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Abstract. In industrialized countries the share of elderly subjects is in-
creasing. Hence, diseases or symptoms associated with aging are more
common than they were in the past. As a consequence, more effort is
invested into research analyzing the effects of aging on the motion and
cognition. However, economical and flexible methods to measure motion
and its cross-effects with cognition are still missing. Therefore, we de-
veloped a new approach which neither requires a specific location, large
infrastructural requirements, nor does it require large investments. We
base our setting on match-box sized inertial measurement units (IMUs)
attached to the participants’ legs. 47 elderly subjects participated in our
study where we analyzed the interplay between cognitive load and gait
features. We show that it is feasible to automatically detect episodes
of interest, e.g. straight path, during walking periods of a subject only
using IMU data. Our approach detects the steps autonomously and cal-
culates gait features without supervision. The results demonstrate that
cognitive load induces a significant increase (p = 0.007) in step-duration
variability from 16ms (baseline) to 21ms (load). Our findings demon-
strate that IMUs are a proved alternative to static setups that usually
require a non-trivial infrastructure, e.g. optical movement tracking.

Keywords: wearable computing, gait analysis, elderly people, risk of
falling, imu, sensors.

1 Introduction

Increasing age might affect people in motoric skills as well as in cognitive per-
formance. In general, the ability to sit, stand, walk and to perform activities of
daily living (ADL) can be condensed in the term mobility. Mobility contributes
the lion’s share to an elderly persons’ independence and as such is a combination
of mental resources and their physical expressions. Limited motoric or mental
capabilities result in a lowered mobility and with reduced mobility the risk of
falling (RoF) increases [1]. If we can objectively measure mobility of a person,
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there might be a model to predict her RoF. This is our main motivation: To
estimate automatically the mobility of elderly people with future applications
for safety in mind (e.g. reducing RoF).

In this paper we focus on gait features as they are by nature closely linked to
RoF. It is known that gait features are affected by cognitive load levels of a sub-
ject. Especially for elderly people the threshold level where gait-feature-changes
are noticeable is low [2] (compared to younger individuals’ levels), sometimes as
low as a task of subtracting numbers.

We demonstrate that a sensor-based automatic acquisition and analysis setup
is a efficient alternative to the currently used methods. To this purpose we are
looking at the step duration and its dynamics in situations with and without
cognitive load. We present the analysis and results of a study with elderly people
(aged 65+) and analyze the changes of gait features between a baseline setting
(i.e. common walk) and a setting where the subjects were under elevated cog-
nitive load while walking. We compare state-of-the-art (SoA) to our approach
and show that we can detect the differences between situations with elevated
cognitive load and situations without.

Furthermore, our longer-term goal is it to contribute to a transparent estima-
tion system - not requiring any special action by the subjects - to make statements
about a human’s relative mental load level and the consequences for her motoric
performance. We position our work as an initial contribution to that goal.

2 Related Work

2.1 Tests Not Using Electronic Devices

In general, in geriatrics the term mobility refers to a person’s aptitude of per-
forming a physical task in her everyday life. The definition of mobility is usually
tailored to a specific target group, e.g. hospitalized patients or subjects at home
and to a specific environment, e.g. medical care facility, home etc. [3, 4].

One of the most often used mobility indices (MI) is the timed-up-and-go test
(TUG) first introduced by Podsialdo et al. [5] which is analyzed in more detail
by Thrane et al. in [6]. TUG is often used as an indicator for RoF of a person.
It measures the time a person needs to rise from a chair and walk a given dis-
tance. The Short Physical Performance Battery (SPPB) [7] focuses on the lower
extremities and their functionality. SPPB can be divided into three sections:
Balance Tests, Gait Speed Test and Chair Stand Tests (similar to TUG). The
Motor Assessment Scale (MAS) [8] analyzes 8 motor functions. In particular,
it also assesses transition movements (standing up), static tasks (standing still)
and dynamic tasks (walking).

2.2 Tests with Electronic Devices

Webster et al. [9] introduced the GAITRite sensor system used for the evaluation
of walking performance1. This sensor system consists of a pressure sensitive mat

1 GAITRite Gold, CIR Systems, Easton, PA.



One IMU Is Sufficient 53

in various sizes. The largest model is about 1m wide and 7.5m long, allowing for
the analysis of step length, step width and frequency. Webster et al. compared
the system’s performance to a state-of-the-art optical 3D motion tracking sys-
tem, e.g. VICON. Van Iersel et al. [10] investigated the effect of cognitive dual
tasking on balance of older adults. They used the GAITRite system for data ac-
quisition and extracted spatial features of gait (e.g. stride length) and temporal
gait features (time variability). Hollman et al. [11] performed a study incorpo-
rating older and younger subjects. In that study they analyzed the differences
of dual-task walking between the two age groups. Kuys et al. [12] used a system
to evaluate spatio-temporal gait features of stroke patients: the researchers used
the data from the system to compute the MAS gait score of the patients. In [13]
Bamberg et al. present a sensor system that provides three pressure measuring
points as well as orientation data of the feet using intertial measurement units
(IMU). All system components were integrated in a shoe. The authors used that
system to analyze heel-strike and toe-off events during gait periods as well as
the feet orientation. Within a sport focused setting Strohrmann et al. [14] used
IMUs attached to the legs to analyze the running behavior of healthy younger
people.

2.3 Evaluating Cognitive Features

Theill et al. [15] suggest that performing simple mathematical calculations2 suf-
fices to generate sufficient cognitive load to induce a measurable physical re-
sponse of a subject. In their paper they present a precise method for measuring
situations with cognitive loads of varying degree. Schaefer et al. [16] demon-
strate that elderly subjects, when put under cognitive load, express an increased
variance in step frequency and might even show difficulties maintaining balance.
They used a variant of the N-Back test [17] to induce elevated cognitive load lev-
els in their subjects. Schaefer et al. contributed to the motivation of evaluation
training impact on cognitive performance and motoric fitness.

Cinaz et al. developed in [18] a system to estimate mental workload using the
heart rate variability. They were able to train a classifier separating the instances
of low mental workload from samples with higher mental workload. Cinaz et
al. showed that the links between cognitive load and physical expression are
abundant and feasible to measure.

3 Experiment

3.1 Hypotheses and Approach

We aimed at demonstrating the feasibility of using sensor data from IMUs to
automatically detect periods of regular walk. During those intervals distinguished
between situations without and situations with cognitive load. For this purpose
we have setup a study where elderly people were asked to perform a simple

2 e.g. starting from 50 subtract consecutively 2.



54 R. Adelsberger et al.

walking task once with, and once without a cognitive task in parallel. In the
following sections we are going to provide the details.

3.2 Participants

Elderly people at the age 65 or older were recruited for the study. The inclusion
criteria for participants was an age within the range [≥ 65, 85 ≤]. The appli-
cants for participation had to pass a cognitive screening test [19] in order to be
included in the study. To assess their overall motor activity we asked them to
perform TUG. We were interested in healthy subjects with no evident disabil-
ities. Subjects included in our study tested normal in the cognitive test and in
the motoric evaluation, TUG. Out of 63 participants 47 individuals (32 female
and 16 male) successfully completed the study and we could use their data for
our evaluation3. The subjects’ demographics are listed in Table 1 .

Table 1. Age distribution of the 47 subjects

Min Max Mean Std.Dev.

overall 65 84 71.77 4.89

female 65 81 71.71 4.70

male 65 84 71.88 5.33

3.3 Measurement Setup

For the testings we equipped the subjects with sensor devices. In order to track
gait features of our subjects we used four IMUs by XSens [20]. With Velcro straps
we attached on each shin and each thigh a sensor having the x-axis pointing
towards ground (cf. Figure 1a ). Four sensors at these locations allowed us to
track more features than just step durations: angles between shin and thigh, leg
orientation etc. The devices were tethered; the data was sent to and power comes
from a gateway device (transmit station) that was worn by a belt around the
subjects’ waist. We configured the devices to report raw acceleration, rotation
rate values, but also Euler angles which reflect the orientation in space relative
to the earth.

At 50Hz motion data was streamed via Bluetooth to a standard notebook
where we stored it for later analysis. Higher sampling was not possible due to
bandwidth limitation of the Bluetooth system.

The subjects were additionally recorded on video for a validity check of
our automatic feature calculations. Data analysis was performed offline using
MATLABR©.

3 For the first 15 subjects our measurement setup suffered a technical problem and
the recordings failed. One subject did not perform a testing at all. Our set therefore
contains data from 47 subjects.



One IMU Is Sufficient 55

(a) Subject with four sensors
and one gateway.

(b) The path for tasks 1
and 2.

Fig. 1. Test procedure illustrations

3.4 Test Procedure

At the beginning of the test session the mental test [19] (Mini Mental State
Evaluation, MMSE) was presented to the subjects in direct interaction with an
expert. This study controller (a psychologist) asked the questions and noted the
answers of the subjects on the evaluation sheets. We required the subjects to
score above 26 to be included in our study.

Motoric testing was performed with an instance of TUG: subjects were asked
to sit on a regular chair. The controller then asked the subjects to stand up.
Time until completion was measured starting from the issue of the command
until the subject was in an upright position. TUG scores above 10 seconds are
considered as noticeable [7].

During testings, subjects were two times required to walk down a aisle of
length 10m, turn around and walk back again (baseline testing, task 1). In the
second part of the testing we asked them to do the walk as before but now while
subtracting from a random number provided by us (arbitrarily chosen from the
set [501, 502, 503]) at each step a specific number, i.e. 7 (task 2).

4 Methods

We primarily wanted to compare statistics of the data from the baseline task to
data from the cognitive-load task. To this purpose we firstly needed to detect
the intervals in our data that were of interest, e.g. periods of straight walking,
segmented by turning points. These intervals were detectable using the magne-
tometer data. In Figure 2a an axis of a magnetometer is plotted in blue. In the
high frequency spectrum the steps are visible, the four changes of the mean value
correlate with the walking direction of the subject. We calculated the turning
points by first applying a smoothing, e.g. low-pass, filter to the data (red curve).
Then, we used the sign of the slope (magenta) of this curve as the limits for the
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intervals. Finally, we declared the turning point as the mid-point of a decreasing
interval. To maintain comparability to related work we analyzed the walking in-
terval for the first 20m, (2×10m). Therefore, only data until the second turning
point (start position) was used. The turning points were detected by our algo-
rithm without false positives. At each turning point we disregarded two steps
before and one step afterward since we were only interested in statistics from
straight walk.

Next we detected the steps using SoA [14] on the accelerometer signals. The
steps manifest themselves as peaks in the accelerometer signal. In Figure 2b a
fragment of a data set is shown: the accelerometer signal is in blue, the step
locations are marked with red circles. Our focus lied on the variances of step

(a) Intervall detection (x-axis) (b) Step detection

Fig. 2. Analyzing gait data

duration for task 1 and task 2. Hence, the time delays between individual steps
served as input for our further analysis: For each subject we calculated the step
durations for the baseline task (task 1) and for the cognitively loaded task (task
2) in milliseconds. Next, we calculated for each task t = {1, 2} for each subject i
the mean μi

t, the median mi
t and standard deviation σi

t (or variance, resp.) of the
step durations. We denote the collection of all μj

k of all subjects for task k as the
vector μ̄k. The definitions for σ̄k and m̄k are analogous. Since we are interested
in individual changes we calculated the difference of μi and σi between the two
tasks for each subject i: μ̃i and σ̃i, resp. μ̃i := μi

2 − μi
1, σ̃

i := σi
2 − σi

1. So, μ̃
3

is the positive or negative change of the mean value of the step durations for
subject 3.

In our analysis we looked at the set of means for both tasks, μ̄1, and μ̄2, resp.
We also considered the sets of standard deviation for both tasks, σ̄1 and σ̄2.
Finally, we also analyzed the set of individual progresses, ¯̃μ and ¯̃σ.

In order to make a statement about the development of gait features between
task 1 and task 2 we needed to compare the variances of step duration of the
first task to those variances from the second task. A requirement for a valid
comparison is the two sets originate from the same distribution, e.g. a Normal
distribution. The distribution parameters for each of the sets might be different.
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We used the Lilliefors test [21] based on the Kolmogorov-Smirnov test [22]
to verify task-1 data and task-2 data are from the same distribution family.
Lilliefors’ test performs better for smaller sample sizes than the Kolmogorov-
Smirnov test.

For visualization the QQ-Plot [23] allows for graphical comparison of two
distributions: it draws the quantiles of two empirical distributions against each
other.

Finally, the variances of the two data sets were analyzed with a person-
independent analysis of variance (ANOVA4).

5 Results

The validation of equality of distribution between the two sets yielded a positive
result: in Figure 3a we show that the baseline data set and the cognitive load
set originate from the same distribution family. The blue points represent the
quantiles of the distributions. The abscissa represents the distribution for task 1
the ordinate is for task 2. Indicated in red is the linear interpolation line for the
two sets. As can be seen the two sets relate in a linear manner to each other.

The evaluation of the Lilliefors test [21] for either set accepted the null hy-
pothesis of the data originating from a normally distributed population with a
confidence level α = 0.05.

During evaluation we noticed that the sensor at the shin positions produced
the best signal-to-noise (SNR) ratio. The shin sensors were less susceptible to
motion noise that may be introduced by low-friction clothing (like synthetic
trousers) and the sensor devices moving uncontrolled relatively to the leg or
textile. We believe this result is caused by a looser attachment of the thigh
sensors as a consequence of the thigh being by nature more sensitive to pressure
than the shin. A tight Velcro was considered uncomfortable at that position.
Too tight strappings might even have had an impact on the gait pattern. The
shin, however, is not that sensitive and the muscular tissue does not perform
large movements. Due to this reasons we decided to evaluate for each subject
data solely from one (e.g. the left) shin sensor. A manual verification of the peak
positions proved that the step detection algorithm worked with 100% accuracy.

Cognitive load had a significant impact on the gait features. This effect on the
variance of step duration can be seen in Figure 3b where we draw probability
plots for the two sets. In the plot data points (e.g. step durations) are plotted
against their probability. The blue points mark the data points from the first
task, the data of the second task is in green.

We performed a person-independent ANOVA test: In Table 2a we list the
results of our analysis. In each line we report the mean value for the features μ̄k,
σ̄k and the median, mk resp., introduced in Section 4 . Additional to the mean
values of the features we provide also the standard deviation. All values are in
milliseconds. The F column are the F -numbers from ANOVA5. The p−values in

4 Using a one-tailed significance level of p = .05.
5 F -statistics from the ANOVA test: F =

between-group variability
within-group variability .
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(a) QQ-Plot of mean values for baseline
task and cognitive load task

(b) Cumulative Probability plot for base-
line task and cognitive load label

Fig. 3. Comparing tasks

Table 2. Results of analysis

(a) ANOVA

Feature Task 1 (ms) Task 2 (ms) F p

σ̄k 16.84 ± 5.17 21.64 ± 10.62 6.62 0.007

m̄k 513.04 ± 45.41 547.39 ± 63.82 8.85 0.0038

μ̄k 514.93 ± 44.24 549.01 ± 62.88 9.04 0.0034

(b) Mean changes.

Feature Value (ms)

¯̃σ 4.8065

¯̃μ 34.0807

the last column in Table 2a indicate that all three features differ significantly
between the two testings.

Table 2b depicts the mean changes on gait features induced by the cognitive
task. The standard deviation between the baseline task (task 1) and the cog-
nitive load task has increased by 4.8ms (mean). The mean of the mean values
increased by 34.1ms. The variability of the step duration changes from baseline
to cognitive loaded situations and the mean step duration increases. Our findings
are comparable to previous findings of related work [10, 11].

6 Conclusion and Future Work

In this paper we have taken the first step towards an autonomous mobility as-
sessment system by automatically analyzing the correlations of gait features and
cognitive load with an IMU setup. We have shown that by using step duration it
is possible to distinguish between situations of cognitive load and those without.
We have also provided a proof-of-concept for the feasibility of performing the
analysis automatically. In our paper we successfully demonstrated that with a
minimal setup of one single inertial measurement sensor it is feasible to conduct
studies equivalent to SoA, but requiring substantially less infrastructure, e.g. no
cameras, no human resources etc. at arbitrary locations.
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We are going to base our future work on the results and findings of this
study. We further believe that for future gait analysis it is possible to reduce the
hardware requirements even more. We envision a single-sensor setup - untethered
- providing us with gait features like the ones used here but also with additional
ones. We believe that there are training effects over longer periods of time:
redoing task 2 several times over a longer time span might reduce the effect
of the cognitive load. We want to measure this progression in the future. Also,
generalizing our setup even more in order to allow for many more movement
features is planned for the future.

We envision a automatic system to assess mobility: an unobtrusive self-
contained sensor system that constantly monitors the movement of its wearer.
This paper represents a part of the whole, but for the future we want to add
additional modalities and more importantly at some point leave the lab setting
and go into real life environments.
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