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Abstract. The rapid development in the Wireless Sensor Networks (WSNs) 
filed has allowed this technology to be used in many applications. In some of 
these applications, wireless sensor devices must be secured, especially when the 
captured information is valuable, sensitive, or for military usage. However, the 
implementation of security mechanisms on WSNs is a non-trivial task. 
Limitations in processing speed, battery power, bandwidth and memory 
constrain the applicability of existing cryptography algorithms for WSNs. The 
security of WSNs poses challenges because of the criticality of the data sensed 
by a node and in turn the node meets severe constraints like minimal energy, 
computational and communicational capabilities. Taking all the above said 
challenges energy efficiency or battery life time plays a major role in network 
lifetime. Providing security consumes some energy used by a node, so there is a 
need to minimize the energy consumption of any security algorithm that will be 
implemented in WSNs. As a solution, we apply an additive homomorphic 
encryption scheme, namely the elliptic curve ElGamal (EC-ElGamal) 
cryptosystem, and present the performance results of our implementation for the 
prominent sensor platform MicaZ mote. 

Keywords: Wireless sensor network, security, elliptic curve ElGamal, Energy 
consumption analysis. 

1 Introduction 

Wireless Sensor Networks (WSNs) have emerged as an important new area in wireless 
technology. A wireless sensor network [1] is a distributed system interacting with 
physical environment. It consists of motes equipped with task-specific sensors to 
measure the surrounding environment, e.g., temperature, movement, etc. It provides 
solutions to many challenging problems such as wildlife, battlefield, wildfire, or 
building safety monitoring. A key component in a WSN is the sensor mote, which 
contains (a) a simple microprocessor, (b) application-specific sensors, and (c) a 
wireless transceiver. Each sensor mote is typically powered by batteries, making 
energy consumption an issue. Security is vital aspect in WSN applications.  
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The implementation of security policies is a complex and challenging issue because of 
resource constrained nodes. Short transmission distances reduce some of the security 
threats, but there are risks, for example, related to spoofing, message altering and 
replaying, and flooding and wormhole attacks [2]. It is important therefore to consider 
security solutions that guarantee data authenticity, freshness, replay protection, 
integrity and confidentiality. For secure communication in WSNs, efficient 
cryptographic algorithm suitable for WSNs environment is required. It is ideal to 
choose the most efficient cryptographic algorithm in all aspects; operation speed, 
storage and power consumption. However, since each cryptographic algorithm applied 
in WSNs has distinguished advantages, it is important to choose a cryptographic 
algorithm suitable for each environment WSNs are exploited.  

The data encryption algorithms used in WSNs are generally divided into three 
major categories: symmetric-key algorithms, asymmetric-key algorithms, and hash 
algorithms. A number of papers, [1–2], have investigated using asymmetric-key 
algorithms in WSNs. However, the results they present reveal that despite the use of 
energy efficient techniques, such as elliptic curve cryptography or dedicated 
cryptography coprocessors, asymmetric-key algorithms consume more energy than 
symmetric-key algorithms. Hash functions, on the other hand, are typically used for 
verifying the integrity of the exchanged messages and may increase the transmission 
cost [3,4].  To prevent information and communication systems from illegal delivery 
and modification, message authentication and identification need to be examined 
through certificated mechanisms. Therefore, the receiver has to authenticate messages 
transmitted from the sensor nodes over a wireless sensor network. This is done through 
cryptography. It is a challenge to find out suitable cryptography for wireless sensor 
network due to limitations with respect to power, computational efficiency, and enough 
storage capabilities [2].  

In this paper, an efficient implementation of EC-ElGamal scheme on MicaZ is 
presented in order to get better understanding of the usage of public encryption in 
WSNs. It is important to consider minimizing the code size of the implementation of 
ECC since sensor nodes keep in its memory other information required to make these 
sensors alive and functioning. For the data memory usage a similar motivation holds. 
In comparison to code and memory size, the execution time is not as critical as them. 
Therefore, this work focuses respectively on the optimization of code size, memory 
usage, and computation time. In comparison with similar implementations from the 
literature, the proposed implementation requires less storage for code, consumes less 
memory, and offers faster operation. Note that the EC-ElGamal scheme shares many 
properties with other standard EC algorithm. Thus, the major parts from this proposed 
work are also applicable to other EC implementations on small general purpose 
processors. The rest of the paper is structured as follows: Wireless Sensor Networks 
are discussed in Section 2. Then, the related work is highlighted in Section 3. 
Moreover, elliptic curve ElGamal cryptosystem is illustrated in Section 4. Performance 
results and evaluation of cryptographic algorithms are presented in Section 5. Finally, 
Section 6 concludes the paper and then final considerations and future works are given.  
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2 Wireless Sensor Network 

A wireless sensor network (WSN) consists of a large number of tiny sensor nodes 
deployed over a geographical area also referred as sensing field. Each node is a low-
power device that integrates computing, wireless communication and sensing 
capabilities [8] [9]. Nodes organize themselves in clusters and networks and then they 
cooperate to perform an assigned monitoring (and/or control) task without any human 
intervention. Sensor nodes are able to sense physical environmental information such 
as temperature, humidity, vibration, acceleration and then process locally the acquired 
data both at sensors and cluster level. The proposed information is then sent to the 
cluster (or the sink) as in Figure 1. 
 

 

Fig. 1. A typical sensor network architecture 

A WSN can thus be viewed as an intelligent distributed measurement technology 
adequate for many different monitoring and control contexts. In recent years, the 
number of sensor network deployments for real-life applications has rapidly increased 
[15]. Examples of WSNs applications in different domains are as follows: 
environmental monitoring [10], agriculture [11], production and delivery [12], 
military [10], structure monitoring [13] and medical applications [14]. However, 
energy consumption still remains one of the main obstacles to the diffusion of this 
technology, especially in application scenarios where a long network lifetime and a 
high quality of service are required. In fact, nodes are generally powered by batteries 
which have limited capacity and often can neither be replaced nor recharged due to 
environmental constraints. Despite the fact that energy scavenging mechanisms can 
be adopted to recharge batteries such as through solar panels, piezoelectric or acoustic 
transducers, energy is a limited resource and must be used judiciously. Interested 
reader can refer to [16] for more information on scavenging mechanisms. Hence, 
efficient energy management strategies must be devised at both sensor nodes level 
and cluster level to prolong the network lifetime as much as possible. 

2.1 Security Goals and Challenges 

Achieved security goals vary from one security mechanism to another due to the 
adversarial model considered at the design time. In other words, depending on the 



274 S. Ben Othman  et  al. 

attacks that need to be mitigated, the provided security goals may vary. These security 
goals are discussed as follows [18]:  
 

• Data Confidentiality: Confidentiality means keeping information secret 
from unauthorized parties. A sensor network should not leak sensor readings 
to neighboring networks. In many applications (e.g. key distribution) nodes 
exchange highly sensitive data. The standard approach for keeping sensitive 
data secret is to encrypt the data with a secret key that only intended 
receivers can possess, hence achieving confidentiality. Since public-key 
cryptography is too expensive to be used in the resource constrained sensor 
networks, most of the proposed protocols use symmetric key encryption 
methods. The authors of TinySec [18] argue that cipher block chaining 
(CBC) is the most appropriate encryption scheme for sensor networks. They 
found RC5 and Skipjack to be most appropriate for software implementation 
on embedded microcontrollers. The default block cipher in TinySec is 
Skipjack. SPINS uses RC6 as its cipher. 

 
• Data Authenticity: In a wireless medium, an adversary can easily inject 

messages, if no mechanism to prevent unpermitted parties from participating 
in the network is in place. Thus, the receiver needs to make sure that the data 
used in any decision making process originates from the correct source. Data 
authentication prevents unauthorized parties from participating in the 
network and legitimate nodes should be able to detect messages from 
unauthorized nodes and reject them. In the two party communication case, 
data authentication can be achieved through a purely symmetric mechanism. 
The sender and the receiver share a secret key to compute a message 
authentication code (MAC) of all exchanged data. When a message with a 
correct MAC arrives, the receiver knows that it must have been sent by the 
sender. However, authentication for broadcast messages requires stronger 
trust assumptions on the network nodes. The authors of SPINS [19] contend 
that it is insecure to send authenticated data to mutually untrusted receivers, 
using a symmetric MAC is insecure since any one of the receivers know the 
MAC key, and hence could impersonate the sender and forge messages to 
other parties. SPINS constructs authenticated broadcast from symmetric 
primitives, but introduces asymmetry with delayed key disclosure and one-
way function key chains. LEAP [20] uses a globally shared symmetric key 
for broadcast messages to the whole group. However, since the group key is 
shared among all the nodes in the network, an efficient rekeying mechanism 
is defined for updating this key after a compromised node is revoked. This 
means that LEAP has also defined an efficient mechanism to verify whether 
a node has been compromised. 
 

• Data Integrity: Data integrity ensures the receiver that the received data is 
not altered in transit either maliciously or accidentally. This property can 
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help to filter out incorrect/altered data and save the processing energy if the 
data travelled all the way to the base station. 
 

• Data Freshness: Data freshness implies that the data is recent, and no old 
messages have been replayed. A common defense (used by SNEP [19]) is to 
include a monotonically increasing counter with every message and reject 
messages with old counter values. With this policy, every recipient must 
maintain a table of the last value from every sender it receives. However, for 
RAM constrained sensor nodes, this defense becomes problematic for even 
modestly sized networks. Assuming nodes devote only a small fraction of 
their RAM for this neighbor table, an adversary replaying broadcast 
messages from many different senders can fill up the table. At this point, the 
recipient has one of two options: ignore any messages from senders not in its 
neighbor table, or purge entries from the table. Neither is acceptable; the first 
creates a DoS attack and the second permits replay attacks. In [21], the 
authors contend that protection against the replay of data packets should be 
provided at the application layer and not by a secure routing protocol as only 
the application can fully and accurately detect the replay of data packets (as 
opposed to retransmissions ,for example). In [18], the authors reason that by 
using information about the network's topology and communication patterns, 
the application and routing layers can properly and efficiently manage a 
limited amount of memory devoted to replay detection. In [19], the authors 
have identified two types of freshness: weak freshness, and strong freshness. 
On one hand, the weak freshness provides partial message ordering, but 
carries no delay information. This type of freshness is suitable sensor 
measurements. On the other hand, the strong freshness provides a total order 
on a request response pair, and allows for delay estimation. This type is 
useful for time synchronization within the network. 

2.2 Types of Attacks on WSNs 

Wireless networks are vulnerable to security attacks due to the broadcast nature of the 
transmission medium. Furthermore, wireless sensor networks have an additional 
vulnerability because nodes are often placed in a hostile or dangerous environment 
where they are not physically protected. This section summaries types of attacks may 
be launched in WSNs. These attacks are as follows: 
 

• Passive Information Gathering: An intruder with an appropriately 
powerful receiver and well-designed antenna can easily pick off the data 
stream. Interception of the messages containing the physical locations of 
sensor nodes allows an attacker to locate the nodes and destroy them. 
Besides the locations of sensor nodes, an adversary can observe the 
application specific content of messages including message IDs, 
timestamps and other fields. To minimize the threats of passive 
information gathering, strong encryption techniques needs to be used. 
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• Subversion of a Node: A particular sensor might be captured, and 
information stored on it (such as the key) might then be obtained by an 
adversary. If a node has been compromised then how to exclude that node, 
and that node only, from the sensor network is at issue (LEAP [22] suggests 
an efficient way to do so). 

 
• False Node and malicious data: An intruder might add a node to the system 

that feeds false data or prevents the exchange of true data. Such messages also 
consume the scarce energy resources of the nodes. This type of attack is 
called “sleep deprivation torture” in [23]. Insertion of malicious code is one of 
the most dangerous attacks that can occur. Malicious code injected in the 
network could spread to all nodes, potentially destroying the whole network, 
or even worse, taking over the network on behalf of an adversary. A seized 
sensor network can either send false observations about the environment to a 
legitimate user or send observations about the monitored area to a malicious 
user. By spoofing, altering, or replaying routing information, adversaries may 
be able to create routing loops, attract or repel network traffic, extend or 
shorten source routes, generate false error messages, partition the network, 
increase end-to-end latency, etc. Strong authentication techniques can prevent 
an adversary from impersonating as a valid node in the sensor network. 
 

• The Sybil attack: In a Sybil attack [24], a single node presents multiple 
identities to other nodes in the network. They pose a significant threat to 
geographic routing protocols, where location aware routing requires nodes to 
exchange coordinate information with their neighbors to efficiently route 
geographically addressed packets. Authentication and encryption techniques 
can prevent an outsider from launching a Sybil attack on the sensor network. 
However, an insider cannot be prevented from participating in the network, 
but (s)he should only be able to do so using the identities of the nodes (s)he 
has compromised. Using globally shared key allows an insider to 
masquerade as any (possibly even nonexistent) node. Public key 
cryptography can prevent such an insider attack, but it is too expensive to be 
used in the resource constrained sensor networks. One solution is to have a 
shared unique symmetric key between each node and a trusted base station. 
Two nodes can then use a Needham- Schroeder like protocol to verify each 
other’s identity and establish a shared key. A pair of neighboring nodes can 
use the resulting key to implement an authenticated, encrypted link between 
them. An example of a protocol which uses such a scheme is LEAP [22], 
which supports the establishment of four types of keys. 

 
• Sinkhole attacks:  In a sinkhole attack, the adversary’s goal is to lure nearly 

all the traffic from a particular area through a compromised node, creating a 
metaphorical sinkhole with the adversary at the center. Sinkhole attacks 
typically work by making a compromised node look especially attractive to 
surrounding nodes with respect to the routing algorithm. For instance, an 
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adversary could spoof or replay an advertisement for an extremely high 
quality route to a base station. Due to either the real or imagined high quality 
route through the compromised node, it is likely each neighboring node of 
the adversary will forward packets destined for a base station through the 
adversary, and also propagate the attractiveness of the route to its neighbors. 
Effectively, the adversary creates a large “sphere of influence” [25], 
attracting all traffic destined for a base station from nodes several hops away 
from the compromised node. 
 

• Wormholes: In the wormhole attack [26], an adversary records a packet at 
one location in the network, tunnels the packet to another location over a low 
latency link, and replays it at another part of the network. The simplest 
instance of this attack is a single node situated between two other nodes 
forwarding messages between the two of them. However, wormhole attacks 
more commonly involve two distant malicious nodes colluding to understate 
their distance from each other by relaying packets along an out-of-bound 
channel available only to the attacker. An adversary situated close to a base 
station may be able to completely disrupt routing by creating a well-placed 
wormhole. An adversary could convince nodes that would normally be 
multiple hops from a base station that they are only one or two hops away 
via the wormhole. This can create a sinkhole, since the adversary on the 
other side of the wormhole can artificially provide a high quality route to the 
base station, potentially all traffic in the surrounding area will be drawn 
through the adversary if alternate routes are significantly less attractive.  

3 Related Works 

One of the first requirements for providing a security mechanism is establishing the 
cryptographic keys to be used by the encryption algorithms. Due to the limited 
resources and the need for scalability in WSNs, the key establishment protocols used 
in other fields are not suitable for WSN environments. To address this problem, a lot 
of work has been done to develop and evaluate specialized key establishment 
protocols [7], [6], [27]. Publications like [17] mimic asymmetric signatures schemes 
by a relatively complex scheme of two party hash chains, so do [5] and [6]. Other 
work like [7] try to establish pairwise secret keys to avoid public and private key 
schemes or Diffie-Hellman like key exchanges. 

In [27] and [28] the authors implement elliptic curve cryptography for sensor 
networks. However the underlying hardware is quite sophisticated consisting of 16 
Bit microcontrollers with 16 MHz clock frequency. Therefore the results are only of 
limited value as typical sensor hardware does not dispose of such powerful computing 
resource. As mentioned before sensor networks can in general not afford high clock 
frequencies and potent CPUs, because of cost and energy saving issues associated. 

In [29] a high-performance microcontroller offerings 24 MIPS, i.e. 3 times more 
than the usual ATMEGA 128, is utilized. The work is based on special Galois fields 
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called optimal extension fields where field multiplication can be done quite 
efficiently. However, the security of this fields is unclear because of the Weil descent 
attack [28]. The proposals trying to implement elliptic curves on 8Bit ATMEGA128 
chips like in [30] and [31] reach extremely poor performance. For example, a 
signature generation over 1:08 min of expensive computing and battery time has to be 
spent, which surely is not affordable. In addition the cost for necessary field 
operations are not mentioned at all. 

4 Elliptic Curve El-Gamal Encryption Scheme 

The original ElGamal encryption scheme, see [32], is not additive homomorphic. 
However, the elliptic curve group is an additive group, which can be used to get an 
additive homomorphic scheme. Algorithm 1 and Algorithm 2 show the methods for 
EC-ElGamal encryption and decryption, respectively. Therein, E is an elliptic curve 
over the finite field GF(p). The order of the curve E is denoted n = #E and G is the 
generator point of the curve E. The secret key is defined as integer number x 2 GF(p), 
while the public key is determined as Y = xG. 

The function map () is a deterministic mapping function used to map values mi 2 
GF(p) into plaintext curve points Mi 2 E such that 

 
        Map (m1 + m2 +.  .) = map (m1) + map (m2) + …map (mn)                    (1) 

 
                M1          M2                MN 

holds, whereby m1, m2 א GF(p). Since the addition operation over an elliptic curve 
requires both operands to be on that curve, prior to performing an addition of two 
integers, they should be mapped to the corresponding elliptic curve points. This 
explains why the mapping function is necessary. As proposed in [32] the 
homomorphic mapping function used in TinyPEDS is based on using multiples of the 
generator point G of the elliptic curve. This means that the mapping function converts 
a plaintext m to the point mG. The reverse mapping function rmap ( ) then extracts m 

from a given point mG. The mapping function, namely holds with m1, m2, … mn א 
GF(p), the generator point G, and the modulus p. 

 
map: m             mG with m א GF (p)                                  (2) 

 
fulfills the required homomorphic property due to the fact that the equation 

 
M1 +M2 + ... +Mn = map (m1 + m2 + ... + mn)                                (3) 

                                                    = (m1 + m2 + ... + mn) G 
                                                    = m1G + m2G + ... + mnG 

 
The mapping function is not security relevant, since it only converts an integer to an 
elliptic curve point. This means, it neither increases nor decreases the security of the 
EC-ElGamal encryption scheme. Note that the reverse mapping function is the same as 
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solving the discrete logarithm problem over an elliptic curve and, therefore, a 
weakness of this scheme. However, since the mapping function is only performed on 
the reader device, which is assumed to have unlimited resources, this disadvantage 
does not affect the performance and resource consumption within the network. 

In conclusion, according to the analysis made in [32], the EC-ElGamal scheme 
becomes the most promising candidate for using in TinyPEDS, because of its 
efficiency both in computation and bandwidth. However, the main disadvantage of this 
scheme is that the reverse mapping function required during decryption may be in 
some cases too costly. However, since the number of the aggregated values is limited 
and the maximum length of the final aggregation is assumed to be at most three bytes, 
see [46], the reverse mapping of the point mG with 24-bit m can be calculated fast 
enough on the reader device. 
 

Algorithm 1: EC-ElGamal encryption 
Require: public key Y, plaintext m 
Ensure: ciphertext (R, S) 
1: choose random k 2 [1, n − 1] 
2: M := map(m) 
3: R := kG 
4: S := M + kY                                                                   (4) 
5: return (R, S) 
 

Algorithm 2: EC-ElGamal decryption 
Require: secret key x, ciphertext (R, S) 
Ensure: plaintext m 
1: M := −xR + S 
2: m := rmap(M) 
3: return m 

5 Implementation 

The implementation was done on the Mica-Z mote, the operating system employed in 
the implementation is TinyOS-2.0 [33], an open-source operating system designed for 
wireless embedded sensor networks. In TinyOS there are two kinds of components, 
namely configurations and modules. Configurations connect modules, while the 
required functionality, e.g. arithmetic operations, is implemented in modules [33]. 
Figure 2 depicts a graphical representation of the EC-ElGamal configuration. 

5.1 ECElGamalM 

The module ECElGamalM implements the EC ElGamal encryption scheme and the 
arithmetic operations such as homomorphic addition operation.  
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Fig. 2. Graphical representation of elliptic curve ElGamal implementation 

Thus, in ECElGamalM following functions are implemented. 

• Void init (): Initializes the parameters, e.g. G, Y and the pre-computed 
points, required by the mapping and the encryption function. 

• Void generateRandomNum (FF_DIGIT *k): This function generates 
the random k required in the EC-ElGamal encryption. Note that the 
random number generation is based on the method rand16() from the 
module RandomLfsrC which is contained in TinyOS. Therefore, 
ECElGamalM calls the external method rand16() and this method call is 
represented as arrow in figure 2. 

• Void map(Point *M, FF_DIGIT *m, FF_DIGIT lengthOfm): Software 
implementation of the mapping function shown in equation 2, m is 
mapped to a elliptic curve point M, whereby M = mG. 

• Void enc (ECElGamalCipher *cipher, FF_DIGIT *m, FF_DIGIT 
lengthOfm): Software implementation of the EC-ElGamal encryption 
scheme as described in algorithm 1, whereby cipher = enc(m). 

• Void homAdd(ECElGamalCipher *cipher, ECElGamalCipher 
*cipher1, ECElGamalCipher *cipher2): Software implementation of 
the homomorphic addition operation ⨂, see equation 3, with cipher = 
cipher1  ⨂  cipher2. 

5.2 ECCArithC 

As depicted in Figure 2, the component ECCArithC consists of two modules, namely 
ECCArithM and FFArithM, which implement the arithmetic operations at elliptic 
curve and finite field level, respectively. 

• ECCArithM : The module ECCArithM implements the following 
operations from the elliptic curve level. 

• FFArithM : The module FFArithM implements the following finite field 
arithmetic operations. 
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5.3 SecpXXXr1 

Elliptic curve parameters such as the base point G and the point Y and pre-computed 
points are set in this module. 

5.4 RandomLfsrC 

This module is already implemented in TinyOS and part of the operating system. The 
following method is employed from this module. Note that the RandomLfsrC does 
not generate good pseudo-random numbers, which may lead to security problems. 
However, as they are not within the scope of this paper, the security analysis of weak 
pseudo-random numbers is not covered in this work. 

6 Performance Evaluations 

This section presents a comparative performance and energy consumption analysis of 
this algorithm. We have selected three crucial parameters; memory efficiency, 
execution time (operation speed), and energy efficiency. 

6.1 Memory Efficiency 

Memory usually includes flash memory (ROM) and RAM. Flash memory is classified 
into programming flash memory and data flash memory. Programming flash memory 
is used to store downloaded application programming code. Data flash memory stores 
temporary or sensing data. RAM is used for program execution. Because memory in a 
sensor node is not only limited but also require energy to retain or store data, efficient 
usage of memory is important. 

Besides computing time memory consumption is an important criteria for the use 
in sensor networks. Figure 3 gives an overview over the memory use of our 
implementation. 

6.2 Operation Time 

Operation speed is also an important factor when evaluating performance. After 
estimating operation time by repeatedly executing encryption and decryption process, 
we calculate the average of estimated value. 

Table 1 shows the performance of the different realizations of the EC-ElGamal, 
which contains two point multiplications with n-bit scalar k and one short point 
multiplication with the sensed data m, see Algorithm 1. Note that for testing purposes 
m was chosen to be 8-bit. 

6.3 Energy Efficiency 

The energy consumed by a processor during the execution of a piece of software, such 
as a block cipher, corresponds to the product of the average power dissipation and the  
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Fig. 3. Memory requirements of each algorithm 

Table 1. Operation time requirements of each algorithm 

# Recomputed points 
(160-bit) 

Execution time 
[s]

 

0 2.14  
2 1.22  
4 0.97  
   

 
total running time. The former depends on a number of factors including supply 
voltage, clock frequency, and the average current drawn by the processor while 
executing individual instructions of the program code. The computational complexity 
of an algorithm translates directly to its energy consumption. Assuming the energy 
per CPU cycle is fixed, by measuring the number of CPU cycle executed per byte of 
plaintext processed, we get the amount of energy consumed per byte. 

We estimate CPU cycle by using Power TOSSIM, which is extension of TOSSIM, 
an event driven simulation environment for TinyOS applications. Power TOSSIM 
provides accurate estimation of power consumption for a range of applications and 
scales to support very large simulation. The energy consumed by a processor during 
the execution of a piece of software, such as a block cipher, corresponds to the 
product of the average power dissipation and the total running time. 

Table 2 represents the power consumption of the implementations from this work, 
when those operations are performed. 

Table 2. Energy Efficiency requirements of each algorithm 

# Recomputed points 
(160-bit) 

Execution time 
[s] 

 

0 10.556  
2 5.560  
4 5.918  
   

0
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0 2 4
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#Precomputed points (160-bit)

RAM
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7 Conclusion 

The performance evaluation of cryptographic algorithms is vital for the safe and 
efficient development of cryptosystem in devices with low computational power.  
Due to the resource restrictions of sensor nodes, several algorithms required for 
implementing the EC-ElGamal cryptosystem are analyzed. Thus, the time efficiency, 
code size, and memory consumption of each candidate algorithm were compared and 
the most promising algorithms were selected and implemented.  

Moreover, the programming style was selected such that unnecessary overhead in 
terms of code performance, code size, and memory usage were reduced to minimum. 
One future research direction is to explore adaptive cryptographic mechanisms to 
optimize energy consumption by varying cipher parameters with timely acquisition of 
resource-context in WSN environment. The adaptability of the security system will 
improve sensor nodes battery’s lifetime. 
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