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Abstract. Cardiopulmonary information can be extracted from the temporal 
variations of the input reflection coefficient of a single wearable antenna placed 
in close proximity of the human thorax. In a previous paper, the authors have 
shown the potentials of such non-invasive measurement technique through ex-
perimental results; as a proof of concept, phase samples were collected by using 
a Vector Network Analyzer, and conventional non-linear filtering techniques 
were used to isolate the spectral components related to heartbeat and respiration 
rate. To get more realistic measurement data, a first prototype of a low-cost RF 
sensor has been implemented, and improved algorithms have been developed to 
estimate both heartbeat and breathing rate. Preliminary measurement results are 
shown to validate the approach, and the effects of the human body movements 
are discussed. 
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1 Introduction 

Microwave Doppler radars have been suggested as non-contact devices for non-
invasive vital signs sensing since 1970s [1]-[4]. The quasi-periodic chest movements 
induced by the cardiopulmonary activity determine a phase modulation of an electro-
magnetic wave reflected by (or transmitted through) the human thorax; then through 
optimized signal processing techniques applied to the demodulated signal, heartbeat 
and breathing rates, as well as heart rate variability, can be extracted. 

A novel non-invasive RF measurement approach has been proposed in [5]-[6] for 
non-contact measuring of both heartbeat and breathing rate, which makes use of a 
single wearable antenna close to the body surface. Basically, it has been demonstrated 
that quasi-periodic movements induced by the cardiopulmonary activities affect the 
input impedance of the antenna, when the human thorax occupies most of the antenna 
near field region. To validate the methodology, a preliminary measurement campaign 
using a Vector Network Analyzer (VNA) was set up; measurements were taken at 
different frequencies in the UHF band, during regular breathing activity. The col-



 RF Sensor for Non-invasive Cardiopulmonary Monitoring 333 

lected signal (namely samples of the phase of the antenna reflection coefficient rec-
orded in a temporal interval of some tens of seconds) was analyzed in the frequency 
domain in order to extract the desired spectral components. The respiration informa-
tion was clearly and promptly detectable as breathing variations affect appreciably the 
collected signal, while the heartbeat frequency component was not so perceptible. 
Therefore a deeper analysis was necessary to isolate the heartbeat-induced spectral 
component; as a first attempt, two conventional non-linear filtering techniques have 
been checked. Although the proposed method employs an RF transmitting antenna, 
the authors believe that the physical principle used to achieve vital signs sensing is 
different from the Doppler effect [1]-[4]. The effectiveness of this novel approach has 
been confirmed by recent results in [7]-[10]. 

In this context, the primary goal of this paper is to demonstrate the feasibility of a 
simple low-cost hardware solution for the RF sensor based on the approach outlined 
in [5]-[6], for detection and monitoring of both heartbeat and respiration rate. As far 
as signal processing is concerned, the main enhancement proposed here with respect 
to the technique in [5]-[6] is the application of a recursive minimum mean square 
error (Kalman) tracker for estimation of the signal low-frequency (pulmonary) com-
ponent. It is shown that this technique permits a more reliable extraction and elabora-
tion of the weaker cardiac spectral component. 

2 Measurement Set-Up and Phase-Detector Implementation 

This section describes the device used for the acquisition of the samples of the reflec-
tion coefficient phase of an antenna in close proximity of the human thorax. In the 
proposed method the antenna must be located as close as possible to the human body 
(a direct contact is not required, and the antenna can operate through clothing), while 
Doppler radar prototypes have been always tested with the antenna at a distance of 
around 0.5-1m from the body. The RF sensor has been designed and built at CUBIT 
laboratories (Consortium UBIquitous Technologies, Pisa, Italy). Basically, the device 
is a reflectometer that measures the magnitude ratio and phase difference of signals 
that are incident on and reflected from a load (in this case the load is represented by 
the antenna placed in the chest proximity). The analog voltage outputs, representing 
the two above quantities, are sampled and stored with a sample rate less than 100 Hz 
(high enough, however, in view of the speed of typical person movements). 
Processing of the collected data allows to measure the time-varying phase of the an-
tenna reflection coefficient, from which it is possible to extract information about the 
heartbeat and respiratory rates. Since above phase variations are of the order of tenths 
of a degree, the measurement device must be capable to detect variations at least one 
order of magnitude lower. Fig. 1 shows the block diagram of the device that has been 
prototyped. Preliminary measurements in different frequency bands (400 MHz, 800 
MHz, 1500 MHz) showed that lower frequencies can provide larger phase variations 
(i.e., a higher system sensitivity) [6]; this is in contrast with Doppler-based sensor 
technology where instead high frequencies are preferred. The realized prototype oper-
ates in the ISM band at 433 MHz. Fig. 2 shows a photo of the device. The device uses 
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an oscillator with an output level of about 6 dBm, which feeds the antenna. A pair of 
directional couplers test the incident and reflected signals and send them to the inputs 
of a Gain and Phase Detector (GPD), which produces two analog voltages proportion-
al to the magnitude ratio and phase difference of the incident and reflected signals.  
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Attenuator
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OUT
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Matched ports

d_Phase              d_Mag

 

Fig. 1. Block diagram of the device used to get samples of the phase of the reflection  
coefficient of a wearable antenna 

The estimated amplitude of the reflection coefficient is less than -10 dB since the 
antenna is matched at the working frequency; to approximately balance the level of 
the two signals at the GPD input, the two directional couplers have different coupling 
coefficients (20 dB for the incident signal and only 10 dB for the reflected one). Fur-
thermore, the two attenuators set the signal levels around the middle of the GPD dy-
namic range. 

  

Fig. 2. The RF sensor prototype: the signal generator and the two directional couplers are  
clearly visible within the PCB (4cmx6cm) at the bottom side of both photos. The Gain and 
Phase Detector (GPD) based on the AD8302 log detector from Analog Devices is at the top 
side of the photos. 

The GPD is based on the AD8302 log detector from Analog Devices, which pro-
duces output voltages in the range 0-1.8 V, with a slope of 10mV/deg. Since it is re-
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quired to resolve a hundredth of degree of phase change, a voltage resolution of at 
least one tenth of mV is needed, which can be obtained by a 16-bit A/D converter 
with +/-2V input range. To increase the signal-to-noise ratio, the output signal is low-
pass filtered. Since in this application only the phase variations must be monitored, it 
is not necessary to perform a calibration usually required to exclude a measurement 
setup bias. The only care to be taken is to avoid having a starting value of the phase 
difference in the proximity of 0 ° or 180 ° values, where the phase detector exhibits a 
dead zone. It is worth noting that a standard monopole has been used as an antenna. 
This is possible since the performance of the proposed method does not depend sig-
nificantly by the antenna shape and technology [6]. This means that an ordinary wear-
able antenna can be used (in a practical implementation, this latter could be the anten-
na of a communication device already worn by the user!). 

3 Algorithm Description and Performance Analysis 

As mentioned earlier, the adoption of a low-cost wearable sensor prompted us to seek 
and test powerful algorithms capable of a more accurate separation of the pulmonary 
and cardiac components of the input signal, as compared to those utilized in the pre-
vious related literature [6]. Specifically, here we focus on recursive minimum mean 
square error (MMSE) estimation, or Kalman filtering, for accurate extraction of the 
signal components slower than the cardiac waveform. The idea behind this approach 
is similar to that already pursued in [6], i.e., we first try to get as accurate an estimate 
as possible of the slower-than-cardiac signal fluctuations (dominated by the pulmo-
nary track) and then, as a next step, we proceed removing the cited slow components 
from the observed data so as to improve the visibility of the (tiny) cardiac waveform 
over the remaining disturbance, represented by low-frequency residual components, 
wideband noise and interference. We show that the above MMSE-track-and-subtract 
approach permits to significantly improve the detectability of the cardiac waveform 
over previously proposed techniques, such as those in [6]. 

The MMSE filter was implemented assuming the signal component to be tracked is 
generated by a linear stationary system described by two state variables, namely, the 
parameter to be tracked ( )x t  and its derivative, governed by the same state equations 

as a simple one-dimensional mechanical system represented by a point mass of posi-
tion ( )x t  subject to a random acceleration. Using discrete-time representation with 

sample spacing sT , the system inherent state evolution is assumed of the type 

1 , 1, 2, ,k k k k N−= + =x Fx w   , (1) 

N  being the observation length and [ ]1 ;1 1sT=F  the state transition matrix, 

while kw  indicates the vector noise process, generated assuming that the second de-

rivative of ( )x t  is zero-mean white Gaussian noise (WGN) with variance 2
pσ . 

As for the observations, we assume the following linear time-invariant model: 

, 1, 2, ,k k k k N= + =z Hx v   , (2) 
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where [1 0]=H  and the single real-valued component kv  is the observation noise, 

modeled as zero-mean WGN with variance 2
nσ . We observe that parameters 2

nσ  and 
2
pσ  have to be jointly calibrated on a trial-and-error basis so as to have the above 

models fit the level and quality of disturbance affecting the experimental data. The 
Kalman filter was implemented in Matlab© environment using a conventional formu-
lation [11] and applied to experimental data blocks collected either in the presence or 
in the absence of respiratory activity as well as body motion of the cooperating sub-
ject. The results presented here are only relevant to the subject breathing normally, as 
the apnea condition was deemed to be unrealistic in an operating scenario. The sam-
pling frequency used to collect the phase of the reflection coefficient is 1s sf T= = 50 

Hz. The data block size is around 10000 samples, corresponding to a length of 3-4 
minutes. Prior to being fed to the Kalman filter, the arithmetic mean of the block is 
calculated and removed from the data set. Next, the sequence produced by the filter is 
subtracted from the input block, so as to attempt canceling the slowly-varying com-
ponents from the input signal. The sequence emerging from the above cancellation 
procedure eventually undergoes spectral analysis aimed at revealing the most signifi-
cant residual narrowband components. The analysis software allows to select the 
segment of time in the input data block to be processed. This can either coincide with 
the whole block length except for an initial interval (of arbitrary length) containing 
the filter transient response, or any fragment of the record whatever, presenting fea-
tures of interest. Spectral analysis is carried out by estimating the signal power spec-
trum via the periodogram method. The block of experimental data to be analyzed is 
subdivided into segments (“windows”) of equal length, then for each segment the 
squared modulus of the discrete Fourier transform (DFT) is calculated via the Fast 
Fourier transform (FFT) algorithm and finally the resulting sequences are averaged. 
This approach offers a twofold advantage: on one side, it permits to control the spec-
tral analysis resolution, that for the application at hand does not need to be extremely 
narrow, but compatible with the bandwidth occupancy of the cardiac signal, that is 
nonzero because of the physiological fluctuations of the heartbeat period. Moreover, 
to relieve complexity it seems reasonable that the above resolution is chosen not to be 
far smaller than the maximum tolerable error in the measurement of the cardiac rate. 
Assuming that the latter is estimated by simply reading the position on the frequency 
axis of the bin where the periodogram peaks, it turns out that the maximum absolute 
estimation error is equal to half the spectral resolution. Collecting the above criteria, 
the resolution should be chosen so as to neither exceed twice the tolerable error in the 
cardiac rate, nor to be smaller than the cardiac rate instability. The curves presented in 
this section were produced using 512-point windows, corresponding to a frequency 
spacing between DFT samples of around 0.1 Hz, i.e. a maximum absolute frequency 
error of 0.05 Hz, or plus or minus three beats per minute. If this inherent uncertainty 
seems excessive, it can be considerably reduced by resorting to some form of  
interpolation on the DFT samples. However the above choice for the resolution allows 
to safely separate the cardiac from the respiratory components, since these are consi-
derably spaced apart. The second advantage implicit in the above mentioned segmen-
tation of the experimental data blocks stands in the possibility of averaging the partial 
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spectral estimates originating from the single segments, thus obtaining a significant 
reduction of the fluctuations due to the random disturbance affecting the signal. Using 
512-point windows and data block lengths in the order of 10,000 samples permits to 
average over some twenty spectral estimates, with a reduction of 4-5 times of the 
RMS disturbance. The figures presented below were obtained after a calibration of the 
parameters 2

pσ  and 2
nσ  involved in the dynamic models implicit in the Kalman track-

er. A combination that proved to be nearly optimal for most of the available experi-
mental data is 0.004 0.006pσ = ÷  and 0.1 0.2nσ = ÷ . The actual selection for these 

parameters is specified in the figure captions below. In Figs. 3-4, we present numeri-
cal results for two blocks of data (identified as Block #i, i=1, 2), the first relevant to 
the cooperating subject standing still and normally breathing, the second with the 
addition of wide movements of both chest and arms in the first half of the record, 
followed by stillness in the second half. For each of the mentioned cases we present a  
 

 

(a)     (b) 

 
(c) 

Fig. 3. Block #1: (a) diagram of the observed raw phase of the reflection coefficient; (b) dia-
gram of the residual waveform (difference between the observed phase of the reflection coeffi-
cient and the output of the Kalman tracker); (c) Estimated power spectrum of residual  
waveform. 0.005pσ = , 0.2nσ = . 
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set of three figures: a) raw data vs. time for the whole block length, b) a fragment of 
the residual signal after cancellation of the slowly-varying component (i.e. the differ-
ence between the raw data and the Kalman filter output), c) finally, the averaged 
power spectrum estimate of the cited residual waveform. As for Block #2, a fourth 
figure is added (Fig. 4.d) showing the estimated spectrum of the residual signal in the 
second half of Block #2 where the subject is again still. 

 

(a)     (b) 

 

(c)     (d) 

Fig. 4. Block #2: (a) diagram of the observed raw phase of the reflection coefficient (the impact 
of subject motion is visible in the first half of record); (b) diagram of the residual waveform in a 
segment where the subject is still; (c) estimated power spectrum of residual waveform (whole 
block); (d) estimated power spectrum of residual waveform starting from the sample with index 
4300. 0.005pσ = , 0.2nσ = . 

Inspection of the figures reveals that for Blocks #1 it is possible to neatly detect a 
narrowband spectral component centered on the cardiac rate, slightly less than 1 Hz 
(Figs. 3.c). Conversely, the same tone is not clearly visible in the spectrum obtained 
from the residual signal relative to the whole Block #2 (Fig. 4.c), while it pops up 
again if the elaboration is limited to the second part of the same record (Fig. 4.d). We 
also observe from Figs. 3.c and 4.d that the respiratory component is almost absent in 
the residual waveform, thus confirming the good accuracy in tracking and cancella-
tion allowed by the Kalman filter. Other spectral components are visible in the  
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figures, notably the one falling in the vicinity of 2 Hz, most likely the first harmonic 
of the cardiac signal, whereas the peaks around 5 Hz and 10 Hz could not be unequi-
vocally ascribed to a specific source. As for the curve in Fig. 4.c, produced from the 
entire Block #2, it is worth observing that it exhibits a main spectral peak around 1.5 
Hz, that is not correlated to the cardiac component, its position on the frequency axis 
being too high. This peak is presumably to be ascribed to the random fluctuations of 
the residual waveform and also to the possible presence of other pseudo-periodic 
signal components in the first part of the record, affected by movements of the coope-
rating subject. A possible criterion to distinguish between a situation of this type with 
respect to the one in which the peak is actually produced by the cardiac activity could 
be based on the calculation of the mean squared value of the residual signal: this in 
fact appears to be far larger (around two orders of magnitude for the data processed in 
the examples, see Figs. 4.c-d) when the cooperating subject makes movements lead-
ing to large errors in the Kalman tracker. This seems one of the topics worth investi-
gating further, in the search of safe criteria for automatic recognition of the signal 
segments where the above procedure is more likely to be successful. 

4 Conclusions 

Non-invasive sensing of cardiopulmonary activity is feasible by deploying an RF 
antenna close to the human thorax. Encouraging preliminary results have been ob-
tained by applying Kalman filtering techniques to real data acquired through a low-
cost RF device. Work is in progress to get a smaller device through integrated circuit 
technology, which can be integrated in a commercial communication device or a radio 
beacon, such as those carried on by rescue operators and miners [12]. 
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