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Abstract. For supporting rescue operations in disasters, vital data col-
lections in wireless sensor networks have been proposed so far. In such
systems, we can expect to predict each patient’s probability of survival
based on real-time vital data. In this paper, we focus on prehospital care
and propose a method to determine treatment plans and schedules of pa-
tients. The proposed method maximizes the number of expected saved
patients under limited medical resources. This optimization problem is
called Treatment Planning and Scheduling, which is NP-hard. Therefore,
we propose a heuristic algorithm based on depth-limited search. We have
compared the proposed method with greedy methods. The results show
the proposed method can derive solutions in practical time and the av-
erage number of saved patients is 10% larger compared to the greedy
methods.

Keywords: Mass Casualty Incident, Disaster Medical Care, Treatment
Planning and Scheduling, NP-hard, Depth Limited Search.

1 Introduction

Triage is a process of prioritizing patients based on vital signs in Mass Casualty
Incidents (MCIs) such as earthquakes and terrorism. The purpose of triage is to
save as many patients as possible under limited medical resources, e.g. medical
supplies and physicians. Our research group has been developing an electronic
triage system called eTriage which uses wireless networks for supporting rescue
and medical operations in disasters[1]. We have developed an electronic triage
tag to measure a heart rate and a blood oxygen level of a patient. The electronic
triage tag is capable of ZigBee communication, and wireless sensor networks are
built over the tags attached to patients. Through monitoring patients’ vital signs,
a sudden change of each patient’s condition is notified to healthcare workers.
Similarly, AIDN(Advanced Health and Disaster Aid Network)[2] and WIISARD
(Wireless Internet Information System for Medical Response in Disasters)[3] also
investigate an advanced medical support system by using wireless networks.

Moreover, some medical research works have proposed methods for predicting
patient survivability. For example, TRISS method[4] predicts the probability of
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survival of a patient from the ISS (Injury Severity Score) and the RTS (Revised
Trauma Score) calculated from anatomic, physiologic, and age characteristics.
Such survivability prediction is expected to become more accurate and sophis-
ticated in the future by collecting a large amount of vital data with the aid
of ICT (Information and Computer Technology). Then, precise triage based on
real-time vital data of patients will be possible.

There are some methods using ICT for supporting rescue operations in MCIs.
Ref.[5] proposes a transportation scheduling algorithm from a disaster site to
multiple hospitals to maximize total survivability of patients assuming future
advanced survivability prediction. Ref.[6] presents an agent-based scheduling al-
gorithm for patients in a hospital. However, in order to maximize the number of
saved patients in MCIs, we need consider a large variety of operations including
transportation and medical treatments in both a disaster site and a hospital.

In this paper, we focus on prehospital care in MCIs and propose a method to
derive treatment plans and schedules of patients that maximize the number of
saved patients under the assumption that accurate prediction of survivability is
possible. For this purpose, we model prehospital care in MCIs as shown in Fig.
1 based on the Emergo Train System (ETS)[7], which is a widely used on-the-
desk simulation toolkit for disaster medical care exercises in hospitals. Given
conditions of each patient, we need decide treatment plans and schedules under
limited medical resources. Deadlines and essential treatments for each patient
are also given, and if essential treatments of a patient do not finish before the
deadline, the patient is considered to die.

Our goal is to maximize the number of saved patients in this ETS-based
disaster medical care model. We call this maximization problem as a Treatment
Planning and Scheduling (TPS) problem, of which a sub-problem is equivalent to
an Integrated Process Planning and Scheduling (IPPS) problem, known as NP-
hard[8]. To solve TPS problem, we need choose treatment plans for each patient.
For example, some patients may be treated completely in the disaster site and
some others may be transported to the hospital without treatment. It may also
increase the number of saved patients to treat some patients partly in the disaster
site, which results in extensions of the patients’ deadlines. Furthermore, after
determining treatment plans, we need decide the treatment order of patients
who use the same medical resources such as ambulances and physicians. As we
mentioned above, deadlines of patients change if such treatment plans are chosen.
On the other hand, deadlines are fixed and do not change depending on chosen
plans in IPPS problems. For this reason, TPS problems are more complicated
than IPPS problems and we cannot directly apply methods for IPPS[9,10] to
TPS. Ref. [11] considers penalty functions over time to consider degradation of
condition and proposes an algorithm for optimizing medical supply in disaster
scenarios to minimize the total penalty. Our approach aims to treat as many
patients as possible before deadlines and does not consider waiting time for
treatment. In this sense, Ref. [11] is different from our approach.

Since TPS is difficult than NP-hard problem, we propose a heuristic algorithm
using depth limited search to solve TPS problems in practical time. To the best of
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Fig. 1. Overview of Disaster Medical Care

our knowledge, there is no research on determining treatment plans and schedules
of patients in MCIs focusing on the early stage of disaster medical care.

We have compared the proposed method with two deadline-based greedy
methods for evaluation. The results show that the proposed method derives
solutions that save approximately 10% more patients than the greedy methods
in a few seconds.

2 Treatment Planning and Scheduling Problem

2.1 Assumptions and Disaster Medical Care Model

We assume our electronic triage tags are attached to all patients in a disaster
site, and vital signs of the patients are transmitted to a server via wireless ad
hoc networks. The changes of patient’s survivability over time are predicted
based on the collected vital data at the server. We also assume the server knows
the numbers of patients that each area can treat/transport in parallel based
on medical resource information such as the numbers of physicians, nurses, and
ambulances. Then, our method determines how and in which order the patients
should be treated.

Figure 1 shows the overview of the modeled disaster medical care. Hereafter,
we target a case of a single hospital for simplicity of discussion. However, note
that modeling of a case of multiple hospitals is also possible in the same manner.
In this model, we assume that we cannot interrupt a treatment once it starts, and
that multiple patients are not allowed to be treated by using the same medical
resource simultaneously. We assume there are five areas as follows, and patients
are treated at each area and transported to the next area as necessary.

1. Disaster site triage area: Firstly, every patient is moved from a disaster site
to this area. In this area, electronic triage tags are attached to each patient
on a First-Come, First-Served (FCFS) basis to monitor their vital signs.

2a. Disaster site first-aid station: Physicians and nurses treat patients in the dis-
aster site.
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Table 1. Notations Used for Formulation

Symbol Explanation

P A set of patients
M A set of medical resources
R A set of treatment plans
crh The hth operation in process plan r

ti[c
r
h,m] Required time for patient i’s operation crh using medical resource m

Ti[c
r
h,m] Completion time of patient i’s operation crh using medical resource m

di[c
r
h,m] Deadline of patient i’s operation crh using medical resource m

Xr
i

{
1, if treatment plan r is selected for patient i
0, otherwise

Ym[i, j, crh, c
s
g]

{
1, if patient i’s operation crh precedes patient j’s operation csg on

medical resource m
0, otherwise

Zi[c
r
h, m]

{
1, if medical resource m is selected for patient i’s operation crh
0, otherwise

2b. Transportation area: Patients are transported from the disaster site to a
hospital by ambulances.

3. Hospital triage area: Conditions of patients are checked again. After that they
are transported to a treatment area in the hospital.

4. Hospital treatment area: Physicians and nurses treat patients in the hospital.
Usually, medical resources in the hospital are much more than those in the
disaster site.

At first, an electronic triage tag is attached to a patient at (1) a disaster site
triage area. Then, the patient is transported to the next area, which is either
(2a) the disaster site first-aid station or (2b) a transportation area, depending
on each patient’s treatment plan. We can treat the patient by using medical
resources in (2a) a disaster site first-aid station and (4) a hospital treatment
area. After transportation by an ambulance, the patient has to be checked his
condition at (3) the hospital triage area before transportation to (4) the hospital
treatment area.

We assume there are two types of treatments: full treatment and distributed
treatment. For each case, time required to finish treatment and deadlines for
these treatments are given, and we need finish either of the treatment by the
given deadline in order for saving the patient. Full treatment finishes patient’s
treatment at either the disaster site first-aid station or the hospital treatment
area. On the other hand, in distributed treatment, we firstly treat a patient at
the disaster site to prolong the deadline, transport the patient to the hospital,
and then finish the remaining treatment in the hospital. Therefore, there are
three treatment plans as shown by the arrows in Fig. 1.

2.2 Problem Formulation

We formulate TPS problem based on Ref.[11] which formulates Integrated Pro-
cess Planning and Scheduling (IPPS) problem. Table 1 shows notations used in
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the formulation. There are |R| treatment plans, and the sequence of operations
for selected treatment plan r ∈ R is denoted as cr1, c

r
2, . . . , c

r
|r|. These operations

include medical treatments such as full treatment and distributed treatment, and
we regard transportation by an ambulance as one of the operations as well. For
each patient i, time required to complete operation crh by using medical resource
m ∈ M is given and denoted by ti[c

r
h,m] where M is a set of medical resources.

There are three constraints, that are (i) a treatment plan selection constraint,
(ii) an operation sequence constraint, and (iii) an interruption constraint. Firstly,
the equation (1) shows the treatment plan selection constraint which indicates
each patient must select exactly one treatment plan.

R∑

r=1

Xr
i = 1 ∀i ∈ P (1)

where P is a set of patients and Xr
i represents the selection state of treatment

plan r for patient i.
Secondly, the operation sequence constraint is described as shown in the ex-

pression (2). This constraint means the sequence of operations must follow the
sequence of operations cr1, . . . , c

r
|r| in treatment plan r if treatment plan r is

selected for patient i.

Xr
i × (Zi[c

r
h,m1]× Ti[c

r
h,m1]− Zi[c

r
h−1,m2]× Ti[c

r
h−1,m2])

≥ Xr
i × ti[c

r
h,m1]× Zi[c

r
h,m1]

∀i ∈ P, ∀r ∈ R, ∀m1,m2 ∈ M, ∀h ∈ [2, |r|] (2)

Here, Ti[c
r
h,m] is completion time of operation crh for patient i by using medical

resource m. Zi[c
r
h,m] indicates the selection state of medical resource m for

operation crh of patient i.
Finally, the interruption constraint is represented by the expression (3). This

constraint indicates medical resources cannot handle two or more operations
simultaneously and no operation is interrupted by other operations once it starts.
A state binary Ym[i, j, crh, c

s
g] represents the sequence of patient i’s operation crh

and patient j’s operation csg that use the same machine m.

Ym[i, j, crh, c
s
g]× (Tj [c

s
g,m]− Ti[c

r
h,m]) ≥ Ym[i, j, crh, c

s
g]× ti[c

r
h,m]

∀i, j ∈ P, ∀r, s ∈ R, ∀h ∈ [1, |r|], ∀g ∈ [1, |s|], ∀m ∈ M (3)

For simplicity, we introduce another state binary Dr
i as follows, which indicates

whether all operations of patient i finish before the deadlines on treatment plan
r or not.

Dr
i =

⎧
⎨

⎩

1, if Zi[c
r
h,m]× (di[c

r
h,m]− Ti[c

r
h,m]) < 0
∀h ∈ [1, |r|], ∀m ∈ M

0, otherwise
(4)

Then, the objective function is defined as the following expression (5) that min-
imizes the number of deaths, which is equivalent to maximizing the number of
saved patients.
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minimize
∑

i∈P

Dr
i ×Xr

i ∀r ∈ R (5)

Subject to: (1), (2), and (3).

3 Depth Limited Treatment Planning and Scheduling

3.1 Overview

In TPS problem, we need determine both treatment plans Xr
i and schedules

Ym[i, j, crh, c
s
g] for all patients. Schedules are determined for each area while treat-

ment plans are selected right before the disaster site first-aid station because
treatment plans branch after a patient is rescued from the disaster site.

For scheduling at each area, we apply deadline-based greedy scheduling be-
cause the more serious condition a patient is, the higher the patient’s treatment
priority is. However, there is possibility that we can save two or more patients by
abandoning one patient. For example, a seriously injured patient may take long
time for treatment, and if we treat the patient, other patients may die. Therefore,
we explore such possibilities in addition to distributing medical workloads over
the disaster site and the hospital. This means the number of treatment plans
is four: (i) full treatment in the disaster site, (ii) distributed treatment in both
the disaster site and the hospital, (iii) full treatment in the hospital, and (iv)
abandonment.

3.2 Depth Limited Treatment Planning

We cannot solve TPS problem in practical time if we explore all combinations of
treatment plans for all patients because it requires exponential time with respect
to the number of patients. For this reason, we limit the number of patients to
explore treatment plans. It is natural that exploring other plans of a seriously
injured patient is more likely to improve the result. Hence we explore all plans of
the k most serious patients with respect to deadlines, and choose such treatment
plans for those k patients that maximize the number of saved patients. Hereafter,
we describe a set of those k most serious patients with respect to deadlines in a
set of patients P as Pk.

Given a candidate of treatment plans of k patients, we need assign treatment
plans of the other patients in P − Pk to compute the number of saved patients.
We select treatment plans of the other patients in a greedy manner where full
treatment in a disaster site is assigned. In this manner, we need not consider
distributed treatment and abandonment for the patients in P − Pk, thus the
computation time is reduced. Firstly, the proposed method sorts |P | patients in
ascending order right after the triage area. Secondly, it explores and determines
top k patients’ treatment plans. Then, we repeat the same process for the set of
P − Pk until the treatment plans of all patients are determined.

An example of the depth limited planning is shown in Fig. 2. Suppose there are
6 patients A,B, . . . , F in ascending order with respect to their deadlines. In this
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deadline order

A

EF CD

k=2

Greedy
Explore all 
branches

B

Full treatment in the first-aid station

Distributed treatment

Full treatment in the hospitalFull 

Abandonment

Fig. 2. Example of Depth Limited Treatment Planning

Table 2. Treatment Time and Deadlines Used in Simulation (sec.)

Urgent Priority Delayed Minimal

Treatment time tf [4000,5000] [300,450] [120,400] [100,300]
Treatment time th - [300,450] [200,400] [300,500]
Deadline d [100,900] [780,1680] [1700,3300] [3300,6300]
Ext. deadline d′ - [1000,1500] [1000,2000] [1000,2000]

example, we assume k = 2, and let treatment plans of A and B be determined as
full treatment in the first-aid station and full treatment in the hospital, respec-
tively. Then, the next k patients are C and D. We explore all treatment plans for
C and D while treatment plans of E and F are selected greedily.

We also consider other criteria to derive a better solution. This is because it
is likely to happen that the numbers of saved patients for different candidates
are equal. In such cases, it is desirable to select the candidate which does not
occupy medical resources in the disaster site as much as possible to keep medical
resources available for the following patients. This means the proposed method
prioritizes candidates with the maximum number of saved patients according to
the following criteria: the number of abandoned patients, full treatment plans in
the hospital, and distributed treatment plans. For example, suppose there are
two candidates c1 and c2 with the maximum number of saved patients. If the
number of abandoned patients in c1 is larger than c2, we select c1 as the best
treatment planning. If the numbers of abandoned patients are equal, the numbers
of full treatment in a hospital are compared to determine the best planning.

4 Performance Evaluation

4.1 Settings

We have evaluated the performance of the proposed method through simula-
tion. In the evaluation, we assume four categories: urgent, priority, delayed, and
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minimal. Particularly, deadlines of urgent patients are short while it takes long
time to finish treatment. We have assigned patients one of the categories, and
the treatment time and deadlines of the patients are randomly selected from
the ranges shown in Table 2 according to their categories. Time required for
distributed treatment is tf in the first-aid station and th in the hospital. For
treatment plans of full treatment, the time to complete the treatment operation
is tf + th independently of treatment areas. Deadline d is extended by d′ when
distributed treatment is selected and the treatment operation in the first-aid
station finished. We set the total number of patients to 100. We also set the
numbers of patients that each area can handle simultaneously in the first-aid
station, the transportation area, the hospital triage area, and the hospital treat-
ment area to 6, 5, 7, and 21, respectively. We used a workstation with Intel Xeon
2.66 GHz and 23.6 GB memory for evaluation. The results are averages of 100
random cases.

We used two types of scenarios. The first one is a scenario with urgent patients,
where there are 15 urgent, 40 priority, 35 delayed, 10 minimal patients, respec-
tively. The second one is a scenario without urgent patients. For the scenario
without urgent patients, we used 45 priority, 35 delayed, 20 minimal patients.

For comparison, we introduce two greedy approaches to determine treatment
plans: a Disaster Site weighted greedy approach (DS-greedy) and a Hospital
weighted greedy approach (H-greedy). The decision of DS greedy and H-greedy
is different when (i) medical resources in the disaster site and the transporta-
tion area are available and (ii) medical resources in both areas are occupied.
In the above two cases, DS-greedy selects full treatment in the disaster site
while H-greedy selects full treatment in the hospital. In both greedy approaches,
schedules are determined based on a FCFS basis. We have selected the above two
approaches for comparison since we believe they are close to doctors’ decision:
doctors try to prioritize patients according to their conditions and treat them
greedily with respect to the priorities.

4.2 Effect of Limited Depth k

To see the effect of depth k for limited search, we have measured computation
time for different depth k in the scenario with urgent patients. The result is
shown in Fig. 3. We can see the number of saved patients increases with the
increase of k although computation time increases exponentially. This is because
the number of combinations is O(|R|k) and in this case |R| = 4. It is obvious that
there is a trade-off between computation time and the number of saved patients.
From the result, k = 4 is the most balanced since the computation time is about
5 seconds and the result is comparable to that of k = 5. Therefore, we use k = 4
in the following evaluation.

4.3 Comparison with Greedy Methods

We have compared the proposed method with DS-greedy and H-greedy
approaches in two simulation scenarios. Table 3 describes the results of the
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Fig. 3. Depth k vs. # of Saved Patients and Computation Time

Table 3. Comparison on the Number of Saved Patients with Greedy Methods

DS-greedy H-greedy Proposed

Scenario w/ urgent patients 17.70 16.81 61.59
Scenario w/o urgent patients 65.82 65.89 74.93

comparison. The results show there is not much difference between two greedy
methods. This is because there is not much difference between the amount of
medical resources available in the first-aid station and the transportation area.

In the scenario with urgent patients, the number of the saved patients in the
proposed method is more than three times of those in the greedy methods. The
reason is that medical resources are occupied by urgent patients in the greedy
methods since they do not abandon urgent patients those require long time for
treatment. In contrast, the proposed method can derive better solutions because
the proposed method explores possibilities of abandonment. Even in the scenario
without urgent patients, the proposed method has achieved approximately 10%
better result than the compared greedy approaches. This result indicates the
effectiveness of distributing workload of the first-aid station and the hospital,
which is explored by the proposed method. From the results, we have confirmed
the proposed method can derive better solutions than the greedy methods by
exploring all treatment plans for k patients.

5 Conclusion

In this paper, we modeled prehospital care and proposed a method to derive
treatment plans and schedules of patients that maximize the number of saved
patients in practical time under the assumption that accurate prediction of
future probability of survival is possible. The proposed method uses depth-
limited search to explore possibilities of improvement. We evaluated the pro-
posed method through simulation and confirmed we could derive solutions that
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achieve better results than the compared greedy methods. Our future work in-
cludes considering arrival of new patients. For this purpose, we may apply a
policy to keep some amount of medical resources depending on the estimated
number of potential patients.
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