows that algorithm is robust to bin size. Graph in fig 3.2 shows
the metric distance between the frames 320 to 340 is very less compare to frames 450
to 470, which means that there is maximum similarity (i.e. minimum distance)
between the target window and the candidate window in the successive frames from
320 to 340. It signifies the movement of the object in these consecutive frames is slow
in respect to frames 450 to 470. It means that the change in the histogram does also
affect the similarity (i.e. distance) between the target model and the candidate model.
The graph in fig 3.3 shows the Mean Shift iteration. The maximum distance shows,
the more illuminated area is there in the frames ranging from 450 to 500. It means

w10 Ubjact path in Success e Frames

Bin Hum= 5
Bin Hum= 25
Bin Hum= 40

Index “falue of Canter Loc ation

T e LEEt = T R
.
.
:

i
'
'
'
'
'
'
'
'

'
mmmmpmm -
'

'

'

'

'

'

'

'

'
R R

15 L
2 280 a0 480

Frame Humber

2

540

Fig. 3.1. Measurement of estimated location in successive frames



Real Time Object Tracking: Simulation and Implementation on FPGA 447

when the object is being tracked and passes from a well illuminated region to variable
illuminated region, the model histogram is not indicative of the target very well.
Ultimately, tracker shifts from the actual object. As a result, if the two similar objects
are overlapped in a scene the tracker move to other similar object. The tracking results
of two similar objects are shown in fig 3.4 in three different frames. From top to
bottom: (a) before overlapping of objects (b) overlapping of objects in middle and (c)
tracking to another similar object at bottom. Object is tracked well before the
overlapping of both the objects.

Ostance oftagea in Successive Fames
0.y

Binz =4
Binz =25

06p-------- Bin= =40

1)

P ——

1
'
'
'

T
'
'
]
'

T
f
'
'
'
!

distnce

02f--

0.1

:_

=
| -

Fig. 3.2. The minimum value of distance function of the frame index

Gepl Getmees Frame iden &g e mten

Bluz =3

Bl =23
Blug =30

hisn Sht Hteation

Frame NimBEer

Fig. 3.3. The number of mean shift iterations function of the frame index



448 M. Pandey et al.

Fig. 3.4. Tracking frames of a moving person in top figure, in middle overlapping of similar
object at bottom tracker shifts to other similar object after overlapping

5.2 Implementation Results

Table 1. The table shows the resources used and its percentage utilization

Device Utilization Summary (estimated values)

Logic Utilization Used Available Utilization

Number of Slice Registers 11,437 184,304 6%

Number of Slice LUTs 10980 92,152 11%

Number used as memory 846 21,680 3%

Number of bonded IOBs 95 386 23%

Number of 10 32 31%
BUFG/BUFGCTRLSs

Number of DSP48Es 18 128 4%

100

fla,p(y)l=>

-100
" 80

Fig. 4.1. Similarity function f [q, p(y)]



Real Time Object Tracking: Simulation and Implementation on FPGA 449

Displacement-—
&
n

i
'
'
'
'
'
T
'
'
'
'
'
'
'
'
[ S e ek T Sy S

Fig. 4.2. Displacement of the target object in 10 consecutive frames

6 Conclusion

The simulated result of Kernel based mean shift algorithm is found to be smoothly
tracking a specified object if there is a good separation between the objects. If the objects
are found similar and overlapped then simple Mean Shift may track a wrong object. So
this shortcoming may overcome with combination of other algorithms or with filtering in
future work. On the other hand, for the implementation in real time tracking some of the
frames are lapsed due to high complexity of computation if algorithm is executed on only
general purpose soft processor. Solution for real time implementation of algorithm is to
bring the complete execution with HW/SW co- design methodology to accelerate the
execution. In this reference a compute displacement function is be replaced with
hardware which is presented in this paper as an IP.

References

[1] Hsiung, P.-A., Santambrogio, M.D., Huang, C.-H.: Reconfigurable System Design and
Verification. CRC Press © Taylor & Francis Group, London (2009)

[2] Compton, K., Hauck, S.: Reconfigurable Computing: A Survey of Systems and Software.
ACM Computing Surveys 34(2), 171-210 (2002)

[3] Ali, U., Malik, M.B., Munawar, K.: FPGA/Soft- Processor based real-time object
tracking system. In: Proceedings IEEE, Fifth Southern Programmable Logic Conference,
pp. 33-37 (2009)

[4] Raju, K.S., Baruah, G., Rajesham, M., Phukan, P.: Computing Displacement of Moving
Object in a Real Time Video using EDK. In: International Conference on Computing,
Communications, Systems And Applications (ICCCSA), Hyderabad, March 30-31,
pp. 76-79 (2012) ISBN:978-81-921580-8-2



450

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]
(17]
(18]

(19]

(20]

(21]

M. Pandey et al.

Rummele-Werner, M., Perschke, T., Braun, L., Hiibner, M., Becker, J.: A FPGA based
fast runtime reconfigurable real-time Multi-Object-Tracker. In: IEEE International
Symposium on Circuits and System (ISCAS) (May 2011)

Xu, J., Dou, Y., Li, J., Zhou, X., Dou, Q.: FPGA Accelerating Algorithms of Active
Shape Model in People Tracking Applications. In: Proc. 10th IEEE Euromicro
Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
(2007)

Schlessman, J., Chen, C.Y., Ozer, B., Fujino, K., Itoh, K., Wolf, W.: Hardware/software
Co-design of an FPGA based Embedded Tracking System. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern 1662 Recognition Workshop, pp. 123-133
(2006)

Johnston, C.T., Gribbon, K.T., Bailey, D.G.: FPGA based Remote Object Tracking for
Real-time Control. In: Proceeding 1st International Conference on Sensing Technology,
November 21-23, pp. 6671 (2005)

Yilmaz, A., Javed, O., Shah, M.: Object Tracking: A Survey. ACM Computing
Surveys 38(4), Article 13 (December 2006)

Raju, K.S., Baruah, G., Rajesham, M., Phukhan, P., Pandey, M.: Implementation of
moving object tracking using EDK. International Journal of Computer Science Issues
(IICSI) 9(3), 43-50 (2012)

Shi, J., Tomasi, C.: Good features to track. In: Proceeding IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 593-600 (1994)
Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using
mean shift. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recongition, Hilton Head, vol. 2, pp. 142-149 (2000)

Tian, G., Hu, R.-M., Wang, Z.-Y., Zhu, L.: Object Tracking Algorithm Based on
Meanshift Algorithm Combining with motion vector analysis. In: Proceeding, First
International Workshop on Education Technology and Computer Science, vol. 01,
pp. 987-990 (2009)

Comaniciu, D., Ramesh, V., Meer, P.: Kernel-Based Object Tracking. IEEE Trans. on
Pattern Analysis and Machine Intelligence 25(5), 564-577 (2003)

Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to
stereo vision. In: Proceedings of the 7th International conference on Artificial
Intelligence (IJCAI), August 24-28, pp. 674-679 (1981)

Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. Int. J.
Comput. Vision (IICV) 12(1), 43-77 (1994)

Hariharakrishnan, K., Schonfeld, D.: Fast object tracking using adaptive block matching.
IEEE Transaction on Multimedia 7(5) (October 2005)

Ronfard, R.: Region based strategies for active contour models. Int. J. Comput.
Vision 13(2), 229-251 (1994)

Zhong, J., Sclaroff, S.: Segmenting foreground objects from a dynamic textured
background via a robust kalman filter. In: Proceeding of the Ninth IEEE International
Conference on Computer Vision (ICCV), October 13-16, vol. 1, pp. 44-50 (2003)

Zhou, S., Chellapa, R., Moghadam, B.: Adaptive visual tracking and recognition using
particle filters. IEEE Transactions on Image Processing 13(11), 1491-1506 (2004)
Spartan-6 Industrial Video Processing Kit — EDK Reference Design Tutorial, Xilinx Inc.,
http://www.xilinx.com



	Real Time Object Tracking: Simulation and Implementation on FPGA Based Soft Processor
	1 Introduction
	2 Related Work
	3 Mean Shift Algorithm
	4 FPGA Implementation
	4.1 Base System Builder
	4.2 Compute Displacement (HW)

	5 Simulation and Implementation Results
	5.1 Simulation Results
	5.2 Implementation Results

	6 Conclusion
	References




