
Formal Modeling of Mobile Middleware

for Tuple Space Coordination over Multiple
Heterogeneous Networks

Suddhasil De, Diganta Goswami, and Sukumar Nandi

Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati, Assam – 781039, India

{suddhasil,dgoswami,sukumar}@iitg.ernet.in

Abstract. Tuple Space based Mobile Middleware (TSMM), with tu-
ple space as coordination medium, exhibits multiple decoupling qualities
during coordination, which enhances its robustness and flexibility and
makes it an appropriate coordination platform for underlying mobile and
dynamic networks. However, formal semantics of TSMM are required for
reasoning TSMM as coordination platform, which also help in developing
supported applications. This paper suggests an approach of formalizing
TSMM that can be deployed over multiple heterogeneous mobile and
dynamic networks. Formalization is carried out using Mobile UNITY.

Keywords: Mobile middleware, coordination, tuple space, robustness,
formalization, Mobile UNITY.

1 Introduction

Advances in wireless communication technologies and mobile computing devices
lead to the deployment of different scales of wireless networks. These networks are
characterized by device mobility, network dynamics, and inherent unreliability
in communication links. They are targeting different types of applications for the
benefits of end users. Most of their applications require coordination support for
proper functioning to achieve a common goal. Services of mobile middleware [1],
with proper coordination medium incorporated within it, becomes inevitable for
facilitating coordination among different active components of a supported appli-
cation (called agents) executing in computing environments of different devices
(called hosts). One such coordination medium, tuple space [2], attains differ-
ent dimensions of uncoupling between interacting agents [3], even in underlying
heterogeneous networks. Mobile middleware incorporating tuple space for coor-
dination is referred as Tuple Space based Mobile Middleware (TSMM) [4].

In TSMM, tuple is basic unit of data exchanged during agent interactions
via a shared repository (called tuple space), while antituple is basic unit of
search key to identify tuples residing in tuple space. Tuple space as coordi-
nation medium uncouples interacting agents about time, space (i.e. naming),
interacting data and operations on them [3,5]. Uncoupling in several dimensions

K. Singh, A.K. Awasthi, and R. Mishra (Eds.): QSHINE 2013, LNICST 115, pp. 415–430, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

416 S. De, D. Goswami, and S. Nandi

enable TSMM of providing loose coupling of coordination, which enhances its
robustness and flexibility and makes it an appropriate coordination platform for
underlying dynamic heterogeneous networks. However, to facilitate application
designers, formal specifications of semantics of TSMM are required to be clearly
stated. Formalization not only enables proper analysis of robustness and flexibil-
ity of TSMM over heterogeneous networks, but also defines its precise semantics
and prepares foundation for its implementation. This paper extends an earlier
work [6], by providing a formal treatment to TSMM that is deployed over multi-
ple mobile, dynamic and unreliable heterogeneous networks. Mobile UNITY [7],
a general-purpose reasoning tool, is used for formalization.

In literature, formal semantics of tuple space model has been presented ear-
lier [5,8,9]. In these works, basic tuple space operations and agent mobility of
TSMM are formalized using Mobile UNITY. However, unlike [5,8,9], this paper
focuses on formalizing aggregated functionalities of TSMM, including multiple
dimensions of uncoupling, communication and discovery mechanisms etc. Tuple
space operations are abstracted in this formalization as simple calls to respective
primitives, while agent mobility is abstracted as a function to simplify its rep-
resentation. Also, this paper shows building of formal representation of TSMM
by combining individual specifications of its different functionalities. Compared
to [6], this paper extends by including support of multiple underlying heteroge-
neous networks, all of which are mobile, dynamic and unreliable. In particular,
TSMM, formalized in [6], considers Infrastructure Basic Service Set (iBSS) [10]
as the only underlying network, whereas, TSMM in this paper supports both
iBSS and Independent Basic Service Set (IBSS) [10]. Two heterogeneous net-
works are considered for this paper to keep the formalization readable. However,
this formal treatment can be easily extended to include other underlying hetero-
geneous networks for TSMM. Rest of the paper is organized as follows. Section 2
gives a brief overview of TSMM, which is next formalized using Mobile UNITY
in Section 3. Finally, Section 4 concludes the paper.

2 Overview of TSMM Having Multiple Decoupled
Coordination

TSMM is the coordination platform to support agent interactions in mobile dis-
tributed applications, thereby providing ubiquity to user activities.

Architecture. TSMM comprise of several components, which can be organized
within agent or host. Each instance of agent contains an agent tuple space (ATS)
and its interfaces, local operation manager, remote operation manager, ATS re-
action manager and acquaintance list. One instance of host runs in one device
and supports execution of single/multiple agents. In each host, different compo-
nents manage functionalities of communication, discovery, host server, host tuple
space (HTS) and its interfaces, agent management, mobility etc. Architecture of
TSMM with all its components is shown in figure 1.

Formal Modeling of Mobile Middleware 417

Host

DISTRIBUTED MULTI-THREADED APPLICATIONS

Tuple Space Interface

Local Operation Manager

Agent Tuple
Space (ATS)

Configuration
 Interface

 ATS
Reaction
Manager

Agent

 Agent
 Mobility
 Manager

Communication Manager

Incoming

 Remote
Operation
 Manager

 HTS
Interface

 Host
 Tuple
Space
 (HTS)

Agent's Availability
Checker & Notifier

Discovery
 Manager

Neighbor
 List

Agent List

 Agent
Manager

 Host's Availability
Checker & Notifier

 Host Server

ATS Interface

Outgoing

Acquaintance
 List

OS & Network Services

Reaction
 List

Remote Op
 List

Fig. 1. Architecture of TSMM showing its significant components [6]

Tuple Space Model. In TSMM, tuples and antituples comprise of unordered
sequence of fields [11], whereas tuple space is indexed in nature [12]. During
interaction between any pair of agents, initiator of interaction becomes refer-
ence agent and destination becomes target agent. Different primitives are defined
for writing, reading and withdrawing tuples from tuple space (like, ATS) using
tuple-producing, tuple-reading and tuple-consuming primitives. Tuple-producing
primitives cover out and outg, while tuple-reading primitives include rd, rdp, rdg
and rdgp, and tuple-consuming primitives are in, inp, ing and ingp, details of
which are given in [5]. Local primitives are executed in own ATS, whereas for
executing remote primitives, invoked parameters are shipped to specified target
agent(s), executed in its ATS and results of execution are sent back.

Reactivity Model. TSMM incorporates reactivity in ATS to monitor and re-
spond to different events (like, presence of a particular tuple in tuple space etc.)
during execution. Reactivity is implemented by generating and registering re-
action in ATS. Registered reaction, with condition specified by antituple, fires if

418 S. De, D. Goswami, and S. Nandi

that condition gets satisfied i.e. antituple matches tuple in tuple space. Firing of
reaction signifies execution of application-defined reactive codes, like notifying
presence of tuples, withdrawing tuples from ATS etc, and responses are sent back.

Decoupled Coordination Model. In TSMM, agent interactions use decou-
pled reactivity [5], whereby HTS provides additional decoupling medium to ac-
complish complete decoupling of agent interactions. HTS stores two special tuples
(viz. reaction tuple and response tuple). Reaction tuples are created from differ-
ent parameters of invoked remote primitives, while response tuples are created
from result of execution of these primitives. Reaction tuple is first inserted into
HTS of reference host. On availability of target host, it is withdrawn from that
HTS, passed through underlying infrastructure to target host, and subsequently
inserted into its HTS. Eventually, reaction tuple is withdrawn from target host’s
HTS, once target agent is available. Parameters of invoked primitive is next ex-
tracted and execution of that primitive starts at ATS of target agent. In case
of remote tuple-reading and -consuming primitives, target agent packs results
of execution (viz. sought tuple(s) from its ATS) into response tuple. Following
previous approach, that response tuple eventually reaches reference agent, and
sought tuple(s) are extracted from it. For achieving consistency in coordination,
reference agent responds back to target agent(s) with additional ACK tuple
and NACK tuple for any invoked remote tuple-consuming primitive. ACK tuple
positively acknowledges acceptance of responded tuple as sought tuple, whereas
NACK tuple returns non-accepted responded tuple back.

Supplementary Components. For execution over multiple unreliable net-
works having mobility, as well as for resolving heterogeneity of such multiple
underlying networks, TSMM includes its own communication and discovery
mechanisms [13] that uses transport service for data transmission. This paper
considers iBSS and IBSS as underlying networks for TSMM. When deployed
over iBSS, three categories of hosts are earmarked, viz. stationary host, mobile
host and access point, whereas for IBSS, deployed hosts are earmarked as mo-
bile host only. Discovery mechanism furnishes an updated knowledge of available
agents and hosts. This knowledge is attained by sending and receiving beacons
and is preserved in NeighborList. Communication mechanism emphasizes on re-
liably transferring reaction/response tuples from one host to another. It uses
additional acknowledgement mechanism to achieve this reliability.

3 Proposed Approach of Formalization of TSMM

This section proposes an approach of formalizing TSMM as a Mobile UNITY
system, comprising of a set of formal programs representing different agents
and hosts. Favoring Mobile UNITY over other formal tools is due to its suit-
ability in formalizing inherently non-terminating programs (like mobile mid-
dleware) and reasoning about agents temporal behavior using its proof rules.
System TSMM, shown in Figure 2, comprises of multiple instances of two Mobile
UNITY programs, and their interactions are specified in Interactions section.

Formal Modeling of Mobile Middleware 419

System TSMM

Program host(i) at λ

.

.

.
.
.
. {Program description of host(i), given separately}

Program agent(k) at λ

.

.

.
.
.
. {Program description of agent(k), given separately}

Components

〈� i :: host(i) 〉 � 〈� k :: agent(k) 〉

Interactions

{Attach TW of hosts with wired network interfaces in iBSS as transiently-shared variable when connected}
sharedWiBSS ::

〈� i, j :: host(i).TW ≈ host(j).TW

when (host(i).nwdeploy = iBSS) ∧ (host(j).nwdeploy = iBSS) ∧ (host(i)Γ′host(j))

∧ (
isSH(host(i)) ∨ isAP(host(i))

) ∧ (
isSH(host(j)) ∨ isAP(host(j))

)

engage host(i).TW disengage current ‖⊥ 〉
{Attach TWL of mobile host and access point in iBSS as transiently-shared variable, only when colocated}

� sharedWLiBSS ::

〈� i, j :: host(i).TWL ≈ host(j).TWL

when (host(i).nwdeploy = iBSS) ∧ (host(j).nwdeploy = iBSS) ∧ (host(i)Γ′host(j))

∧ ((
isMH(host(i)) ∧ isAP(host(j))

) ∨ (
isAP(host(i)) ∧ isMH(host(j))

))

engage host(i).TWL disengage current ‖⊥ 〉
{Attach TWL of mobile hosts in IBSS as transiently-shared variable, only when colocated}

� sharedWLIBSS ::

〈� i, j :: host(i).TWL ≈ host(j).TWL

when (host(i).nwdeploy = IBSS) ∧ (host(j).nwdeploy = IBSS) ∧ (host(i)Γ′host(j))

∧ isMH(host(i)) ∧ isMH(host(j))

engage host(i).TWL disengage current ‖⊥ 〉
{Prepare to register active agents in respective hosts}

� regAgent :: 〈� i, k :: host(i).Qin := host(i).Qin • agent(k).aid when (host(i).λ = agent(k).λ) 〉
{Prepare to deregister terminated/migrated agents from respective hosts}

� deregAgent :: 〈� i, k :: host(i).Qout := host(i).Qout • agent(k).aid when ¬(host(i).λ = agent(k).λ) 〉
{Prepare to transfer reaction/response tuple from agent to host}

� 〈� i, k :: host(i).QTS
ak

, agent(k).QTS
ak

:= host(i).QTS
ak

• head(agent(k).QTS
ak

),tail(agent(k).QTS
ak

)

when (host(i).λ = agent(k).λ) ∧ ¬(agent(k).QTS
ak

=⊥) 〉

{Prepare to transfer reaction/response tuple from host to agent}
� 〈� i, k :: agent(k).QTR

ak
, host(i).QTR

ak
:= agent(k).QTR

ak
• head(host(i).QTR

ak
),tail(host(i).QTR

ak
)

when (host(i).λ = agent(k).λ) ∧ ¬(host(i).QTR
ak

=⊥) 〉

end

Fig. 2. Mobile UNITY system of TSMM

i-th host is specified by Program host(i), whereas k-th agent is represented by
Program agent(k), where i and k are assumed to be quantified over appropriate
ranges. Different conditions of interactions in Interactions section are enforced
through when clauses. Clauses engage and disengage, and construct current

are used for transient sharing between different hosts. Also, first three statements
in Interactions section, labeled as sharedwiBSS , sharedwliBSS and sharedwlIBSS, are

420 S. De, D. Goswami, and S. Nandi

Program agent(k) at λ

declare
type : ∈{stationary,mobile}

� aid, taid, a : agentid � taids : sequence of agentid

� T : tuple space � t , tuple : tuple � t, tuples : set of tuple � a, atuple : antituple

� r : RTtuple � QTS
ak

,QTR
ak

: queue of RTtuple

� prid : primitiveid � prType : ∈{local, remote}
� ROL : sequence of (primitiveid, primitivename, set of agentid of target agents)

� RL : sequence of (reactionid, primitiveid) � T : set of {agentid, set of tuple}
� prName : ∈{OUT,OUTG,RD,RDG,RDP,RDGP, IN, ING, INP, INGP}
� mode : ∈{ONCE,ONCE/TUPLE}
� TAs, rform : natural

� prBulk, prRdIn, UsrRdy4Evt : boolean

always
aid := getMyAgentID(k) � type := getAgentType(stationary,mobile)

� isPresentinROL(prid, taid) ≡ 〈 ∃e :: (e ∈ ROL) ∧ (e ↑ 1 = prid) ∧ (aid ∈ e ↑ 3) 〉
� isEmptyinROL(prid) ≡ 〈 ∃e :: (e ∈ ROL) ∧ (e ↑ 1 = prid) ∧ (e ↑ 3 = ∅) 〉

initially
λ = Location(k)

� TAs = 0 � rform = 0 � T =⊥ � ROL =⊥ � RL =⊥ � T = ∅
� t = ε � tuple = ε � t = ∅ � tuples = ∅ � a = ε � atuple = ε

� QTS
ak

=⊥ � QTR
ak

=⊥ � UsrRdy4Evt = FALSE

assign
{Migrate to different location}

� λ := Location(Move()) if (type = mobile)

{Capture different parameters when user application is ready}
� 〈 prType, prName,UsrRdy4Evt := getPrimType(),getPrimName(), FALSE

‖ prRdIn, prBulk := getPrimRDorIN(),getPrimBulk()

‖ tuple := getTuple() if
(
(prRdIn = FALSE) ∧ (prBulk = FALSE)

)

‖ tuples := getTuples() if
(
(prRdIn = FALSE) ∧ (prBulk = TRUE)

)

‖ atuple := getAntiTuple() if (prRdIn = TRUE)

‖ TAs := getTargetAgentCount() if (prType = remote)

‖ 〈‖ a : 1 ≤ a ≤ TAs :: taids[a] := getTargetAgentID(a)〉 if (prType = remote)

‖ mode := getMode(ONCE,ONCE/TUPLE) if
(
(prType = remote) ∧ (prRdIn = TRUE)

)

〉 if (UsrRdy4Evt = TRUE)

Fig. 3. Mobile UNITY Program agent(k): part 1

reactive statements as they have used “≈” notation. Agent behaviors, including
functionalities of ATS, Local Operation Manager, Remote Operation Manager, ATS Re-

action Manager etc. are contained in agent(k) as shown in Figure 3, Figure 4,
and Figure 5. Similarly, functionalities of different components of host, includ-
ing Transport Interface, Discovery Manager, Communication Manager, Host Server, Agent
Manager etc., are contained in host(i) as shown in Figure 6, Figure 7, Figure 8,
and Figure 9. However, in above formal system, many aspects of TSMM are not
directly formalized, to keep this formal system simple.

Different variables related to hosts and agents are specified in this formal
system. For instance, Q is used to express any queue used to define different

Formal Modeling of Mobile Middleware 421

{- - - - - - - - - - Start of Local Operation Manager - - - - - - - - - -}
{Perform different local tuple space primitives}

� 〈 t , tuple, prType := tuple, ε, ε ‖ out(t ,T) 〉 if
(
(prType = local) ∧ (prName = OUT) ∧ ¬(tuple = ε)

)

� 〈 t, tuples, prType := tuples, ∅, ε ‖ outg(t,T)
〉 if

(
(prType = local) ∧ (prName = OUTG) ∧ ¬(tuples = ∅))

� 〈 a, atuple, prType := atuple, ε, ε

‖ 〈 t := rdp(a,T) ‖ retTuple2Usr(t) 〉 if (prName = RDP)

‖ 〈 t := rdgp(a,T) ‖ retTuples2Usr(t) 〉 if (prName = RDGP)

‖ 〈 t := inp(a,T) ‖ retTuple2Usr(t) 〉 if (prName = INP)

‖ 〈 t := ingp(a,T) ‖ retTuples2Usr(t) 〉 if (prName = INGP)

〉 if
(
(prType = local) ∧ ¬(atuple = ε)

)

{- - - - - - - - - - End of Local Operation Manager - - - - - - - - - -}
{- - - - - - - - - - Start of Remote Operation Manager - - - - - - - - - -}

{Initiate (as reference agent) execution of different remote tuple space operations}
� 〈 t , tuple, prType := tuple, ε, ε ‖ prid := getPrID(prName) ‖ rform := 1

‖ 〈‖ a : 1 ≤ a ≤ TAs :: QTS
ak

:= QTS
ak

• createRTupler(rform, prid, prName, t ,mode, aid, taids[a])〉
〉 if

(
(prType = remote) ∧ (prName = OUT) ∧ ¬(tuple = ε)

)

� 〈 t, tuples, prType := tuples, ∅, ε ‖ prid := getPrID(prName) ‖ rform := 1

‖ 〈‖ a : 1 ≤ a ≤ TAs :: QTS
ak

:= QTS
ak

• createRTupler(rform, prid, prName, t,mode, aid, taids[a])〉
〉 if

(
(prType = remote) ∧ (prName = OUTG) ∧ ¬(tuples = ∅))

� 〈 a, atuple, prType := atuple, ε, ε ‖ prid := getPrID(prName) ‖ rform := 1

‖ ROL := ROL ∪ {prid, prName, taids}
‖ 〈‖ a : 1 ≤ a ≤ TAs :: QTS

ak
:= QTS

ak
• createRTupler(rform, prid, prName, a,mode, aid, taids[a])〉

〉 if
(
(prType = remote) ∧ (prRdIn = TRUE) ∧ ¬(atuple = ε)

)

� 〈 r,QTR
ak

:= head(QTR
ak

),tail(QTR
ak

) ‖ prid := r ↑ prid

‖ 〈 Tprid := Tprid ∪ {r ↑ tAid, r ↑ data} ‖ 〈 ∃e : (e ∈ ROL) ∧ (e ↑ 1 = prid) :: e ↑ 3 := e ↑ 3 \ r ↑ tAid 〉
〉 if

(
(r ↑ rAid = aid) ∧ isPresentinROL(prid, r ↑ tAid)

) {Handling Response tuple}
〉 if

(¬(QTR
ak

=⊥) ∧ (head(QTR
ak

) ↑ rform = 2)
)

{Return result of execution of remote tuple-reading or -consuming operation to user}
� 〈‖ e : (e ∈ ROL) ∧ (e ↑ 3 = ∅)

:: prid, prName := e ↑ 1, e ↑ 2 ‖ ROL := ROL \ e
‖ 〈 〈‖ e : e ∈ Tprid :: t := t ∪ e ↑ tuples 〉 ‖ retTuples2Usr(t)

‖ 〈‖ e : e ∈ Tprid ∧ (
(prName = ING) ∨ (prName = INGP)

)

:: QTS
ak

:= QTS
ak

• createRTupler′(3, prid, prName, aid, e ↑ tAid) 〉
〉 if

(
(prName = RDG) ∨ (prName = RDGP) ∨ (prName = ING) ∨ (prName = INGP)

)

‖ 〈 〈‖ e : e = e′.(e′ ∈ Tprid) :: t , taid := e ↑ tuple, e ↑ tAid 〉 ‖ retTuple2Usr(t)
‖ QTS

ak
:= QTS

ak
• createRTupler′(3, prid, prName, aid, taid)

if
(
(prName = IN) ∨ (prName = INP)

)

‖ 〈‖ e : e ∈ Tprid ∧ ¬(e ↑ tAid = taid) ∧ (
(prName = IN) ∨ (prName = INP)

)

:: QTS
ak

:= QTS
ak

• createRTupler′(4, prid, prName, e ↑ tuple, aid, e ↑ tAid) 〉
〉 if

(
(prName = RD) ∨ (prName = RDP) ∨ (prName = IN) ∨ (prName = INP)

)

〉
{- - - - - - - - - - End of Remote Operation Manager - - - - - - - - - -}

Fig. 4. Mobile UNITY Program agent(k): part 2

activities of TSMM; its subscripts represent purpose of using it. Also, head(Q)

returns front element of Q, while tail(Q) returns all elements of Q except front
element. Again, Q•M inserts messageM in the rear end ofQ and returns updated
Q. M comprises of message identity mid, source host’s identity src, destination

422 S. De, D. Goswami, and S. Nandi

{- - - - - - - - - - Start of ATS Reaction Manager - - - - - - - - - -}
{Complete execution of different remote tuple space operations}

� 〈 r,QTR
ak

:= head(QTR
ak

),tail(QTR
ak

) ‖ prid := r ↑ prid ‖ prName := r ↑ pName

‖ prBulk := TRUE

if
(
(prName = RDG) ∨ (prName = RDGP) ∨ (prName = ING) ∨ (prName = INGP)

)

∼ FALSE

if
(
(prName = RD) ∨ (prName = RDP) ∨ (prName = IN) ∨ (prName = INP)

)

‖ 〈 〈 t := r ↑ data ‖ out(t ,T) 〉 if (prName = OUT)

‖ 〈 t := r ↑ data ‖ outg(t,T) 〉 if (prName = OUTG)

‖ 〈 a := r ↑ data ‖ t := rd(a,T) 〉 if (prName = RD)

‖ 〈 a := r ↑ data ‖ t := rdg(a,T) 〉 if (prName = RDG)

‖ 〈 a := r ↑ data ‖ t := rdp(a,T) 〉 if (prName = RDP)

‖ 〈 a := r ↑ data ‖ t := rdgp(a,T) 〉 if (prName = RDGP)

‖ 〈 a := r ↑ data ‖ t := in(a,T) 〉 if (prName = IN)

‖ 〈 a := r ↑ data ‖ t := ing(a,T) 〉 if (prName = ING)

‖ 〈 a := r ↑ data ‖ t := inp(a,T) 〉 if (prName = INP)

‖ 〈 a := r ↑ data ‖ t := ingp(a,T) 〉 if (prName = INGP)

‖ rform := 2

‖ QTS
ak

:= QTS
ak

• createRTupler′(rform, prid, prName, t , aid, r ↑ rAid) if (prBulk = FALSE)

‖ QTS
ak

:= QTS
ak

• createRTupler′(rform, prid, prName, t, aid, r ↑ rAid) if (prBulk = TRUE)

〉 if
(
(r ↑ tAid = aid) ∧ (r ↑ rform = 1)

) {Handling Reaction tuple}
‖ 〈 t := r ↑ data ‖ out(t ,T)

〉 if
(
(r ↑ tAid = aid) ∧ (r ↑ rform = 4)

) {Handling NACK tuple}
〉 if

(¬(QTR
ak

=⊥)∧
(
(head(QTR

ak
) ↑ rform = 1) ∨ (head(QTR

ak
) ↑ rform = 3) ∨ (head(QTR

ak
) ↑ rform = 4)

))

{- - - - - - - - - - End of ATS Reaction Manager - - - - - - - - - -}

{Discard messages destined for other agents}
� QTR

ak
:= tail(QTR

ak
) if

(¬(QTR
ak

=⊥) ∧ ¬(head(QTR
ak

) ↑ dstAg = aid)
)

end

Fig. 5. Mobile UNITY Program agent(k): part 3

host’s identity dest, type of message kind, data encapsulated within it data, and
network interface, ni, through which M will be transmitted. M is generated by
calling newMsg(src, dest, kind, data, ni), which inserts its mid to return a complete
message. Possible types of messages included in these specifications are BCON,
RT, ACK, Locate, and Found messages.

3.1 Formalization of agent(k)

Each agent is represented by program agent(k), which comprises of declare, al-
ways, initially and assign sections. Agent behavior is specified by different vari-
ables that are declared in declare, like aid and type as agent identity and nature
of agent(k). T is declared as ATS of agent(k), and prid as identity of invoked prim-
itive of agent(k). ROL is declared as remote operation list of agent(k), and RL

is declared as reactive list of agent(k). QTS
ak

and QTR
ak

are declared as queues to

interface between agents and their supported hosts, and transfer request/response

Formal Modeling of Mobile Middleware 423

Program host(i) at λ

declare
type : ∈{stationary,mobile, accesspoint}

� hid : hostid � assoc : set of hostid

� nwdeploy : ∈{iBSS, IBSS} � status : ∈{standalone, connected, associated}
� T′ : tuple space

� QTS
ak

,QTR
ak

: queue of RTtuple � QRTS ,QRTR : queue of RTtuple � r : RTtuple

� a : agentid � A : set of agentid � Qin,Qout : queue of agentid

� H : set of (MHhostid,APhostid, timestamp) � L : set of (MHhostid,RTtuple, timestamp)

� CS : message � TW, TWL : message � M,m : message

� LRT : set of (APhostid/MHhostid,RTmsgid)

� N : set of (Hosthostid, set of agentid, timestamp, extant)

� QSB ,QRB : queue of message � QSRT ,QRRT : queue of message

� QSW
,QSWL

: queue of message � QS ,QR : queue of message

� clock, lastHTSchk, lastRTsent, lastBsent, newRTGap, rtAtmpt : natural

always
BiBSSW

= IBSSBROADCASTADDRESSDS � BiBSSWL
= IBSSBROADCASTADDRESSBSA

� BIBSSWL
= IBSSBROADCASTADDRESS

� λ := Location(i) � hid := getMyHostID(i)

� type := getHostType(stationary,mobile, accesspoint)

� nwdeploy := getNetwork(iBSS, IBSS)

� mhGap = SYSTEMMHVALIDITYINTERVAL � HTSaccessGap = SYSTEMHTSACCESSINTERVAL

� locateGap = SYSTEMLOCATEMSGINTERVAL � bconGap = SYSTEMBEACONINTERVAL

� mhGap = SYSTEMMHVALIDITYINTERVAL � bLife = SYSTEMBEACONLIFETIME

� isPresentH (mhid) ≡ 〈 ∃e : (e ∈ H) ∧ (e ↑ 1 = mhid) 〉
� isPresentL(mhid) ≡ 〈 ∃e : (e ∈ L) ∧ (e ↑ 1 = mhid) 〉
� isPresentN (hostid) ≡ 〈 ∃e : (e ∈ N) ∧ (e ↑ 1 = hostid) 〉
� isPresentLRT (hostid) ≡ 〈 ∃e : (e ∈ LRT) ∧ (e ↑ 1 = hostid) 〉
� isRepeatLRT (hostid,msgid) ≡ 〈 ∃e : (e ∈ LRT) ∧ (e ↑ 1 = hostid) ∧ (e ↑ 2 = msgid) 〉
� isValidH (e, now) ≡ (

(e ∈ H) ∧ ((now − e ↑ 3) ≤ mhGap)
)

� isValidL(e, now) ≡ (
(e ∈ L) ∧ (

(now − e ↑ 3) ≤ locateGap
))

� isValidN (e, now) ≡ (
(e ∈ N) ∧ (

(now − e ↑ 3) ≤ e ↑ 4
))

� isMsgBcon(msg) ≡ (msg· kind = Beacon)

� isMsgRT(msg) ≡ (msg· kind = RT) � isMsgACK(msg) ≡ (msg· kind = ACK)

� isMsgLocate(msg) ≡ (msg· kind = Locate) � isMsgFound(msg) ≡ (msg· kind = Found)

� isNotOwnMsg(msg) ≡ ¬(msg· src = hid)

� isSH(host) ≡ (host· type = stationary) � isMH(host) ≡ (host· type = mobile)

� isAP(host) ≡ (host· type = accesspoint)

Fig. 6. Mobile UNITY Program host(i): part 1

tuples from agents to hosts and vice versa. When user application is invoking any
tuple space operation, corresponding agent captures different parameters required
to complete that operation.

3.2 Formalization of host(i)

Like agent(k), host(i) also comprises of declare, always, initially and assign sec-
tions. Different variables related to host behavior is declared in declare section,

424 S. De, D. Goswami, and S. Nandi

initially
clock = 0 � lastHTSchk = 0 � lastRTsent = 0 � lastBsent = 0

� status = standalone � assoc = ∅ � H = ∅ � L = ∅ � LRT = ∅ � A = ∅ � N = ∅
� T′ =⊥ � TW =⊥ � TWL =⊥ � CS =⊥
� QTS

ak
=⊥ � QTR

ak
=⊥ � Qin =⊥ � Qout =⊥ � QRTS =⊥ � QRTR =⊥

� QSB =⊥ � QRB =⊥ � QSRT =⊥ � QRRT =⊥ � QSW
=⊥ � QSWL

=⊥ � QS =⊥ � QR =⊥

assign
{Increment the clock}

� clock := clock + 1

{- - - - - - - - - - Start of Transport Interface - - - - - - - - - -}
{Organize a message for onward transmission}

� 〈 M,QS := head(QS),tail(QS)

‖ 〈 QSW
:= QSW

•M if (M ·ni = W) ‖ QSWL
:= QSWL

•M if (M ·ni = WL) 〉
〉 if ¬(QS =⊥)

{Transfer a message from QSW
to TW; make TW empty after some time}

� transmit&resetW :: 〈 TW,QSW
:= head(QSW

),tail(QSW
) if ¬(QSW

=⊥) ∧ (TW =⊥) ;

TW :=⊥ 〉
{Transfer a message from QSWL

to TWL; make TWL empty after some time}
� transmit&resetWL :: 〈 TWL,QSWL

:= head(QSWL
),tail(QSWL

) if ¬(QSWL
=⊥) ∧ (TWL =⊥) ;

TWL :=⊥ 〉
{Transfer a message from TW to QR}

� 〈 QR := QR • TW if isNotOwnMsg(TW) 〉 reacts-to ¬(TW =⊥)

{Transfer a message from TWL to QR}
� 〈 QR := QR • TWL if isNotOwnMsg(TWL) 〉 reacts-to ¬(TWL =⊥)

{Organize a received Beacon/RT/ACK/Locate/Found message for further processing}
� 〈 M,QR := head(QR),tail(QR)

‖ 〈 QRB := QRB •M if isMsgBcon(M)

‖ QRRT := QRRT •M if isMsgRT(M) ∨ isMsgACK(M) ∨ isMsgLocate(M) ∨ isMsgFound(M)

〉
〉 if ¬(QR =⊥)

{- - - - - - - - - - End of Transport Interface - - - - - - - - - -}

Fig. 7. Mobile UNITY Program host(i): part 2

like hid as host identity of host(i) and type as nature of host(i). T′ is declared
as its HTS. H and L are declared for History (that records path of successful
data transfer to different mobile hosts) and location list (that lists mobile hosts
with ongoing location search) respectively for host(i) of stationary hosts and
access points in iBSS. Moreover, LRT and CS are declared for LastRT (that
records message identity of last data messages received from different hosts) and
CommStash (that buffers data messages) respectively of host(i) of mobile hosts
and access points in both iBSS and IBSS. Also, N and A are declared to repre-
sent NeighborList and AgentList respectively. Different macros related to various
aspects of discovery and communication mechanisms are included in appendix.

At lowest level, TSMM interacts with transport service, which is formalized
as Transport Interface by a set of assignment statements. Discovery Manager and
Communication Manager interchange messages with Transport Interface through QS

Formal Modeling of Mobile Middleware 425

{- - - - - - - - - - Start of Discovery Manager - - - - - - - - - -}
{Prepare to send Beacon message to destination}

� 〈 QSB , lastBsent := QSB • discSendWiBSS(), clock if
(
isSH(hid) ∧ (nwdeploy = iBSS)

)

‖ QSB , lastBsent := QSB • discSendWLiBSS(), clock if
(
isMH(hid) ∧ (nwdeploy = iBSS)

)

‖ QSB , lastBsent :=
(QSB • discSendWiBSS()

) • discSendWLiBSS(), clock

if
(
isAP(hid) ∧ (nwdeploy = iBSS)

)

‖ QSB , lastBsent := QSB • discSendWLIBSS(), clock if
(
isMH(hid) ∧ (nwdeploy = IBSS)

)

〉 if ((clock − lastBsent) > bconGap)

{Process received Beacon message}
� 〈 discRcvSHiBSS(QRB) if

(
isSH(hid) ∧ (nwdeploy = iBSS)

)

‖ discRcvMHiBSS(QRB) if
(
isMH(hid) ∧ (nwdeploy = iBSS)

)

‖ discRcvAPiBSS(QRB) if
(
isAP(hid) ∧ (nwdeploy = iBSS)

)

‖ discRcvMHIBSS(QRB) if
(
isMH(hid) ∧ (nwdeploy = IBSS)

)

〉 if ¬(QRB =⊥)

{Remove expired entries from N}
� 〈 discValidNiBSS() if

(
(isSH(hid) ∨ isMH(hid) ∨ isAP(hid)) ∧ (nwdeploy = iBSS)

)

‖ discValidNIBSS() if
(
isMH(hid) ∧ (nwdeploy = IBSS)

)

〉
{Update assoc on account of change in associated AP of MH}

� 〈 discUpdtMHiBSS
() if

(
isMH(hid) ∧ (nwdeploy = iBSS)

)

〉 if (¬isPresentN (assoc[0]) ∨ ¬isValidN (〈∃e : e ↑ 1 = assoc[0] :: e〉, clock))
{Update status on account of change in connectivity of MH}

� discUpdtMHIBSS
() if

(
isMH(hid) ∧ (nwdeploy = IBSS)

)

{Organize a Beacon message for onward transmission}
� 〈 QS ,QSB := QS • head(QSB),tail(QSB) 〉 if ¬(QSB =⊥)

{- - - - - - - - - - End of Discovery Manager - - - - - - - - - -}

{- - - - - - - - - - Start of Host Server - - - - - - - - - -}
{Process received RT from different agents}

� 〈� k :: 〈 r,QTS
ak

:= head(QTS
ak

),tail(QTS
ak

) ‖ inject(r,T′) 〉 if ¬(QTS
ak

=⊥) 〉

{Process received RT from COMMUNICATION module}
� 〈 r,QRTR := head(QRTR),tail(QRTR) ‖ inject(r,T′) 〉 if ¬(QRTR =⊥)

{Periodically extract RT from HTS for onward transfer to target agents in same/different hosts}
� 〈 〈‖ a : a ∈ A :: r := eject(a,T′) ‖ 〈QTR

a
:= QTR

a
• r if ¬(r = ε)〉 〉

‖ 〈‖ e : (e ∈ N) ∧ (A = e ↑ 2) :: 〈‖ a : a ∈ A :: r := eject(a,T′) ‖ 〈QRTS := QRTS • r if ¬(r = ε)〉 〉 〉
‖ lastHTSchk := clock

〉 if (clock − lastHTSchk > HTSaccessGap)

{- - - - - - - - - - End of Host Server - - - - - - - - - -}

Fig. 8. Mobile UNITY Program host(i): part 3

and QR. Some behaviors of Discovery Manager and Communication Manager are ab-
stracted as macros, which are used in different assignment statements to fulfill
all functionalities of Discovery Manager and Communication Manager. Host Server

interchanges request/response tuples (represented as RTtuple) with Communica-

tion Manager through QRTS and QRTR , which is formalized via a set of assign-
ment statements. Similarly, a pair of assignment statements formalizes registra-
tion/deregistration functionalities of Agent Manager.

426 S. De, D. Goswami, and S. Nandi

{- - - - - - - - - - Start of Communication Manager - - - - - - - - - -}
{Prepare to send RT/Locate message to destination}

� 〈 commSendSHiBSS(QRTS) if
(
isSH(hid) ∧ (nwdeploy = iBSS)

)

‖ commSendMHiBSS(QRTS) if
(
isMH(hid) ∧ (nwdeploy = iBSS)

)

‖ commSendAPiBSS(QRTS) if
(
isAP(hid) ∧ (nwdeploy = iBSS)

)

‖ commSendMHIBSS(QRTS) if
(
isMH(hid) ∧ (nwdeploy = IBSS)

)

〉 if ¬(QRTS =⊥)

{Process received RT/Locate/Found message, and prepare to send RT/ACK/Found message}
� 〈 commRcvSHiBSS(QRRT) if

(
isSH(hid) ∧ (nwdeploy = iBSS)

)

‖ commRcvMHiBSS(QRRT) if
(
isMH(hid) ∧ (nwdeploy = iBSS)

)

‖ commRcvAPiBSS(QRRT) if
(
isAP(hid) ∧ (nwdeploy = iBSS)

)

‖ commRcvMHIBSS(QRRT) if
(
isMH(hid) ∧ (nwdeploy = IBSS)

)

〉 if ¬(QRRT =⊥)

{Resend RT message whose ACK fails to reach before timeout}
� 〈 QSRT := QSRT • commReSendRTiBSS() if

(
(isMH(hid) ∨ isAP(hid)) ∧ (nwdeploy = iBSS)

)

‖ QSRT := QSRT • commReSendRTIBSS() if
(
isMH(hid) ∧ (nwdeploy = IBSS)

)

〉 if ((clock − lastRTsent) > newRTGap)

{Process RT message whose destination is presently not available}
� 〈 〈 QRTR := QRTR • CS· data ‖ CS :=⊥ 〉 if

(
isMH(hid) ∧ (nwdeploy = iBSS)

)

‖ 〈 QSRT := QSRT • newMsg(hid,BiBSSW
, Locate, CS· dest, W

)

‖ L := L ∪ {(CS· dest, CS· data, clock)} 〉 if
(
isAP(hid) ∧ (nwdeploy = iBSS)

)

‖ 〈 QRTR := QRTR • CS· data ‖ CS :=⊥ 〉 if
(
isMH(hid) ∧ (nwdeploy = IBSS)

)

〉 if
(¬(CS =⊥) ∧ (rtAtmpt > 3)

)

{Remove expired entries from H and L, and preserve unsent RT}
� commValidH LiBSS() if

(
(isSH(hid) ∨ isAP(hid)) ∧ (nwdeploy = iBSS)

)

{Organize RT/ACK/Locate/Found message for onward transmission}
� 〈 QS ,QSRT := QS • head(QSRT),tail(QSRT) 〉 if ¬(QSRT =⊥)

{- - - - - - - - - - End of Communication Manager - - - - - - - - - -}

{- - - - - - - - - - Start of Agent Manager - - - - - - - - - -}
{Register active agents in A}

� A,Qin := A ∪ head(Qin),tail(Qin) if ¬(Qin =⊥)

{Deregister terminated/migrated agents from A}
� A,Qout := A \ head(Qout),tail(Qout) if

(¬(Qout =⊥) ∧ (head(Qout) ∈ A)
)

{- - - - - - - - - - End of Agent Manager - - - - - - - - - -}

end

Fig. 9. Mobile UNITY Program host(i): part 4

4 Conclusion

This paper has proposed an approach of formalization of a TSMM, which de-
couples coordination among interacting agents of supported applications when
deployed over multiple heterogeneous mobile, dynamic and unreliable networks.
Proposed approach formally specifies TSMM as a Mobile UNITY system, com-
prising of components representing different behaviors of agents and hosts of
TSMM. This formalization can be shown to reason TSMM as an appropriate
coordination platform for multiple underlying heterogeneous networks, which
facilitates development of robust and flexible mobile computing applications.

Formal Modeling of Mobile Middleware 427

References

1. Bruneo, D., Puliafito, A., Scarpa, M.: Mobile Middleware: Definition and Motiva-
tions. In: Bellavista, P., Corradi, A. (eds.) The Handbook of Mobile Middleware,
pp. 145–167. Auerbach Pub. (2007)

2. Gelernter, D.: Generative Communication in Linda. Transactions on Programming
Languages and Systems 7(1), 80–112 (1985)

3. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
Publish/Subscribe. Computing Surveys 35(2), 114–131 (2003)

4. De, S., Nandi, S., Goswami, D.: Architectures of Mobile Middleware: A Taxonomic
Perspective. In: Proc. 2nd IEEE Intl. Conf. on Parallel, Distributed and Grid Com-
puting, PDGC 2012 (December 2012)

5. De, S., Nandi, S., Goswami, D.: Modeling an Enhanced Tuple Space based Mobile
Middleware in UNITY. In: Proc. 11th IEEE Intl. Conf. on Ubiquitous Computing
and Communications, IUCC 2012, pp. 1684–1691 (June 2012)

6. De, S., Goswami, D., Nandi, S., Chakraborty, S.: Formalization of a Fully-
Decoupled Reactive Tuple Space Model for Mobile Middleware. In: Borcea, C.,
Bellavista, P., Gianelli, C., Magedanz, T., Schreiner, F. (eds.) Mobilware 2012.
LNICST, vol. 65, pp. 77–91. Springer, Heidelberg (2013)

7. Roman, G.C., McCann, P.J., Plun, J.Y.: Mobile UNITY: Reasoning and Specifica-
tion in Mobile Computing. Transactions on Software Engineering and Methodology
6(3), 250–282 (1997)

8. Murphy, A.L., Picco, G.P., Roman, G.C.: Lime: A Coordination Model and
Middleware supporting Mobility of Hosts and Agents. Transactions on Software
Engineering and Methodology 15(3), 279–328 (2006)

9. Roman, G.C., Payton, J.: Mobile UNITY Schemas for Agent Coordination. In:
Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003. LNCS, vol. 2589,
pp. 126–150. Springer, Heidelberg (2003)

10. IEEE 802.11 WG Std.: Wireless LANMedium Access Control (MAC) and Physical
Layer (PHY) Specifications. Technical Report 802.11TM (June 2007)

11. De, S., Nandi, S., Goswami, D.: On Performance Improvement Issues in Unordered
Tuple Space based Mobile Middleware. In: Proc. 2010 Annual IEEE India Conf.,
INDICON 2010 (December 2010)

12. De, S., Goswami, D., Nandi, S.: A New Tuple Space Structure for Tuple Space
based Mobile Middleware Platforms. In: Proc. 2012 Annual IEEE India Conf.,
INDICON 2012 (December 2012)

13. De, S., Chakraborty, S., Nandi, S., Goswami, D.: Supporting Tuple Space based
Mobile Middleware over Unreliable Mobile Infrastructures: Design and Formal
Specifications. In: Proc. 6th IEEE Intl. Conf. on Advanced Networks and Telecom-
munications Systems, ANTS 2012 (December 2012)

A Appendix: Macros Related to Formalization of TSMM

A.1 Macros of Discovery Manager

M := discSendWiBSS
() � 〈 M := newMsg(hid,BiBSSW

, BCON, buildBcon(A, bLife), W) 〉

M := discSendWLiBSS
() � 〈 M := newMsg(hid, BiBSSWL

, BCON, buildBcon(A, bLife), WL) 〉

M := discSendWLIBSS
() � 〈 M := newMsg(hid, BIBSSWL

, BCON, buildBcon(A, bLife), WL) 〉

428 S. De, D. Goswami, and S. Nandi

discRcvSHiBSS
(QRB

) �

〈 m,QRB
:= head(QRB

), tail(QRB
)

‖ 〈 N := N ∪ {m· src,m· data ↑ agids, clock, m· data ↑ extant} if ¬isPresentN (m· src)
‖ 〈∃e : (e ∈ N) ∧ (e ↑ 1 = m· src) :: e ↑ 2, e ↑ 3, e ↑ 4 := m· data ↑ agids, clock,m· data ↑ extant

〉 if isPresentN (m· src)
〉 if

(
isSH(m· src) ∨ isAP(m· src))

〉

discRcvMHiBSS
(QRB

) �

〈 m,QRB
:= head(QRB

), tail(QRB
)

‖ 〈 N := N ∪ {m· src,m· data ↑ agids, clock,m· data ↑ extant} if ¬isPresentN (m· src)
‖ 〈∃e : (e ∈ N) ∧ (e ↑ 1 = m· src) :: e ↑ 2, e ↑ 3, e ↑ 4 := m· data ↑ agids, clock, m· data ↑ extant

〉 if isPresentN (m· src)
‖ status, assoc[0] := associated,m· src
〉 if

(
isAP(m· src) ∧ (status = standalone)

)

‖ 〈 N := N ∪ {m· src,m· data ↑ agids, clock,m· data ↑ extant} if ¬isPresentN (m· src)
‖ 〈∃e : (e ∈ N) ∧ (e ↑ 1 = m· src) :: e ↑ 2, e ↑ 3, e ↑ 4 := m· data ↑ agids, clock, m· data ↑ extant

〉 if isPresentN (m· src)
‖ assoc[0] := m· src
〉 if

(
isAP(m· src) ∧ (status = associated)

)

〉

discRcvAPiBSS
(QRB

) �

〈 m,QRB
:= head(QRB

), tail(QRB
)

‖ 〈 N := N ∪ {m· src, m· data ↑ agids, clock, m· data ↑ extant} if ¬isPresentN (m· src)
‖ 〈∃e : (e ∈ N) ∧ (e ↑ 1 = m· src) :: e ↑ 2, e ↑ 3, e ↑ 4 := m· data ↑ agids, clock,m· data ↑ extant

〉 if isPresentN (m· src)
〉 if

(
isSH(m· src) ∨ isAP(m· src))

‖ 〈 N := N ∪ {m· src, m· data ↑ agids, clock, m· data ↑ extant} if ¬isPresentN (m· src)
‖ 〈∃e : (e ∈ N) ∧ (e ↑ 1 = m· src) :: e ↑ 2, e ↑ 3, e ↑ 4 := m· data ↑ agids, clock,m· data ↑ extant

〉 if isPresentN (m· src)
‖ assoc := assoc ∪ {m· src}
〉 if isMH(m· src)

〉

discUpdtMHiBSS
() � 〈 assoc[0] :=⊥ ‖ 〈assoc[0] := a.(a ∈ N) if ¬(N = ∅)〉

‖ status := standalone if (assoc[0] =⊥) ∼ associated if ¬(assoc[0] =⊥)

〉

discValidNiBSS
() � 〈‖ e : e ∈ N :: N := N \ {e} if ¬isValidN (e, clock) 〉

discUpdtMHIBSS
() � 〈 status := standalone if (N = ∅) ∼ connected if ¬(N = ∅) 〉

discValidNIBSS
() � 〈‖ e : e ∈ N :: N := N \ {e} if ¬isValidN (e, clock) 〉

(1)

discRcvMHIBSS
(QRB

) �

〈 m, QRB
:= head(QRB

), tail(QRB
)

‖ 〈 N := N ∪ {m· src,m· data ↑ agids, clock,m· data ↑ extant} if ¬isPresentN (m· src)
‖ 〈∃e : (e ∈ N) ∧ (e ↑ 1 = m· src) :: e ↑ 2, e ↑ 3, e ↑ 4 := m· data ↑ agids, clock,m· data ↑ extant

〉 if isPresentN (m· src)
‖ status := connected

〉 if
(
isMH(m· src) ∧ (status = standalone)

)

‖ 〈 N := N ∪ {m· src,m· data ↑ agids, clock,m· data ↑ extant} if ¬isPresentN (m· src)
‖ 〈∃e : (e ∈ N) ∧ (e ↑ 1 = m· src) :: e ↑ 2, e ↑ 3, e ↑ 4 := m· data ↑ agids, clock,m· data ↑ extant

〉 if isPresentN (m· src)
〉 if

(
isMH(m· src) ∧ (status = connected)

)

〉

Formal Modeling of Mobile Middleware 429

A.2 Macros of Communication Manager

commSendSHiBSS
(QRTS

) �

〈 r,QRTS
:= head(QRTS

), tail(QRTS
) ‖ dstid := r ↑ dstHost

‖ QSRT
:= QSRT

• newMsg
(
hid, dstid, RT, r,W

)
if

(
isSH(dstid) ∧ (hosthidΓ

′
hostdstid)

)

‖ QRTR
:= QRTR

• r if
(
isSH(dstid) ∧ ¬(hosthidΓ

′
hostdstid)

)

‖ 〈 apid := 〈 ∃ e : (e ∈ H) ∧ (e ↑ 1 = dstid) :: e ↑ 2 〉

‖ QSRT
:= QSRT

• newMsg
(
hid, apid, RT, r,W

)
if (hosthidΓ

′
hostapid)

‖ QRTR
:= QRTR

• r if ¬(hosthidΓ
′
hostapid)

〉 if
(
isMH(dstid) ∧ isPresentH (dstid)

)

‖ 〈 QSRT
:= QSRT

• newMsg
(
hid,BiBSSW

, Locate, dstid,W
) ‖ L := L ∪ {(dstid, r, clock)}

〉 if
(
isMH(dstid) ∧ ¬isPresentH (dstid)

)

〉

commSendMHiBSS
(QRTS

) �

〈 r,QRTS
:= head(QRTS

), tail(QRTS
) ‖ m := newMsg

(
hid, assoc[0], RT, r,WL

)

‖ QSRT
, CS, lastRTsent, newRTGap, rtAtmpt := QSRT

• m,m, clock, rtGap, 0

if (hosthidΓ
′
hostassoc[0])

‖ QRTR
:= QRTR

• r if ¬(hosthidΓ
′
hostassoc[0])

〉 if
(
(status = associated) ∧ (CS =⊥)

)

commSendAPiBSS
(QRTS

) �

〈 r,QRTS
:= head(QRTS

), tail(QRTS
) ‖ dstid := r ↑ dstHost

‖ QSRT
:= QSRT

• newMsg
(
hid, dstid, RT, r,W

)
if

(
isSH(dstid) ∧ (hosthidΓ

′
hostdstid)

)

‖ QRTR
:= QRTR

• r if
(
isSH(dstid) ∧ ¬(hosthidΓ

′
hostdstid)

)

‖ 〈 m := newMsg
(
hid, dstid, RT, r,WL

)

‖ QSRT
, CS, lastRTsent, newRTGap, rtAtmpt := QSRT

• m,m, clock, rtGap, 0

if (hosthidΓ
′
hostdstid)

‖ QRTR
:= QRTR

• r if ¬(hosthidΓ
′
hostdstid)

〉 if
(
isMH(dstid) ∧ (dstid ∈ assoc) ∧ (CS =⊥)

)

‖ 〈 apid := 〈 ∃ e : (e ∈ H) ∧ (e ↑ 1 = dstid) :: e ↑ 2 〉

‖ QSRT
:= QSRT

• newMsg
(
hid, apid, RT, r,W

)
if (hosthidΓ

′
hostapid)

‖ QRTR
:= QRTR

• r if ¬(hosthidΓ
′
hostapid)

〉 if
(
isMH(dstid) ∧ ¬(dstid ∈ assoc) ∧ isPresentH (dstid)

)

‖ 〈 QSRT
:= QSRT

• newMsg
(
hid,BiBSSW

, Locate, dstid,W
) ‖ L := L ∪ {(dstid, r, clock)}

〉 if
(
isMH(dstid) ∧ ¬(dstid ∈ assoc) ∧ ¬isPresentH (dstid)

)

〉

commSendMHIBSS
(QRTS

) �

〈 r,QRTS
:= head(QRTS

), tail(QRTS
) ‖ dstid := r ↑ dstHost ‖ m := newMsg

(
hid, dstid, RT, r,WL

)

‖ QSRT
, CS, lastRTsent, newRTGap, rtAtmpt := QSRT

• m, m, clock, rtGap, 0

if
(
isMH(dstid) ∧ (hosthidΓ

′
hostdstid)

)

‖ QRTR
:= QRTR

• r if
(¬isMH(dstid) ∨ ¬(hosthidΓ

′
hostdstid)

)

〉 if
(
(status = connected) ∧ (CS =⊥)

)

commRcvSHiBSS
(QRRT

) �

〈 m,QRRT
:= head(QRRT

), tail(QRRT
)

‖ QRTR
:= QRTR

• m· data if
(
isMsgRT(m) ∧ (isSH(m· src) ∨ isAP(m· src)) ∧ (m· dest = hid)

)

‖ 〈 QSRT
:= QSRT

• newMsg
(
hid,m· src, RT, 〈∃e : (e ∈ L) ∧ (e ↑ 1 = m· data) :: e ↑ 2〉,W)

‖ H := H ∪ {(m· data, m· src, clock)}
〉 if

(
isMsgFound(m) ∧ isAP(m· src) ∧ isPresentL(m· data)

)

430 S. De, D. Goswami, and S. Nandi

〉

commRcvMHiBSS
(QRRT

) �

〈 m,QRRT
:= head(QRRT

), tail(QRRT
)

‖ 〈 〈 QRTR
:= QRTR

• m· data ‖ 〈∃e : (e ∈ LRT) ∧ (e ↑ 1 = m· src) :: e ↑ 2 := m·mid〉

〉 if
(
isPresentLRT (m· src) ∧ ¬isRepeatLRT (m· src,m·mid)

)

‖ 〈 QRTR
:= QRTR

• m· data ‖ LRT := LRT ∪ {(m· src,m·mid)} 〉 if ¬isPresentLRT (m· src)

‖ QSRT
:= QSRT

• newMsg
(
hid, m· src, ACK, m·mid,WL

)

〉 if
(
isMsgRT(m) ∧ isAP(m· src) ∧ (m· src = assoc[0]) ∧ (m· dest = hid)

)

‖ CS :=⊥ if
(
isMsgACK(m) ∧ isAP(m· src) ∧ (m· src = assoc[0]) ∧ (m· dest = hid) ∧ (rtAtmpt < 3)

∧ ((clock − lastRTsent) < newRTGap) ∧ ¬(CS =⊥) ∧ (m·mid = CS·mid)
)

〉

commRcvAPiBSS
(QRRT

) �

〈 m,QRRT
:= head(QRRT

), tail(QRRT
)

‖ QRTR
:= QRTR

• m· data if
(
isMsgRT(m) ∧ (isSH(m· src) ∨ isAP(m· src)) ∧ (m· dest = hid)

)

‖ 〈 〈 QRTR
:= QRTR

• m· data ‖ 〈∃e : (e ∈ LRT) ∧ (e ↑ 1 = m· src) :: e ↑ 2 := m·mid〉

〉 if
(
isPresentLRT (m· src) ∧ ¬isRepeatLRT (m· src,m· data)

)

‖ 〈 QRTR
:= QRTR

• m· data ‖ LRT := LRT ∪ {(m· src,m·mid)} 〉 if ¬isPresentLRT (m· src)

‖ QSRT
:= QSRT

• newMsg
(
hid, m· src, ACK, m·mid,WL

)

〉 if
(
isMsgRT(m) ∧ isMH(m· src) ∧ (m· src ∈ assoc) ∧ (m· dest = hid)

)

‖ CS :=⊥ if
(
isMsgACK(m) ∧ isMH(m· src) ∧ (m· src ∈ assoc) ∧ (m· dest = hid) ∧ (rtAtmpt < 3)

∧ ((clock − lastRTsent) < newRTGap) ∧ ¬(CS =⊥) ∧ (m·mid = CS·mid)
)

‖ 〈 QSRT
:= QSRT

• newMsg
(
hid,m· src, RT, 〈∃e : (e ∈ L) ∧ (e ↑ 1 = m· data) :: e ↑ 2〉,W)

‖ H := H ∪ {(m· data, m· src, clock)}
〉 if

(
isMsgFound(m) ∧ isAP(m· src) ∧ isPresentL(m· data)

)

‖ 〈 QSRT
:= QSRT

• newMsg
(
hid, m· src, Found,m· data,W

)
if (m· data ∈ assoc)

〉 if
(
isMsgLocate(m) ∧ (isSH(m· src) ∨ isAP(m· src)))

〉

M := commReSendRTiBSS
() �

〈 M, lastRTsent, newRTGap, rtAtmpt := CS, clock, (2 ∗ newRTGap), (rtAtmpt + 1)

if
(¬(CS =⊥) ∧ (rtAtmpt < 3)

)

〉

commValidH LiBSS
() �

〈 〈‖ e : e ∈ H :: H := H \ {e} if ¬isValidH (e, clock) 〉
‖ 〈‖ e : e ∈ L :: (QRTR

:= QRTR
• e ↑ 2) ‖ L := L \ {e} if ¬isValidL(e, clock) 〉

〉

M := commReSendRTIBSS
() �

〈 M, lastRTsent, newRTGap, rtAtmpt := CS, clock, (2 ∗ newRTGap), (rtAtmpt + 1)

if
(¬(CS =⊥) ∧ (rtAtmpt < 3)

) 〉

commRcvMHIBSS
(QRRT

) �

〈 m,QRRT
:= head(QRRT

), tail(QRRT
)

‖ 〈 〈 QRTR
:= QRTR

• m· data ‖ 〈∃e : (e ∈ LRT) ∧ (e ↑ 1 = m· src) :: e ↑ 2 := m·mid〉

〉 if
(
isPresentLRT (m· src) ∧ ¬isRepeatLRT (m· src,m·mid)

)

‖ 〈 QRTR
:= QRTR

• m· data ‖ LRT := LRT ∪ {(m· src,m·mid)} 〉 if ¬isPresentLRT (m· src)

‖ QSRT
:= QSRT

• newMsg
(
hid, m· src, ACK, m·mid,WL

)

〉 if
(
isMsgRT(m) ∧ isMH(m· src) ∧ (m· dest = hid)

)

‖ CS :=⊥ if
(
isMsgACK(m) ∧ isMH(m· src) ∧ (m· dest = hid) ∧ (rtAtmpt < 3)

∧ ((clock − lastRTsent) < newRTGap) ∧ ¬(CS =⊥) ∧ (m·mid = CS·mid)
)

〉

	Formal Modeling of Mobile Middleware for Tuple Space Coordination over Multiple Heterogeneous Networks

	1 Introduction
	2 Overview of TSMM Having Multiple Decoupled Coordination
	3 Proposed Approach of Formalization of TSMM
	3.1 Formalization of agent(k)

	3.2 Formalization of host(i)

	4 Conclusion
	References

