
B. Godara and K.S. Nikita (Eds.): MobiHealth 2012, LNICST 61, pp. 271–285, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Performance Evaluation of EC-ElGamal Encryption
Algorithm for Wireless Sensor Networks

Soufiene Ben Othman1, Abdelbasset Trad1, Hani Alzaid2, and Habib Youssef1

1 UR PRINCE, ISITcom, Hammam Sousse University of Sousse, Tunisia
2 Computer Research Institute, King Abdulaziz City for Science and Technology, Riyadh,

Saudi Arabia
ben_oth_soufiene@yahoo.fr, abdelbasset.trad@isigk.rnu.tn,

hmalzaid@kacst.edu.sa

Abstract. The rapid development in the Wireless Sensor Networks (WSNs)
filed has allowed this technology to be used in many applications. In some of
these applications, wireless sensor devices must be secured, especially when the
captured information is valuable, sensitive, or for military usage. However, the
implementation of security mechanisms on WSNs is a non-trivial task.
Limitations in processing speed, battery power, bandwidth and memory
constrain the applicability of existing cryptography algorithms for WSNs. The
security of WSNs poses challenges because of the criticality of the data sensed
by a node and in turn the node meets severe constraints like minimal energy,
computational and communicational capabilities. Taking all the above said
challenges energy efficiency or battery life time plays a major role in network
lifetime. Providing security consumes some energy used by a node, so there is a
need to minimize the energy consumption of any security algorithm that will be
implemented in WSNs. As a solution, we apply an additive homomorphic
encryption scheme, namely the elliptic curve ElGamal (EC-ElGamal)
cryptosystem, and present the performance results of our implementation for the
prominent sensor platform MicaZ mote.

Keywords: Wireless sensor network, security, elliptic curve ElGamal, Energy
consumption analysis.

1 Introduction

Wireless Sensor Networks (WSNs) have emerged as an important new area in wireless
technology. A wireless sensor network [1] is a distributed system interacting with
physical environment. It consists of motes equipped with task-specific sensors to
measure the surrounding environment, e.g., temperature, movement, etc. It provides
solutions to many challenging problems such as wildlife, battlefield, wildfire, or
building safety monitoring. A key component in a WSN is the sensor mote, which
contains (a) a simple microprocessor, (b) application-specific sensors, and (c) a
wireless transceiver. Each sensor mote is typically powered by batteries, making
energy consumption an issue. Security is vital aspect in WSN applications.

272 S. Ben Othman et al.

The implementation of security policies is a complex and challenging issue because of
resource constrained nodes. Short transmission distances reduce some of the security
threats, but there are risks, for example, related to spoofing, message altering and
replaying, and flooding and wormhole attacks [2]. It is important therefore to consider
security solutions that guarantee data authenticity, freshness, replay protection,
integrity and confidentiality. For secure communication in WSNs, efficient
cryptographic algorithm suitable for WSNs environment is required. It is ideal to
choose the most efficient cryptographic algorithm in all aspects; operation speed,
storage and power consumption. However, since each cryptographic algorithm applied
in WSNs has distinguished advantages, it is important to choose a cryptographic
algorithm suitable for each environment WSNs are exploited.

The data encryption algorithms used in WSNs are generally divided into three
major categories: symmetric-key algorithms, asymmetric-key algorithms, and hash
algorithms. A number of papers, [1–2], have investigated using asymmetric-key
algorithms in WSNs. However, the results they present reveal that despite the use of
energy efficient techniques, such as elliptic curve cryptography or dedicated
cryptography coprocessors, asymmetric-key algorithms consume more energy than
symmetric-key algorithms. Hash functions, on the other hand, are typically used for
verifying the integrity of the exchanged messages and may increase the transmission
cost [3,4]. To prevent information and communication systems from illegal delivery
and modification, message authentication and identification need to be examined
through certificated mechanisms. Therefore, the receiver has to authenticate messages
transmitted from the sensor nodes over a wireless sensor network. This is done through
cryptography. It is a challenge to find out suitable cryptography for wireless sensor
network due to limitations with respect to power, computational efficiency, and enough
storage capabilities [2].

In this paper, an efficient implementation of EC-ElGamal scheme on MicaZ is
presented in order to get better understanding of the usage of public encryption in
WSNs. It is important to consider minimizing the code size of the implementation of
ECC since sensor nodes keep in its memory other information required to make these
sensors alive and functioning. For the data memory usage a similar motivation holds.
In comparison to code and memory size, the execution time is not as critical as them.
Therefore, this work focuses respectively on the optimization of code size, memory
usage, and computation time. In comparison with similar implementations from the
literature, the proposed implementation requires less storage for code, consumes less
memory, and offers faster operation. Note that the EC-ElGamal scheme shares many
properties with other standard EC algorithm. Thus, the major parts from this proposed
work are also applicable to other EC implementations on small general purpose
processors. The rest of the paper is structured as follows: Wireless Sensor Networks
are discussed in Section 2. Then, the related work is highlighted in Section 3.
Moreover, elliptic curve ElGamal cryptosystem is illustrated in Section 4. Performance
results and evaluation of cryptographic algorithms are presented in Section 5. Finally,
Section 6 concludes the paper and then final considerations and future works are given.

 Performance Evaluation of EC-ElGamal Encryption Algorithm for WSNs 273

2 Wireless Sensor Network

A wireless sensor network (WSN) consists of a large number of tiny sensor nodes
deployed over a geographical area also referred as sensing field. Each node is a low-
power device that integrates computing, wireless communication and sensing
capabilities [8] [9]. Nodes organize themselves in clusters and networks and then they
cooperate to perform an assigned monitoring (and/or control) task without any human
intervention. Sensor nodes are able to sense physical environmental information such
as temperature, humidity, vibration, acceleration and then process locally the acquired
data both at sensors and cluster level. The proposed information is then sent to the
cluster (or the sink) as in Figure 1.

Fig. 1. A typical sensor network architecture

A WSN can thus be viewed as an intelligent distributed measurement technology
adequate for many different monitoring and control contexts. In recent years, the
number of sensor network deployments for real-life applications has rapidly increased
[15]. Examples of WSNs applications in different domains are as follows:
environmental monitoring [10], agriculture [11], production and delivery [12],
military [10], structure monitoring [13] and medical applications [14]. However,
energy consumption still remains one of the main obstacles to the diffusion of this
technology, especially in application scenarios where a long network lifetime and a
high quality of service are required. In fact, nodes are generally powered by batteries
which have limited capacity and often can neither be replaced nor recharged due to
environmental constraints. Despite the fact that energy scavenging mechanisms can
be adopted to recharge batteries such as through solar panels, piezoelectric or acoustic
transducers, energy is a limited resource and must be used judiciously. Interested
reader can refer to [16] for more information on scavenging mechanisms. Hence,
efficient energy management strategies must be devised at both sensor nodes level
and cluster level to prolong the network lifetime as much as possible.

2.1 Security Goals and Challenges

Achieved security goals vary from one security mechanism to another due to the
adversarial model considered at the design time. In other words, depending on the

274 S. Ben Othman et al.

attacks that need to be mitigated, the provided security goals may vary. These security
goals are discussed as follows [18]:

• Data Confidentiality: Confidentiality means keeping information secret
from unauthorized parties. A sensor network should not leak sensor readings
to neighboring networks. In many applications (e.g. key distribution) nodes
exchange highly sensitive data. The standard approach for keeping sensitive
data secret is to encrypt the data with a secret key that only intended
receivers can possess, hence achieving confidentiality. Since public-key
cryptography is too expensive to be used in the resource constrained sensor
networks, most of the proposed protocols use symmetric key encryption
methods. The authors of TinySec [18] argue that cipher block chaining
(CBC) is the most appropriate encryption scheme for sensor networks. They
found RC5 and Skipjack to be most appropriate for software implementation
on embedded microcontrollers. The default block cipher in TinySec is
Skipjack. SPINS uses RC6 as its cipher.

• Data Authenticity: In a wireless medium, an adversary can easily inject

messages, if no mechanism to prevent unpermitted parties from participating
in the network is in place. Thus, the receiver needs to make sure that the data
used in any decision making process originates from the correct source. Data
authentication prevents unauthorized parties from participating in the
network and legitimate nodes should be able to detect messages from
unauthorized nodes and reject them. In the two party communication case,
data authentication can be achieved through a purely symmetric mechanism.
The sender and the receiver share a secret key to compute a message
authentication code (MAC) of all exchanged data. When a message with a
correct MAC arrives, the receiver knows that it must have been sent by the
sender. However, authentication for broadcast messages requires stronger
trust assumptions on the network nodes. The authors of SPINS [19] contend
that it is insecure to send authenticated data to mutually untrusted receivers,
using a symmetric MAC is insecure since any one of the receivers know the
MAC key, and hence could impersonate the sender and forge messages to
other parties. SPINS constructs authenticated broadcast from symmetric
primitives, but introduces asymmetry with delayed key disclosure and one-
way function key chains. LEAP [20] uses a globally shared symmetric key
for broadcast messages to the whole group. However, since the group key is
shared among all the nodes in the network, an efficient rekeying mechanism
is defined for updating this key after a compromised node is revoked. This
means that LEAP has also defined an efficient mechanism to verify whether
a node has been compromised.

• Data Integrity: Data integrity ensures the receiver that the received data is
not altered in transit either maliciously or accidentally. This property can

 Performance Evaluation of EC-ElGamal Encryption Algorithm for WSNs 275

help to filter out incorrect/altered data and save the processing energy if the
data travelled all the way to the base station.

• Data Freshness: Data freshness implies that the data is recent, and no old
messages have been replayed. A common defense (used by SNEP [19]) is to
include a monotonically increasing counter with every message and reject
messages with old counter values. With this policy, every recipient must
maintain a table of the last value from every sender it receives. However, for
RAM constrained sensor nodes, this defense becomes problematic for even
modestly sized networks. Assuming nodes devote only a small fraction of
their RAM for this neighbor table, an adversary replaying broadcast
messages from many different senders can fill up the table. At this point, the
recipient has one of two options: ignore any messages from senders not in its
neighbor table, or purge entries from the table. Neither is acceptable; the first
creates a DoS attack and the second permits replay attacks. In [21], the
authors contend that protection against the replay of data packets should be
provided at the application layer and not by a secure routing protocol as only
the application can fully and accurately detect the replay of data packets (as
opposed to retransmissions ,for example). In [18], the authors reason that by
using information about the network's topology and communication patterns,
the application and routing layers can properly and efficiently manage a
limited amount of memory devoted to replay detection. In [19], the authors
have identified two types of freshness: weak freshness, and strong freshness.
On one hand, the weak freshness provides partial message ordering, but
carries no delay information. This type of freshness is suitable sensor
measurements. On the other hand, the strong freshness provides a total order
on a request response pair, and allows for delay estimation. This type is
useful for time synchronization within the network.

2.2 Types of Attacks on WSNs

Wireless networks are vulnerable to security attacks due to the broadcast nature of the
transmission medium. Furthermore, wireless sensor networks have an additional
vulnerability because nodes are often placed in a hostile or dangerous environment
where they are not physically protected. This section summaries types of attacks may
be launched in WSNs. These attacks are as follows:

• Passive Information Gathering: An intruder with an appropriately
powerful receiver and well-designed antenna can easily pick off the data
stream. Interception of the messages containing the physical locations of
sensor nodes allows an attacker to locate the nodes and destroy them.
Besides the locations of sensor nodes, an adversary can observe the
application specific content of messages including message IDs,
timestamps and other fields. To minimize the threats of passive
information gathering, strong encryption techniques needs to be used.

276 S. Ben Othman et al.

• Subversion of a Node: A particular sensor might be captured, and
information stored on it (such as the key) might then be obtained by an
adversary. If a node has been compromised then how to exclude that node,
and that node only, from the sensor network is at issue (LEAP [22] suggests
an efficient way to do so).

• False Node and malicious data: An intruder might add a node to the system

that feeds false data or prevents the exchange of true data. Such messages also
consume the scarce energy resources of the nodes. This type of attack is
called “sleep deprivation torture” in [23]. Insertion of malicious code is one of
the most dangerous attacks that can occur. Malicious code injected in the
network could spread to all nodes, potentially destroying the whole network,
or even worse, taking over the network on behalf of an adversary. A seized
sensor network can either send false observations about the environment to a
legitimate user or send observations about the monitored area to a malicious
user. By spoofing, altering, or replaying routing information, adversaries may
be able to create routing loops, attract or repel network traffic, extend or
shorten source routes, generate false error messages, partition the network,
increase end-to-end latency, etc. Strong authentication techniques can prevent
an adversary from impersonating as a valid node in the sensor network.

• The Sybil attack: In a Sybil attack [24], a single node presents multiple
identities to other nodes in the network. They pose a significant threat to
geographic routing protocols, where location aware routing requires nodes to
exchange coordinate information with their neighbors to efficiently route
geographically addressed packets. Authentication and encryption techniques
can prevent an outsider from launching a Sybil attack on the sensor network.
However, an insider cannot be prevented from participating in the network,
but (s)he should only be able to do so using the identities of the nodes (s)he
has compromised. Using globally shared key allows an insider to
masquerade as any (possibly even nonexistent) node. Public key
cryptography can prevent such an insider attack, but it is too expensive to be
used in the resource constrained sensor networks. One solution is to have a
shared unique symmetric key between each node and a trusted base station.
Two nodes can then use a Needham- Schroeder like protocol to verify each
other’s identity and establish a shared key. A pair of neighboring nodes can
use the resulting key to implement an authenticated, encrypted link between
them. An example of a protocol which uses such a scheme is LEAP [22],
which supports the establishment of four types of keys.

• Sinkhole attacks: In a sinkhole attack, the adversary’s goal is to lure nearly

all the traffic from a particular area through a compromised node, creating a
metaphorical sinkhole with the adversary at the center. Sinkhole attacks
typically work by making a compromised node look especially attractive to
surrounding nodes with respect to the routing algorithm. For instance, an

 Performance Evaluation of EC-ElGamal Encryption Algorithm for WSNs 277

adversary could spoof or replay an advertisement for an extremely high
quality route to a base station. Due to either the real or imagined high quality
route through the compromised node, it is likely each neighboring node of
the adversary will forward packets destined for a base station through the
adversary, and also propagate the attractiveness of the route to its neighbors.
Effectively, the adversary creates a large “sphere of influence” [25],
attracting all traffic destined for a base station from nodes several hops away
from the compromised node.

• Wormholes: In the wormhole attack [26], an adversary records a packet at
one location in the network, tunnels the packet to another location over a low
latency link, and replays it at another part of the network. The simplest
instance of this attack is a single node situated between two other nodes
forwarding messages between the two of them. However, wormhole attacks
more commonly involve two distant malicious nodes colluding to understate
their distance from each other by relaying packets along an out-of-bound
channel available only to the attacker. An adversary situated close to a base
station may be able to completely disrupt routing by creating a well-placed
wormhole. An adversary could convince nodes that would normally be
multiple hops from a base station that they are only one or two hops away
via the wormhole. This can create a sinkhole, since the adversary on the
other side of the wormhole can artificially provide a high quality route to the
base station, potentially all traffic in the surrounding area will be drawn
through the adversary if alternate routes are significantly less attractive.

3 Related Works

One of the first requirements for providing a security mechanism is establishing the
cryptographic keys to be used by the encryption algorithms. Due to the limited
resources and the need for scalability in WSNs, the key establishment protocols used
in other fields are not suitable for WSN environments. To address this problem, a lot
of work has been done to develop and evaluate specialized key establishment
protocols [7], [6], [27]. Publications like [17] mimic asymmetric signatures schemes
by a relatively complex scheme of two party hash chains, so do [5] and [6]. Other
work like [7] try to establish pairwise secret keys to avoid public and private key
schemes or Diffie-Hellman like key exchanges.

In [27] and [28] the authors implement elliptic curve cryptography for sensor
networks. However the underlying hardware is quite sophisticated consisting of 16
Bit microcontrollers with 16 MHz clock frequency. Therefore the results are only of
limited value as typical sensor hardware does not dispose of such powerful computing
resource. As mentioned before sensor networks can in general not afford high clock
frequencies and potent CPUs, because of cost and energy saving issues associated.

In [29] a high-performance microcontroller offerings 24 MIPS, i.e. 3 times more
than the usual ATMEGA 128, is utilized. The work is based on special Galois fields

278 S. Ben Othman et al.

called optimal extension fields where field multiplication can be done quite
efficiently. However, the security of this fields is unclear because of the Weil descent
attack [28]. The proposals trying to implement elliptic curves on 8Bit ATMEGA128
chips like in [30] and [31] reach extremely poor performance. For example, a
signature generation over 1:08 min of expensive computing and battery time has to be
spent, which surely is not affordable. In addition the cost for necessary field
operations are not mentioned at all.

4 Elliptic Curve El-Gamal Encryption Scheme

The original ElGamal encryption scheme, see [32], is not additive homomorphic.
However, the elliptic curve group is an additive group, which can be used to get an
additive homomorphic scheme. Algorithm 1 and Algorithm 2 show the methods for
EC-ElGamal encryption and decryption, respectively. Therein, E is an elliptic curve
over the finite field GF(p). The order of the curve E is denoted n = #E and G is the
generator point of the curve E. The secret key is defined as integer number x 2 GF(p),
while the public key is determined as Y = xG.

The function map () is a deterministic mapping function used to map values mi 2
GF(p) into plaintext curve points Mi 2 E such that

 Map (m1 + m2 +. .) = map (m1) + map (m2) + …map (mn) (1)

 M1 M2 MN

holds, whereby m1, m2 א GF(p). Since the addition operation over an elliptic curve
requires both operands to be on that curve, prior to performing an addition of two
integers, they should be mapped to the corresponding elliptic curve points. This
explains why the mapping function is necessary. As proposed in [32] the
homomorphic mapping function used in TinyPEDS is based on using multiples of the
generator point G of the elliptic curve. This means that the mapping function converts
a plaintext m to the point mG. The reverse mapping function rmap () then extracts m

from a given point mG. The mapping function, namely holds with m1, m2, … mn א
GF(p), the generator point G, and the modulus p.

map: m mG with m א GF (p) (2)

fulfills the required homomorphic property due to the fact that the equation

M1 +M2 + ... +Mn = map (m1 + m2 + ... + mn) (3)

 = (m1 + m2 + ... + mn) G
 = m1G + m2G + ... + mnG

The mapping function is not security relevant, since it only converts an integer to an
elliptic curve point. This means, it neither increases nor decreases the security of the
EC-ElGamal encryption scheme. Note that the reverse mapping function is the same as

 Performance Evaluation of EC-ElGamal Encryption Algorithm for WSNs 279

solving the discrete logarithm problem over an elliptic curve and, therefore, a
weakness of this scheme. However, since the mapping function is only performed on
the reader device, which is assumed to have unlimited resources, this disadvantage
does not affect the performance and resource consumption within the network.

In conclusion, according to the analysis made in [32], the EC-ElGamal scheme
becomes the most promising candidate for using in TinyPEDS, because of its
efficiency both in computation and bandwidth. However, the main disadvantage of this
scheme is that the reverse mapping function required during decryption may be in
some cases too costly. However, since the number of the aggregated values is limited
and the maximum length of the final aggregation is assumed to be at most three bytes,
see [46], the reverse mapping of the point mG with 24-bit m can be calculated fast
enough on the reader device.

Algorithm 1: EC-ElGamal encryption
Require: public key Y, plaintext m
Ensure: ciphertext (R, S)
1: choose random k 2 [1, n − 1]
2: M := map(m)
3: R := kG
4: S := M + kY (4)
5: return (R, S)

Algorithm 2: EC-ElGamal decryption
Require: secret key x, ciphertext (R, S)
Ensure: plaintext m
1: M := −xR + S
2: m := rmap(M)
3: return m

5 Implementation

The implementation was done on the Mica-Z mote, the operating system employed in
the implementation is TinyOS-2.0 [33], an open-source operating system designed for
wireless embedded sensor networks. In TinyOS there are two kinds of components,
namely configurations and modules. Configurations connect modules, while the
required functionality, e.g. arithmetic operations, is implemented in modules [33].
Figure 2 depicts a graphical representation of the EC-ElGamal configuration.

5.1 ECElGamalM

The module ECElGamalM implements the EC ElGamal encryption scheme and the
arithmetic operations such as homomorphic addition operation.

280 S. Ben Othman et al.

Fig. 2. Graphical representation of elliptic curve ElGamal implementation

Thus, in ECElGamalM following functions are implemented.

• Void init (): Initializes the parameters, e.g. G, Y and the pre-computed
points, required by the mapping and the encryption function.

• Void generateRandomNum (FF_DIGIT *k): This function generates
the random k required in the EC-ElGamal encryption. Note that the
random number generation is based on the method rand16() from the
module RandomLfsrC which is contained in TinyOS. Therefore,
ECElGamalM calls the external method rand16() and this method call is
represented as arrow in figure 2.

• Void map(Point *M, FF_DIGIT *m, FF_DIGIT lengthOfm): Software
implementation of the mapping function shown in equation 2, m is
mapped to a elliptic curve point M, whereby M = mG.

• Void enc (ECElGamalCipher *cipher, FF_DIGIT *m, FF_DIGIT
lengthOfm): Software implementation of the EC-ElGamal encryption
scheme as described in algorithm 1, whereby cipher = enc(m).

• Void homAdd(ECElGamalCipher *cipher, ECElGamalCipher
*cipher1, ECElGamalCipher *cipher2): Software implementation of
the homomorphic addition operation ⨂, see equation 3, with cipher =
cipher1 ⨂ cipher2.

5.2 ECCArithC

As depicted in Figure 2, the component ECCArithC consists of two modules, namely
ECCArithM and FFArithM, which implement the arithmetic operations at elliptic
curve and finite field level, respectively.

• ECCArithM : The module ECCArithM implements the following
operations from the elliptic curve level.

• FFArithM : The module FFArithM implements the following finite field
arithmetic operations.

 Performance Evaluation of EC-ElGamal Encryption Algorithm for WSNs 281

5.3 SecpXXXr1

Elliptic curve parameters such as the base point G and the point Y and pre-computed
points are set in this module.

5.4 RandomLfsrC

This module is already implemented in TinyOS and part of the operating system. The
following method is employed from this module. Note that the RandomLfsrC does
not generate good pseudo-random numbers, which may lead to security problems.
However, as they are not within the scope of this paper, the security analysis of weak
pseudo-random numbers is not covered in this work.

6 Performance Evaluations

This section presents a comparative performance and energy consumption analysis of
this algorithm. We have selected three crucial parameters; memory efficiency,
execution time (operation speed), and energy efficiency.

6.1 Memory Efficiency

Memory usually includes flash memory (ROM) and RAM. Flash memory is classified
into programming flash memory and data flash memory. Programming flash memory
is used to store downloaded application programming code. Data flash memory stores
temporary or sensing data. RAM is used for program execution. Because memory in a
sensor node is not only limited but also require energy to retain or store data, efficient
usage of memory is important.

Besides computing time memory consumption is an important criteria for the use
in sensor networks. Figure 3 gives an overview over the memory use of our
implementation.

6.2 Operation Time

Operation speed is also an important factor when evaluating performance. After
estimating operation time by repeatedly executing encryption and decryption process,
we calculate the average of estimated value.

Table 1 shows the performance of the different realizations of the EC-ElGamal,
which contains two point multiplications with n-bit scalar k and one short point
multiplication with the sensed data m, see Algorithm 1. Note that for testing purposes
m was chosen to be 8-bit.

6.3 Energy Efficiency

The energy consumed by a processor during the execution of a piece of software, such
as a block cipher, corresponds to the product of the average power dissipation and the

282 S. Ben Othman et al.

Fig. 3. Memory requirements of each algorithm

Table 1. Operation time requirements of each algorithm

Recomputed points
(160-bit)

Execution time
[s]

0 2.14
2 1.22
4 0.97

total running time. The former depends on a number of factors including supply
voltage, clock frequency, and the average current drawn by the processor while
executing individual instructions of the program code. The computational complexity
of an algorithm translates directly to its energy consumption. Assuming the energy
per CPU cycle is fixed, by measuring the number of CPU cycle executed per byte of
plaintext processed, we get the amount of energy consumed per byte.

We estimate CPU cycle by using Power TOSSIM, which is extension of TOSSIM,
an event driven simulation environment for TinyOS applications. Power TOSSIM
provides accurate estimation of power consumption for a range of applications and
scales to support very large simulation. The energy consumed by a processor during
the execution of a piece of software, such as a block cipher, corresponds to the
product of the average power dissipation and the total running time.

Table 2 represents the power consumption of the implementations from this work,
when those operations are performed.

Table 2. Energy Efficiency requirements of each algorithm

Recomputed points
(160-bit)

Execution time
[s]

0 10.556
2 5.560
4 5.918

0
1000
2000
3000
4000
5000
6000

0 2 4

320 621 683

2726
3806

5122

#Precomputed points (160-bit)

RAM
ROM

 Performance Evaluation of EC-ElGamal Encryption Algorithm for WSNs 283

7 Conclusion

The performance evaluation of cryptographic algorithms is vital for the safe and
efficient development of cryptosystem in devices with low computational power.
Due to the resource restrictions of sensor nodes, several algorithms required for
implementing the EC-ElGamal cryptosystem are analyzed. Thus, the time efficiency,
code size, and memory consumption of each candidate algorithm were compared and
the most promising algorithms were selected and implemented.

Moreover, the programming style was selected such that unnecessary overhead in
terms of code performance, code size, and memory usage were reduced to minimum.
One future research direction is to explore adaptive cryptographic mechanisms to
optimize energy consumption by varying cipher parameters with timely acquisition of
resource-context in WSN environment. The adaptability of the security system will
improve sensor nodes battery’s lifetime.

References

1. Bertoni, G., Breveglieri, L., Venturi, M.: Power aware design of an elliptic curve
coprocessor for 8 bit platforms. In: PERCOMW 2006, p. 337 (2006)

2. Wander, A.S., Gura, N., Eberle, H., Gupta, V., Shantz, S.C.: Energy analysis of public-key
cryptography for wireless sensor networks. In: PERCOM 2005, pp. 324–328 (2005)

3. Potlapally, N.R., Ravi, S., Raghunathan, A., Jha, N.K.: A study of the energy consumption
characteristics of cryptographic algorithms and security protocols. In: IEEE TMC 2005,
pp. 128–143 (2005)

4. Chang, C.-C., Muftic, S., Nagel, D.J.: Measurement of energy costs of security in wireless
sensor nodes. In: ICCCN 2007, pp. 95–102 (2007)

5. Weimerskirch, A., Westhoff, D.: Zero Common-Knowledge Authentication for Pervasive
Networks. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 73–87.
Springer, Heidelberg (2004)

6. Weimerskirch, A., Westhoff, D.: Identity Certified Authentication for Ad-hoc Networks.
In: 10th Workshop on Security of Ad Hoc and Sensor Networks (2003)

7. Balfanz, D., Smetters, D., Stewart, P., Wong, H.: Talking to strangers: Authentication in
adhoc wireless networks. In: Symposium on Network and Distributed Systems Security
(2002)

8. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Capirci, E.: Wireless Sensor Networks: a
Survey. Computer Networks 38(4) (March 2002)

9. Romer, K., Mattern, F.: The design space of wireless sensor networks. IEEE Wireless
Communications 11(6), 54–61 (2004)

10. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sensor
networks for habitat monitoring. In: Proc. ACM International Workshop on Wireless
Sensor Networks and Applications, pp. 88–97 (2002)

11. Werner-Allen, G., Johnson, J., Ruiz, M., Lees, J., Welsh, M.: Monitoring volcanic
eruptions with a wireless sensor network. In: Proceeedings of the Wireless Sensor
Networks, pp. 108–120 (2005)

12. Lee, K.B., Reichardt, M.E.: Open standards for homeland security sensor networks. IEEE
Magazine on Instrumentation & Measurement 8(5), 14–21 (2005)

284 S. Ben Othman et al.

13. Baldus, H., Klabunde, K., Müsch, G.: Reliable Set-Up of Medical Body-Sensor Networks.
In: Karl, H., Wolisz, A., Willig, A. (eds.) EWSN 2004. LNCS, vol. 2920, pp. 353–363.
Springer, Heidelberg (2004)

14. Alippi, C., Galperti, C.: An Adaptive System for Optimal Solar Energy Harvesting in
Wireless Sensor Network Nodes. IEEE Transactions on Circuits and Systems I: Regular
Papers 55(6), 1742–1750 (2008)

15. Slijepcevic, S., Potkonjak, M., Tsiatsis, V., Zimbeck, S., Srivastava, M.B.: On
communication security in wireless ad-hoc sensor networks. In: Proceedings of 11th IEEE
International Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE 2002), pp. 139–144 (2002)

16. Carman, D.W., Krus, P.S., Matt, B.J.: Constraints and approaches for distributed sensor
network security., Technical Report 00-010, NAI Labs, Network Associates Inc.,
Glenwood, MD (2009)

17. Anderson, R., Bergadano, F., Crispo, B., Lee, J., Manifavas, C., Needham, R.: A New
Family of Authentication Protocols. ACMOSR: ACM Operating Systems Review (1998)

18. Karlof, C., Sastry, N., Wagner, D.: TinySec: A Link Layer Security Architecture for
Wireless Sensor Networks. In: ACM SenSys 2004, November 3-5 (2004)

19. Xiao, Y. (ed.): Wireless Sensor Network Security: A Survey. Security in Distributed, Grid,
and Pervasive Computing. Auerbach Publications, CRC Press (2006)

20. Estrin, D., Govindan, R., Heidemann, J.S., Kumar, S.: Next century challenges: Scalable
coordination in sensor networks. In: Mobile Computing and Networking, pp. 263–270
(1999)

21. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks. In:
Proceedings of the 6th Annual International Conference on Mobile Computing and
Networking, pp. 243–254. ACM Press (2000)

22. Zhu, S., Setia, S., Jajodia, S.: LEAP: Efficient Security Mechanisms for Large-Scale
Distributed Sensor Networks. In: The Proceedings of the 10th ACM Conference on
Computer and Communications Security (2003)

23. Stajano, F., Anderson, R.: The Resurrecting Duckling: Security Issues for Ad-hoc Wireless
Networks. In: 3rd AT&T Software Symposium, Middletown, NJ (October 1999)

24. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: A tiny aggregation
service for ad-hoc sensor networks. In: The Fifth Symposium on Operating Systems
Design and Implementation, OSDI 2002 (2002)

25. Wagner, C.K.D. Secure Routing in Wireless Sensor Networks: Attacks and
Countermeasures

26. Hu, Y.C., Perrig, A., Johnson, D.B.: Wormhole detection in wireless ad hoc networks.
Department of Computer Science, Rice University, Tech. Rep. TR01-384 (June 2002)

27. Huang, Q., Cukier, J., Kobayashi, H., Liu, B., Zhang, J.: Fast Authenticated Key
Establishment Protocols for Self-Organizing Sensor Networks. In: International
Conference on Wireless Sensor Networks and Applications (2003)

28. Huang, Q., Kobayashi, H.: Energy/security scalable mobile cryptosystem. IEEE Personal,
Indoor and Mobile Radio Communications (2003)

29. Kumar, S., Girimondo, M., Weimerskirch, A., Paar, C., Patel, A., Wander, S.: Embedded
End-to-End Wireless Security with ECDH Key Exchange. In: The 46th IEEE Midwest
Symposium on Circuits and Systems (2003)

30. Malan, D.J., Welsh, M., Smith, M.D.: A Public-Key Infrastructure for Key Distribution in
TinyOS Based on Elliptic Curve Cryptography. In: First IEEE International Conference on
Sensor and Ad Hoc Communications and Networks (2004)

 Performance Evaluation of EC-ElGamal Encryption Algorithm for WSNs 285

31. Lorincz, K., Malan, D.J., Fulford-Jones, T.R.F., Nawoj, A., Clavel, A., Shnayder, V.,
Mainland, G., Moulton, S., Welsh, M.: Sensor Networks for Emergency Response:
Challenges and Opportunities. IEEE Pervasive Computing (2004)

32. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp.
10–18. Springer, Heidelberg (1985)

33. http://www.tinyos.net

	Performance Evaluation of EC-ElGamal EncryptionAlgorithm for Wireless Sensor Networks
	Introduction
	Wireless Sensor Network
	Security Goals and Challenges
	Types of Attacks on WSNs

	Related Works
	Elliptic Curve El-Gamal Encryption Scheme
	Implementation
	ECElGamalM
	ECCArithC
	SecpXXXr1
	RandomLfsrC

	Performance Evaluations
	Memory Efficiency
	Operation Time
	Energy Efficiency

	Conclusion
	References

