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Abstract. In this paper, we propose a pruning method in order to reduce the 
search space for the job-shop scheduling problem with makespan minimization. 
In RATA model each trace corresponds to a feasible schedule, so we apply this 
method to the reachability algorithm of RATA model that explores the space of 
all possible schedules. We conducted an experimental study over a set of 
benchmarks. The results show that the proposed method is able to reduce both 
the space and the time in searching for optimal schedules. 
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1 Introduction 

The job-shop scheduling problem is a paradigm of optimization and constraint 
satisfaction problems for distributed systems referenced in many researches over the last 
years. Traditionally, the optimization criterion is the so-called makespan minimization, 
which requires to count the time spent to perform the actions of the job-shop.  Job-shop 
problems require the expressions of concurrent and parallel behaviors [1][2][3]. 

In this paper, we propose to capture job-shop scheduling problems from a very 
intuitive and compact description model, called Resource Allocation Timed Automata 
(RATA). This model inherits from the DATA model which introduces true 
concurrency semantics to deal with concurrent events [4]. Extensions are provided to 
explicitly represent the resource requirements needed for scheduling analysis. In this 
model, the parallelism is implicitly expressed from the starting events of actions (i.e. 
once started, the actions are assumed to behave in parallel until their terminations). 
This avoids splitting the description of running actions in start and end events, as this 
is proposed in the Timed Automata models (TA) dedicated to scheduling problems, 
e.g. [5]. As another interest, the RATA reachability graphs are generally much smaller 
than the TA ones, e.g. [6]. However, both suffer from the well-known combinatorial 
explosion problem. 

A standard way to attack this explosion problem consists in restraining the 
execution of actions by focusing on the immediate runs, to study the scheduling 
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problems. However in practice, other reduction techniques must be exploited. The 
main contribution of this paper consists in proposing a set of search space reduction 
techniques adapted to the RATA models and that can be combined to gain more 
efficiency. In the last decade, several advances were investigated, from different 
representations including the TA models. In particular, partial order techniques such 
as stubborn sets can take advantage of the independency of some executions of 
actions, in order to reduce the reachability graph to consider [7]. In [8], another partial 
order technique, namely the sleep sets, is combined with the so-called laziness 
reduction technique. The aim is avoiding the generation of some lazy runs, featured 
by configurations from which a bad exploitation of the machines can be detected. In 
this paper, we propose an improved version of both the stubborn set and laziness 
reduction techniques, and we propose to combine them since sleep sets are known to 
only reduce transitions but preserve useless states [9].  

Moreover, in another proposition [3], the laziness techniques were replaced by the 
so-called domination test. This test aims at defining relations between the 
configurations to be explored within the search space. It is used to suppress the lazy 
runs and other bad configurations but also is used to replace equivalent sets of 
configurations by representatives.  Observe that the domination test performs 
comparisons over the set of computed configurations, therefore the laziness reduction 
technique maintains its interest, since only locally applied from each considered 
configuration. In this paper, an improvement is proposed to better establish the 
dominance property between the configurations.   

We also use a last reduction technique based on an estimation of the remaining 
time to be spent in order to achieve the runs from some configuration. Actually, 
several variants and improvements exist in the literature, e.g. [10].  

The remaining of the paper is organized as follows. In section 2, the RATA model 
is presented and a job-shop use case is described using this model. Section 3 brings 
out our reachability algorithm dedicated to makespan minimizations. Search space 
reduction techniques are proposed in Section 4. In Section 5, experimental studies are 
presented to highlight the efficiency of our approach. This includes some comparisons 
against an extension of TA [2]. Section 6 presents our conclusion and perspectives.  

2 RATA Model 

The RATA model re-uses DATA concepts, in particular the non-atomicity of actions 
is captured by the fact that each transition only corresponds to a start of an action. 
From state to state, one or several independent actions can be launched, therefore, 
each state could be associated with a set of launched actions. In the model, each of 
these launched actions are represented by means of a distinct clock, dynamically 
created and initialized to 0 at the transition which starts the action. A set of temporal 
constraints is also associated with each state, expressing the conditions of ends 
concerning the launched actions in the state. As an example, consider the DATA of 
Figure 1.a, modeling a system S where two actions, a and b, able to run concurrently. 
A distinct clock is assigned to these actions, x and y respectively. Starting from the 

initial state s0, there are two possible transitions: 1

x,a

0 ss →  and 2

y,b

0 ss → . A label (a,x) attached 
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to a transition indicates that the action a has just been launched, and that the clock x 
will give the time spent since the launching of a. Similarly from the reached states, 

the following two transitions 3

y,b

1 ss → and 3

x,a

2 ss →  are possible.  
In the initial state s0, the set of temporal constraints is empty because none of the 

actions is running in this state. In s1, {x≥10} specifies that the action a finishes its 
execution as soon as x reaches 10. Similarly, s2 is labeled by {y≥12}. In s3, the actions 
a and b can continue their runs in parallel, and each one can finish only if its proper 
clock reaches a value equal to its duration, so the associated set of temporal 
constraints is {x≥10,y≥12}. 

 

 

Fig. 1. Behaviors of two systems in terms of DATA 

The precedence relation between actions implies to annotate each transition with 
some additional guard, namely Duration Condition (DC). This guard on a transition 
expresses that the new launched action is possible, provided the preceding launched 
ones have been terminated. In the DATA model, this is formally expressed as a subset 
of the set of temporal constraints attached to the source state of the transition. 
Consider for instance the system R wherein the action a must be followed by the 
action b. The behavior of R is shown in Figure 1.b. Since at most one action can run at 
a certain point, the same clock x can be assigned to both actions a and b. From the 
initial state, the unique transition expresses that a can be launched without any 
duration constraint, hence DC=∅ for this transition (not represented in the figure 
since empty). From the state s1 where the temporal constraints is {x≥10} for a, the 
action b can obviously be run only if the action a finishes its execution. This condition 
is expressed by the set DC={x≥10} attached to the transition which launches the 
action b.  So, b can start at any time within the enabling open interval x∈ [10,+∝[. 

2.1   Intuition of RATA Model 

The RATA model is an extension of the DATA one, assuming an execution platform of 
(M) machines. An action is executed on a predetermined machine, inducing a duration 
for its execution. Since a machine cannot be allocated to several actions at the same time, 
a mutual exclusion mechanism must hold constraining the execution of actions. 

Let us consider the system S again, but assume that the execution platform is either 
P1 or P2. The first one contains two machines m1 and m2, used for executing the 
actions a and b respectively, whereas the second contains a single machine m used for 
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executing any action. The corresponding behaviors for S are represented by the 
RATA of Figures 2.a and 2.b, respectively. 

It appears that DATA and RATA have the same structure, however the duration of the 
launched actions are now expressed by using the function τ such that τ(a,m) yields the 
duration of any action a executed on a machine m. In addition to DC, each transition will 
be labeled by another guard, namely Availability Condition (AC), expressing the mutual 
exclusion constraints on shared machines. As for DC, The condition AC for a transition is 
a subset of the temporal constraints of the source state, however concern the ones related 
to the machine of the transition. AC is not displayed when empty. 

 

 

Fig. 2. System S executed on platforms P1 and P2 

In Figure 2.a, all the transitions have an empty AC since there is no shared machine 
on P1. In Figure 2.b, the transition starting from the state s1 is labeled by 
AC={x≥τ(a,m)}. Indeed, the temporal constraint x≥τ(a,m) in the source state relates to 
the shared machine m of the platform P2. So in the state s1, the action a is possibly in 
execution on m and the launching of the action b is enabled only if the temporal 
constraint x≥τ(a,m) holds (i.e. the machine m has finished the execution of a and can 
start b). Observe that similar reason implies the label of the transition starting from s2. 
Observe that the state s3 of Figure 2.b represents different situations of execution 
where at most one action can be running in s3, with regard to the set of temporal 
constraints associated with s3.  

Further, DC and AC sets are removed from the figures since they can be easily 
deduced from the clocks and machines used in the labels of transitions, together with 
the information of the temporal constraints of the source and target states. 

2.2    Formalization 

Definition 1: Let H={x,y...} be a set of clocks whose values are defined in a time 
domain R+ and M a set of machines. The set Φ(H) of temporal constraints γ over H is 
defined by the syntax γ::=x≥t, where t is a duration value. Durations are expressed by 
the duration function τ:A×M→N s.t. τ(a,m) represents the duration of action a of A (A 
the set of actions), running on a machine m of M (M the set of machines). Given F a 
set of constraints, its subset Fx and Fm respectively represent the constraint to the 
clock x and the different constraints related to the machine m. 

A valuation v (of the clocks) of H is a mapping which assigns each clock of H to a 
value in R+. The set of all valuations for H is denoted Ξ(H). A valuation v∈Ξ(H) 
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satisfies a temporal constraint γ=(x≥t) with x∈H, which is denoted v|=x≥t, iff v(x) ≥t. 
Further, this satisfaction is linearly extended to deal with sets of temporal constraints. 

W.r.t. x∈H, [x→0]v denotes the valuation of H which assigns the value 0 to the clock 
x and accords with v concerning the clocks of H\{x}. 

 

Definition 2: A RATA model RM is a tuple (S, s0, H, M, L, T) where: 
• S is a finite set of states, s0∈S  is the initial state, 
• H and M are respectively the finite set of clocks and the finite set of 

machines,  
• L: S → 2Φ(H) is a mapping that associated with each state s, a set of temporal 

constraints F=L(s), representing the set of actions possibly in execution in s,  
• T  ⊆  S × A × H × M × S is the set of transitions. A transition (s,a,x,m,s’) also 

denoted 
'm,x,a ss ⎯⎯ →⎯  represents a change from the state s to the state s’, 

involving to start the action a on the machine m and define a clock x 
initialized to 0 to be associated with the action a. 

 

Definition 3: W.r.t. a transition (s,a,x,m,s’)∈T, the sets DC and AC of constraints are 
defined by: DC=L(s)\(L(s’)\ L(s’)x)  and AC= L(s)m. 

The first equation is deduced from L(s')= (L(s)\ DC) ∪ {x≥τ(a,m)}, where DC can 
be regarded as the precedence constraints defined over the actions of a job. For the 
first action, DC is empty, otherwise it is reduced to a singleton which relates to the 
preceding action of a within the same job. The cardinality of AC can be larger than 
one, since there may be in s several actions which share the same machine.  

The launching of a transition (s, a, x, m, s') from a given valuation v associated 
with s, is constrained by the following two conditions: 

 

• v |= DC. The specification of a system directly corresponds to the properties 
of precedence over the action executions. 

• v | = AC. Thus, any action executed in s on a machine m must be completed 
to allow the firing of a transition which refers to the same machine. 

 

Definition 4: The semantics of a RATA RM =(S, s0, H, M, L, T) is defined by 
associating with RM, an infinite transition system SA on the alphabet A∪R+. A state of 
SA, also called a configuration, is a pair <s,v> where s is a state of RM and v a clock 
valuation for H. A configuration <s0,v0> is initial iff s0  is initial in RM and ∀x∈H, 
v0(x)=0. The two following rules express that two types of transitions can link the SA 
configurations, corresponding to an elapsing of time (RA) and an execution of an 
action of A (RD), respectively : 

( )
[ ]

)RD(

v0x,sv,s

vTs,m,x,a,s
)RA(

dv,sv,s

d

'
a

'

d

DCAC
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=∈

+→

∈ ∪+    R  

According to the model semantics, the label a in the RD rule implies the start of an 
action a and not the whole execution of a. This rule can be applied only in case both 
sets DC and AC are satisfied. Otherwise, the time step rule RA is applied.  

By applying the above rules from the initial configurations, we are able to compute 
the set of reachable configurations. Further, a run is a path of reachable 
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configurations, by application of the two former rules. A possible run denoted  
(s0,v0) ⎯→⎯d  (s0,v1) ⎯→⎯a  (s1,v2), where d represents the time spent in (s0,v0) and a the 
action to be started from (s0,v1), first induces that v1=v0+d, moreover there are a 
machine m and a clock x such that (s0,a,x,m,s1) is a transition of the RATA and 
v2=[x→0]v1. 

2.3    Modeling the Job-Shop with RATA Model 

In this paper, the job-shop model is obtained compositionally.  First, the sequential 
semantics for each job is parsed, yielding a RATA model for each job. Then, a 
standard parallel composition is used to obtain the RATA model of the whole system. 
The reader can find more details in [11] about the modeling approach and the formal 
definition of job-shop problem. We restrict our presentation to an example of this 
problem and its resulting RATA model. 

Consider a job-shop system R sharing a set of machines M={m1,m2}, knowing that 
each machine performs at most one action at a time, without capacity of preemption. 
Further, we consider the two following jobs: j1=a≺b and j2=c, where ≺ represents the 
precedence relation concerning the execution of actions. The machine allocated to  
the actions are~:μ(a)=μ(c)=m1, μ(b)=m2, and the duration of the action execution over 
the shared machines follows~:τ(a,m1)=4, τ(b,m2)=5 and τ(c,m1)=3. The behavior of 
these jobs is concisely represented by the RATAs of Figures 3.(j1) and  3.(j2) and the 
resulting composition by Figure 3.(j1|||j2). 
 

� 

{y�� (a, m1)} 

s0 

s1 

s5 

a, y,m1 

b, y,m2 

{y�� (b, m2)} 

� 

(j1) 

(j2) 

s0 s1 

c, x,m1 

{x�� (c, m1)} 

c, x,m1 

{x�� (c, m1), y�� (a, m1)} 

s00 

s01 

s02 

� s10 

s11 

s12 

c, x,m1 

c, x,m1 

a, y,m1 a, y,m1 

b, y,m2 b, y,m2 

{x�� (c, m1), y�� (b, m2)} {y�� (b, m2)} 

{y�� (a, m1)} 

{x�� (c,m1)} 

(j1||| j2)  

Fig. 3. RATAs of the jobs j1, j2 and j1||| j2. 

It is worth noting that the labels of states and transitions in the model (j1||| j2) still 
allow an evaluation of the constraints AC and DC. For instance, the transition from 
s10, which can violate the mutual exclusion w.r.t. the machine m1 is prohibited until 
the action c is considered as terminated in this state (The AC condition specifies that 
the constraint relative to m1 in the source state must hold). Observe finally that there 
are only 6 nodes and 7 edges in the (j1||| j2) model, whereas the same specification 
according to the standard TA approaches involves 14 nodes and 18 arcs [2]. 
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3 Reachability Analysis Algorithm 

Starting from the initial configuration of a RATA model, a run is complete if it leads 
to a final configuration, the potentially running actions of which are considered as 
terminated. From every complete run, say CR, a schedule can be straightforwardly 
derived, associating with each action a, the starting time st(a) of the transition labeled 
by a in CR. Actually, the length of the schedule coincides with the metric length of CR. 
In order to compute the length of a run and the start times of the actions, the 
considered RATA is augmented by an additional clock to measure the elapsing time 
spent from the beginning of a run, therefore this clock is never reset to zero. Further, 
its valuation is denoted tA. A configuration (s,v) of the RATA model is reachable 
within the time tA iff (s,v,tA) is reachable in the augmented RATA. Our objective is to 
perform a makespan minimization of job-shop problem that is to determine the 
minimal time schedule where all the actions are completed. The basic algorithm for 
this problem is presented below. 

 
Algorithm I (A minimal-time Reachability algorithm) 
W ← {(s,v0,0)} ; P ← ∅ ; Best ← ∞ 
while (W ≠ ∅) do  
    (s,v,tA) ←selectRemove(W) 
    if ((s,v,tA) ∉d P) then 
         P ← P∪ {(s,v,tA) } 
         if (E(s,v,tA)<Best) then 
              S ← {(s,v’,tA’) |  (s,v,tA) → (s’,v’,tA’)∧ →∉ reduce(s)} 
              if S = ∅  then  
                  Best ← E(s,v,tA) 
              else 
                  W ← W∪d S 
             end if  
         end if  
    end if  
end while 
Return Best 

 
The reachability analysis is realized on-the-fly during the building of the RATA model. 
This avoids an overall construction in case the optimal solution is rapidly discovered. 
The algorithm operates on the configurations of the reachability graph, the information 
of which are mainly the location, the clock valuations and an accumulated global time. 
The list of configurations that must be explored is represented by an ordered set W, 
called the waiting list. The waiting list W initially contains the initial configuration 
(s,v0,0), which in our case corresponds to the state where no job are started, therefore 
clocks are initialized to zero.  The set P is the passed list that means the list of already 
explored configurations, which is normally empty at the start of the search algorithm. 
The global variable Best holds the time of the best path found so far. (s,v,tA) represents 
the configuration that is currently explored in the algorithm. From some configuration 
(s,v,tA), S is the sub-set of immediate successors that be reached by a single transition 
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and which does not belong to the reduced transitions of this configuration. In case the 
set S is empty, the configuration (s,v,tA) is a final state, thus can be used to update the 
Best value. The function selectRemove(W) selects and removes from W, a 
configuration which is minimal according to the ordering ≤ord defined by the tree 
search strategy. In order to avoid visiting and exploring the same configuration 
repeatedly, the operations ∉d and ∪d are performed with a respect to some specific 
property, called dominance property. The function reduce (S) is used to remove those 
configurations that cannot contribute to a better path or to the optimal run. The test 
E(s,v,tA)<Best compares the estimation time value of the current configuration to  
the best time value found. This avoids the explorations of non-optimal runs if the 
comparison fails. In a final configuration (s,v,tA), E(s,v,tA) yields the exact value of the 
global (reachability) time for the configuration, here tA. In the next section, we discuss 
some decision criteria concerning the function reduce, the dominance property and the 
global time estimation. 

4 Search-Space Reduction Techniques 

We propose various search-space reduction techniques that can be used to efficiently 
prune useless configurations in the reachability graph. They are divided in 2 great 
classes, the ones that can be realized locally to the considered configuration, then 
before the generation of its successors, and the second ones which require 
comparisons between the generated successors and the existing configurations. 

4.1    Reduction before the Generation of Configurations 

Immediate Runs. Because the time spent on states is left unrestricted by the rule RA 
in Definition 4, it appears that each qualitative path in a RATA features an infinite 
number of runs. This can be corrected by only focusing on the restricted notion of 
immediate runs. 
 
Definition 5: (Immediate Run) an immediate run is a run within which each transition 
is taken as soon as the firing conditions, AC and DC, are satisfied. A non-immediate 
run is defined as a run containing the fragment: (s,v) ⎯→⎯t

(s,v+t) ⎯→⎯a
 (s’,v’), where 

the transition taken at (s,v+t) is already enabled at (s,v+t’) with t’<t.  
Every immediate run represents an immediate schedule. The two schedules S1 and 

S2 in Figure 4 respectively represent a non-immediate schedule and an immediate 
schedule, with regards to the example problem of the system R explained in Section 
2.3. In the non-immediate schedule S1 , there are two unnecessary zones of waiting, 
one for the machine m2 during the time period [4, 5] and one for m1 during [10, 11].  
In contrast, S2 brings out a schedule where the waiting times are minimal, thus making 
the schedule immediate. Therefore in order to find an optimal schedule for a given 
path, the exploration can be restrained to the immediate runs. This restriction 
transforms the RATA semantics into a discrete directed acyclic graph of 
configurations, like in Figure 5.  
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Corollary (Job-Shop Scheduling and RATA model): The optimal job-shop scheduling 
problem can be reduced to the finding of the shortest immediate run within a RATA. 

Let us consider the job-shop system in Figure 3.(j1||| j2). Starting from the initial 
configuration, the immediate runs are directly obtained from the paths of the RATA, 
by evaluating the satisfaction of the sets DC and AC in each reached configuration, in 
order to start the next actions as soon as possible (immediate execution). These 
evaluations require replacing each occurrence of the function τ by its corresponding 
value, in order to compare with the values taken by the clocks. 

 

 

Fig. 4. Non-immediate, immediate but lazy and non-lazy schedules 

Figure 5 shows the derivation tree obtained by the immediate runs of the system of 
Figure 3.(j1||| j2). The length of the optimal schedule is 9, which corresponds to the 
two left immediate runs represented in this figure. Moreover, each configuration is of 
the form (s,v(x),v(y),tA), where s represents a reachable state; v(x) and v(y) are 
respectively the valuations of the clocks x and y used in the configuration; tA is the 
value of the additional clock. 

 

 

Fig. 5. The immediate runs of the RATA of figure 3.(j1||| j2) 

The evolution of the elapsing time in a configuration is not represented explicitly 
but is specified indirectly by the set of constraints attached the transitions issuing the 
state. Actually, this time depends on the transition to consider. W.r.t. some transition, 
it can progress from the global time value specified in the state, to a time value 
featuring that all the constraints attached to the transition are satisfied. For instance, 

with regard to the transition (s01, s02) and its constraints {y≥4} the elapsing time in s01 
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progresses from tA = 0, until the value 4 is reached. Since transitions are immediate, 
the global time value when reaching s02 is equal to 4 again. 

Observe also that the last transition corresponds to a hidden action, clock and 
machine (ε∉A, α ∉Η and ζ∉Μ), with an enabled condition used to terminate the 
execution of all of the actions not yet finished. So, the value of tA in the final 
configuration of a run represents the total duration of the run, hence the length (time) 
of the schedule. The function reduce of Algorithm I mainly performs the generation of 
the finite number of immediate runs. 
 
Stubborn Set Reduction. A valuable kind of space reduction is based on the 
checking of “stubborn sets” of transitions that are subset of the transitions which in 
some state does not influence the other transitions. Such a set can be fired whereas the 
others can be considered latter, in the next configuration.  With regard to the job-shop 
scheduling problem, the stubborn set technique consists from some configuration to 
be explored, in selecting the transitions which not only have a minimal launching time 
but also correspond to the last use of a machine among the jobs. The selected 
transition can be immediately added to the trace, i.e. advanced w.r.t to the others. 
When several transitions are candidate to be selected, one is chosen arbitrarily [7]. 

For instance, consider the second configuration in Figure 5 (i.e. state s01). Both 
transitions have the same (minimal) launching time t=4 and both concern the last use 
of a machine (the used machines m1 and m2 remains unclaimed by any other action 
during the corresponding action processing time). As a consequence, the function 
reduce in Algorithm I selects one of them randomly in order to be launched. 

We propose here an improvement consisting in weakening the former last use 
constraints~: we privilege transition, the machine of which remains unclaimed during 
the processing time of the considered action. As a consequence, the machine can be 
claimed after this time. Observe that this requires for each job to estimate the earliest 
starting time of the remaining actions which refers to the same machine.  To privilege 
the transition, all the estimated values must be great than (or equal to) the ending time 
of the considered action. 
 
Laziness Reduction. Although immediate runs are performed, there could remain 
lazy schedules. Laziness indicates suboptimal use of the resources, here the machines. 
Such run can produce suboptimal schedules. 

A lazy run of a RATA model RM contains a sequence of states and transitions like 
(s,v)… ⎯→⎯t

… (s’,v’) ⎯→⎯a
 (s”,v”) wherein the transition a is enabled in (s,v), but is 

taken after a certain delay in (s’,v’).  
In Figure 4, S2 illustrates an immediate but lazy schedule, s.t. the machine m1 is free at 

time 4 then could be used to perform the action c. Starting c after 3 time units more,  
introduces a “time hole” which is large enough to be filled with the action c.  This should 
make the schedule suboptimal. Exploration of lazy runs can be prevented by a laziness 
reduction technique. In this special case, the lazy schedule S2 of Figure 4 is already not 
expressed in the immediate runs of our model (see Figure 5). This is due to the used 
semantics, which combines parallel executions and immediate runs. An explicit 
interleaving of start and end events would make visible such lazy runs, as in the timed 
automata models [2], thus requires much effort in space and time to remove them. 

In the algorithm I, the elimination of the lazy schedules is carried out by the 
function reduce in case the reduction given by stubborn set technique fails. From the 
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considered configuration, it applies on every pairs of possible transitions; hence the 
possible successor configurations that lead to suboptimal solutions are not computed 
and inserted in the set S. 
 

Definition 6. (Lazyness Reduction) Assume that two transitions labeled by the actions 
α and β are enabled in some configuration. Consider that τ(α,m) be the duration of  
the action α when running on the machine m and let enabl(α) represent the time where 
the action α is enabled (launched). The transition labeled by β is removed from the 
successors list S if the following sufficient condition holds~:  

enabl(α) + τ(α,m) ≤ enabl(β) (L) 

Consider the previous example again, but change the execution machine of the action 
c to m3 .The lazy schedule S of this system represented in Figure 6 is obtained by the 
following immediate runs, also depicted in the graph (G) of the same figure~: 

(s00,0,0,0) ⎯→⎯a
 (s01,0,0,0) ⎯→⎯b

 (s02,4,0,4)… 

At s01, the condition of the laziness reduction holds: enabl(c)+ τ(c,m) ≤ enabl(b)   
0+3≤ 4. The transition labeled by the action b can be pruned from s01, so the only 
considered transition from this state is the one labeled by the action c launched at time 
0 (non-lazy schedule). 
 

 

Fig. 6. Lazy schedule S and a sub-graph G of immediate runs 

In case the execution time of c overpasses the starting of the action b, the former 
laziness technique fails. However, an improvement of Definition 6 is possible.  

Laziness Reduction Improvement: Considering the problem specified in definition 
6, and assumes t is the time interval from the moment where β is started to the 
moment where an action uses the execution machine dedicated to α. Then, the 
transition labeled by β is removed from S if~: 

enabl(α)≤ enabl(β)  ∧   enabl(α)+τ(α,m)≤ enabl(β)+t     (L’). 

The first condition in L’ is a direct consequence of the laziness characterization. The 
second condition suggests that it is possible to remove the action β if the execution 
machine of α remains unused from the configuration where β was considered. 
Therefore the execution of β and the other executions enabled in the future of β are 
preserved in their time after the starting of α. 

As for the stubborn set technique, the non-use of a machine during some time 
period is estimated over the remaining executions of the jobs. If the machine is 
unclaimed for the remaining action of the jobs, then the value ∞ is assigned to t. 
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4.2    Reduction after the Generation of Configurations 

As the reduction technique made before the generation of configurations are based on 
heuristics, it could remain some reduction to perform that we can detect after the 
generation of configurations. We propose another set of reduction techniques to be 
applied on configurations once generated. 
 
Domination Test. This test is used to avoid exploring identical configurations or 
configurations that are obviously worse than already computed ones. The domination 
test is based on the following definition: 
 
Definition 7 (D1): Let (s,v,tA) and (s,v’,tA’) be any two reachable configurations. We 
say that (s,v,tA) dominates (s,v’,tA’) if '  ' vvtt AA ≥∧≤ . 

The fact that (v≥v’) implies that whatever the enabled transition, it will be launched 
in (s,v,tA) before (s,v’,tA’) or at the same time. Moreover with (tA≤tA') , we deduce that 
for every complete run reaching some final configuration (s,v’,tA’), there is a run 
reaching (s,v,tA) which leads to a better solution (i.e. with a lower execution time). 

Whenever a new configuration is visited in the graph, we check whether it is 
dominated by an already computed one, and in this case it is discarded. Moreover, a 
dominated configuration in the waiting list is replaced by the dominated one. Observe 
that in the algorithm I, the operations ∪d and ∈d respectively denote the union and 
membership relations between configurations, with respect of dominance property. 

According to Figure 5, a dominance reduction is possible over the two 
configurations whose expression is (s12,0,0,4) because they have the same global time 
and the same clocks valuation. Therefore, consider only one, instead of both. 

We now propose a finer dominance relation based on a weaker relation between 
the clocks used in the compared configurations, e.g. (s,v,tA) and (s,v’,tA’). For each 

clock x, we consider its duration denoted τ (a,m). 
 

Definition 8 (D2) : (s,v,tA) dominates (s,v’,tA’) if :  
). m)(a,) '()(())(') '()((,' τ≥−+∨≥−+∈∧∀≤ AAAAAA ttxvxvttxvHxtt  

So, we admit that v could be less than v’ for some clocks x in two cases.  

• Either the clock difference v’(x)-v(x) is compensated by the value t= tA’ -tA 
which means that if the same sequence of transitions is fired from (s,v,tA) and 
(s’,v’,tA’), reaching (sr,vr,tAr) and (sr’,vr’,tAr’) respectively, then the above 
dominance rules globally still hold for the reached configurations. In case 
where the reached states are final, we have tAr’≥ tAr .  

• In the 2nd term of the or clause, the action a associated with x is terminated 
within the duration tA’-tA. In this case, the valuation v(x)  must be excluded out 
of the dominance test since it cannot influence the future firing of transitions.  

 

For sake of concision in this paper, the proof is not reported.  
In Figure 5, we can now make a dominance reduction between the configurations 

(s12,0,0,4) and (s12,7,0,7). Here, each configuration is of the form (s,v(x),v(y),tA), and 
the actions associated with the clocks x and y are c and b, with respective durations 3 
and 5. Using previous conditions, we can deduce that the first configuration 
dominates the second. 
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Reduction Based on the Remaining Time. In the algorithm I, w.r.t. some 
configuration (s,v,tA), the estimation E(s,v,tA) of the global execution time is given by 
the tA value complemented by an heuristics on the remaining time to achieve the run.  
This estimation is compared to the Best known global time value, in order to delete 
bad configurations and also to search from the most promising configurations first. 
Clearly, this contributes to reduce the search space.  

The main used heuristic in the literature simply computes a remaining time value, 
under the assumption that there is no conflict between the concerned machines. From 
some configuration, it is the maximum value between the remaining execution times 
of the machines, knowing that for a machine, this time corresponds to the sum of the 
durations of the actions that remain to be executed on the machine.   

Recently, an improved heuristic was proposed based on a simple modification of the 
Jackson’s preemptive schedule, which often yields a better estimation, that means greater 
remaining time values, closer from the exact values. For more details, See [10].  

5 Experimental Results 

To implement the makespan minimization, we have developed a C++ software tool 
based on the RATA model. Our tool embeds all the search space reduction techniques 
discussed in this paper: immediate runs, stubborn set, lazy reduction, domination test and 
heuristics of the remaining execution time. The searches in the graph use a combination 
of depth-first and best-first search strategies. The search strategies implemented in the 
function selectRemove of the algorithm I, decide which configuration will be chosen 
next, from the waiting list. The first criterion is to privilege the configuration which the 
minimum estimation value of the global execution time. The second criterion is the 
maximum depth of each configuration, evaluated in the number of actions that have been 
already executed. Thus, configurations close from a complete run can be privileged. In 
case of configurations having the same global time estimation and the same depth, the 
first one is chosen. The computational equipment for the experiments was a Pentium 
machine with 3 GHz and a Windows7 OS. 

Three series of job-shop instances are investigated to demonstrate the performance 
of our algorithm. The first series (A) consists in randomly generating small instances 
of jobs having three operations for each job. The number of jobs varies from 2 to 6 in 
order to investigate the scalability of the proposed reductions. Table 1 shows a 
comparison between two techniques of reduction considered separately, namely the 
domination and the laziness techniques. This comparison is given on the derivation 
tree of immediate runs without considering the other reduction techniques. In Table 1, 
the left part indexed 1 concerns the classical use of the reduction techniques, whereas 
the right part indexed 2 corresponds to our proposed improvements. The columns 
#laz1 and #laz2 bring out the performances in terms of number of explored 
configurations. T_laz1 and T_laz2 highlight the processing time values. Similar 
notations are used for the domination reduction (dom). The number of generated 
configurations is limited to one million. Comparing the left and part, the improved 
versions appear to be better and better as the size of the job-shop problem augments. 

In the second series (B), a comparison of the size of the RATA against the one of 
the model obtained by applying the approach of [2], proposed for TA, is given in 
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Table 1. Performances of the laziness/domination reductions techniques 

#j RATA 
#laz1 T_laz1 #dom1 T_dom1 #laz2 T_laz2 #dom2 T_dom2 

2 37 0 30 0 22 0 25 0 

3 1520 0 305 0 156 0 122 0 

4 62584 1.7 6133 0.4 2198 0.1 1043 0.1 

5 / / 233373 200 191025 6.4 10345 1.2 

6 / / / / / / 295084 27 

 
Table 2. The column #ds informs on the number of discrete states for each model, 
where #bf brings out the performance in terms of number of explored configurations. 
We restrain our tool reductions to the domination test and best-first strategy, that are 
used in [2]. As the number of jobs grows, we observe a drastic size reduction by using 
the RATA approach. The gain rapidly reaches orders of magnitude. 
 

 
In the last series (C), we consider three sets of small and medium benchmarks 

taken from the well-known OR-library : (1) three instances of size 10*5 (10 jobs and 
5 machines), LA01, LA03 and LA05; (2) three instances of size 15*5 (15 jobs and 5 
machines), LA06, LA08 and LA10 ; (3) three medium instances of size 20*5 (20 jobs 
and 5 machines), LA11, LA13 and LA15. All the proposed reduction techniques are 
used. The results of the experiments are shown in Table 3. The column #alg 
highlights the number of explored configurations and Opt shows the optimal time of 
the considered problem. As we can see, our algorithm is able to find the optimal for 
these instances except the last one in a reasonable time (within 5 minutes). 

6 Conclusions and Perspectives 

Exploiting the RATA model in order to solve optimal job-shop scheduling problems 
is a novel application of models based maximality-semantics, in addition to 

Table 2. Comparison of the RATA 
model against timed automata 

#j Timed automata RATA 

#ds #bf #ds #bf 

2 77 38 25 22 

3 629 384 125 105 

4 4929 1561 625 306 

5 37225 2810 3125 714 

6 272125 32423 15625 2520 

Table 3. The results for some instances of 
LA problems 

instance #alg #time Opt 

LA01 176 0.1 666 

LA03 3025 2.1 597 

LA05 400 0.0 593 

LA06 32460 11.2 926 

LA08 17461 4.3 863 

LA10 2851 0.4 958 

LA11 13327 3.7 1222 

LA13 3744 1.5 1150 

LA15 / / / 
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verification purpose [12,13].  Our experiments demonstrate that the search space 
developed from a RATA model could be drastically much smaller than the ones 
derived from standard timed automata. The proposed approach covers many reduction 
techniques that can be used to reduce the search space. In particular, it easily focuses 
on immediate transitions, moreover, the stubborn set, laziness and domination test 
techniques are improved and shown to be combined. To a better performance, a usual 
remaining time based reduction technique is introduced.  

Our perspective consists in dealing with larger size problems. We refer to the ideas 
of [14,1], which argue that one should minimize the length of the schedules without 
necessarily targeting the optimal solution. 

References 

1. Subanatarajan, S., Thomas, T., Sebastian, P., Sebastian, E.: Multi-product Batch 
Scheduling with Intermediate Due Dates Using Priced Timed Automata Models. J. 
Computers and Chemical Engineering 33, 1661–1676 (2009) 

2. Abdeddaim, Y., Asarin, E., Maler, O.: Scheduling with timed automata. J. Theoretical 
Computer Science 354(2), 272–300 (2006) 

3. Abdeddaïm, Y., Maler, O.: Preemptive job-shop scheduling using stopwatch automata. In: 
Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 113–126. Springer, 
Heidelberg (2002) 

4. Belala, N., Saïdouni, D.E.: Non-Atomicity in Timed Models. In: ACIT 2005, Al-Isra 
Private University, Jordan (2005) 

5. Alur, R., Dill, D.: A Theory of Timed Automata. J. TCS 126, 183–235 (1994) 
6. Mokhdad, A., Ilié, J.M., Saidouni, D.E.: Addressing State Space Explosion Problem in 

Performance Evaluation Using Maximality-based Labeled Stochastic Transition Systems. 
In: 2nd International Conference on Computer and Software Modeling (ICCSM 2012), 
India, (2012) 

7. Abdeddaim, Y., Niebert, P.: On the use of partial order methods in scheduling. In: Ninth 
International Conference on Project Management and Scheduling (PMS 2004) (2004) 

8. Sebastian, P., Olaf, S., Sebastian, E.: Efficient synthesis of production schedules by 
optimization of timed automata. J. Control Engineering Practice 14(10), 1183–1197 (2006) 

9. Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of deadlock 
freedom and safety properties. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, 
vol. 575, pp. 332–342. Springer, Heidelberg (1992) 

10. Sierra, M.R., Varela, R.: Pruning by dominance in best-first search for the job shop 
Scheduling problem with total flow time. J. Intelligent Manufacturing 21(1), 111–119 
(2010) 

11. Arfi, F., Ilié, J.M., Saïdouni, D.E.: Scheduling with RATA model. J. International  
Journal of Computer Science and Telecommunications (IJCST) 3(10), 14–20 (2012) 
ISSN:2047-3338 

12. Saïdouni, D.E., Benamira, A., Belala, N., Arfi, F.: FOCOVE: Formal Concurrency 
Verification Environment for Complex Systems. In: Intelligent Systems and Automation 
(CISA 2008), Annaba, Algeria, vol. 1019 (1), pp. 375–380 (2008) 

13. Saïdouni, D.E., Ghenaï, A. : Intégration des Refus Temporaires dans les Graphes de Refus. 
In : NOTERE 2006, Hermes, Toulouse, France, (2006) 

14. Yang, S., Wang, D., Chai, T., Kendall, G.: An improved constraint satisfaction adaptive 
neural network for job-shop scheduling. J. Journal of Scheduling 13(1), 17–38 (2010) 


	Pruning Search Spaces of RATA Model for the Job-Shop Scheduling
	1 Introduction
	2 RATA Model
	2.1 Intuition of RATA Model
	2.2 Formalization
	2.3 Modeling the Job-Shop with RATA Model

	3 Reachability Analysis Algorithm
	4 Search-Space Reduction Techniques
	4.1 Reduction before the Generation of Configurations
	4.2 Reduction after the Generation of Configurations

	5 Experimental Results
	6 Conclusions and Perspectives
	References




