
Remote Programming of Biomedical Smart

Sensors

David Naranjo2,1, Laura M. Roa1,2, Javier Reina-Tosina3,2,
and Miguel A. Estudillo-Valderrama2,1

1 Biomedical Engineering Group, University of Seville, Seville, Spain
2 CIBER de Bioingenieŕıa, Biomateriales y Nanomedicina (CIBER-BBN), Spain

3 Dept. of Signal Theory and Communications, University of Seville, Seville, Spain
{dnaranjo,lroa,jreina,m.estudillo}@us.es

Abstract. This paper proposes a processing architecture and a pro-
gramming framework for the remote and seamless update of the
algorithms used in the context of biomedical smart sensors. The generic
processing architecture provides, among others, the following facilities to
a Body Sensor Network in a seamless way to the user beyond functional
modularity: 1) direct and immediate update with new and improved ver-
sions of the algorithms, 2) personalization of algorithms, 3) adaptability
to the user context, 4) remote test of algorithms, 5) hardware reusability
and sustainability, 6) parallel execution of several monitoring applica-
tions in one device, 7) structural modularity. Due to its simplicity, the
proposed technique takes advantage over other solutions employed in ap-
plications that impose severe limitations on hardware/software resources
of the devices, which may result in lower cost and size of them. The re-
sults obtained on two heart monitoring applications shows the viability
of the proposed scheme.

Keywords: Biomedical smart sensor, Body Sensor Network, code
dissemination, remote programming, structural modularity.

1 Introduction

Population ageing and the rise of chronic diseases [1] make necessary the ap-
plication of new technologies for the improvement of patients welfare and the
sustainability of the associated costs. Body Sensor Networks (BSN) are a promis-
ing solution in this context, because they make possible the real-time unob-
structive ubiquitous monitoring of patient’s health status and the detection of
emergencies [2, 3]. This kind of sensor networks pose important restrictions in
terms of size, computation, communication, energy consumption and data stor-
age, related with the requirements of portability, transparency and long battery
lifetime, which are even more evident when dealing with implanted sensors [4,5].

In order to reduce consumption in communications, many authors propose
diverse functional modularity approaches like an initial processing within the in-
telligent sensors so as to reduce the number of data sent [2,6–8]. For this purpose,

B. Godara and K.S. Nikita (Eds.): MobiHealth 2012, LNICST 61, pp. 199–206, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



200 D. Naranjo et al.

it is necessary to provide the customization of BSNs to adapt its functionality
to changes in patient’s medical condition, context, activity, individual needs or
lifestyles [3, 6, 9]. However, despite the fact that the spread of code technique is
widely used in generic wireless sensor networks [10, 11], there are few authors
who have considered the possibility of a remote and user-seamless update of the
software in the context of BSNs.

The vast majority of the solutions for BSNs are developed in motes and use
frameworks based on the TinyOS operating system to support dynamic mod-
ification of code with different levels of abstraction [2, 6, 12]: A model-driven
development in which the models are translated into platform-dependent code,
virtual machines with byte code interpreters running on TinyOS, or program-
ming abstractions free of low level details. However, when the restrictions of
size, cost and energy limit the use of microcontrollers with the ability to inte-
grate an operating system, even as light as TinyOS, the functional modularity
faces poor performance due to the structural hardware/ software (HW/SW) con-
straints of the arquitecture, and many times other architectures are required for
the remote programming of sensors. In such situations, a possible solution could
be the sending of firmware with a very reduced set of instructions [13], which
has the disadvantage that they are limited to the specific application for which
they have been developed and may fail to provide sufficient flexibility to develop
algorithms out of the functional domain of the instruction set.

In the present paper, it is proposed a processing architecture and programming
framework designed to consume the fewest resources in smart sensors with very
limited hardware-software capabilities. This architecture provides the ability to
remotely upgrade the software of intelligent sensors (dissemination code) trans-
parently to the user, a framework for running multiple applications in parallel
within a single device, and the minimization of energy consumption in commu-
nications. As a proof-of-concept, the proposed scheme has been validated in a
laboratory setup on an ECG virtual sensor, since both the processing and the
definition of the observed characteristics of such signals are necessary to make a
customization and adaptation to the activity and user context [3, 9].

1.1 Distributed Processing Architecture

In the proposed approach, smart sensors are devices able to send, wirelessly and
unobtrusively, the monitored physiological information. The smart sensors per-
form a first information processing, in order to distribute the processing load
among all the devices, abstract and compress the captured information to send
only the relevant data and execute a first detection of events related with the
physiological variables under monitorization. A wearable device with more com-
putational and energy resources, referred to as Decision-Analysis Device (DAD),
manages the information provided by all sensors and connects, if necessary, with
the Remote Telehealthcare Center (RTC) [14] (see Figure 1).

The design of the smart sensors follows a modular scheme in order to facili-
tate the integration of new technologies in the devices, both for processing and
communications tasks:



Remote Programming of Biomedical Smart Sensors 201

1. Sensor device: it constitutes the acquisition element of the physiological mon-
itoring signals.

2. Communications module: Unit responsible for the transmission of biomedical
information that releases the processing module from all the tasks associated
with communications.

3. Processing unit: The intelligence of the sensor device is provided by the pro-
cessing modules (PMs) that are executed in real-time and in parallel within
the processing unit of the smart sensor. Each PM is capable of transmitting
the captured information or the result of its processing. This data are struc-
tured into information samples generated with a given sampling frequency,
which can be set via commands. In the normal operating modes of the PMs,
no data are sent until the sensor device detects an alert event after pro-
cessing the monitored physiological variables. This way, the overall system
consumption is minimized [14].

2 Remote Programming Mechanism

Taking into account that PM interfaces are perfectly defined, the addition or
removal of a new module does not affect to the rest of them, and thus the
system integrity is not affected. In addition, these modules are designed to work
in parallel, therefore they can cooperate easily. The developed modular scheme
also allows updating the devices functionalities in order to adapt them to the
user information needs. In the case of the smart sensor, the addition, update or
removal of PMs can be developed by means of a firmware update of the PMs
within the smart sensor (adaptable functionality, personalization and medium
and context adaptation) which could be remotely performed in real time. In
order to enable these characteristics, without forgetting that the smart sensor
processing capabilities are limited by the device size and power consumption, a
software architecture that allows the execution and the optimum management
of the PMs has been researched and developed.

According to the proposed paradigm, the data memory (related to microcon-
troller RAM) is divided into the following blocks (see Figure 1):

1. DAT G: related to the global variables for the device performance
management.

2. DAT I: this data block stores the information needed to manage the queues
of data employed by the PMs. DAT I is divided in turn into several sub-
blocks, one per queue, each of which consists of the initial and final address
of the queue in the data memory, the address where the next data will enter
in the queue and the number of items in the queue.

3. DAT C: area of memory where different data queues are implemented.

The information is organized into queues to facilitate its transference in this
modular architecture. Several procedures to extract data from the queues, read
indexed information or enter new data are also considered. The proposed scheme
uses the following queues:



202 D. Naranjo et al.

Fig. 1. Structural modularity in the proposed distributed monitoring system and data
memory of the processing unit

1. COL RX : a queue that stores the data received from the DAD.
2. COL TX : a queue that stores the information to be sent to the DAD.
3. COL S x (x = 1..N PM , N PM defined below) a queue for each PM where

the information samples associated with the PM are stored.
4. COL V x (x = 1..N PM): a queue for each PM that stores the current

values of the variables used by the PM. At the beginning of the PM execution,
the data are transferred to the spaces reserved for the auxiliary variables.
Then, these updated data return to the queue at the end of the execution.
Since the PMs work only with auxiliary variables, the generic use of the
device’s memory capacity is powered.

5. COL PM : this queue stores the information needed for the implementation
of the different processing modules. It consists of a first field that indicates
the number of PMs (N PM), followed by N PM blocks which are broken
down into the following elements: the PM identifier (unique for each PM
development), the initial program memory address of the PM, the number
of 8 bytes blocks that compound the PM, the memory data address where the
DAT I information sub-block of the COL S x queue associated with the PM
starts, and the address of the data memory where the DAT I information
sub-block of the COL V x queue starts.

On the other hand, the program memory (nonvolatile) is organized into the
following blocks to facilitate the implementation of the modular software (see
Figure 2):

1. PROG Gen: related to the non-modifiable generic code of the device, which
is responsible for the administration and management of its overall operation
as well as the PMs implemented on it.



Remote Programming of Biomedical Smart Sensors 203

Fig. 2. Structural modularity in program memory and processing unit operation

2. PROG Int: where the non-modifiable interrupt routines that control the pe-
ripheral of the smart sensor processing unit are implemented (timers, sensor
data capture, transmissions, etc.).

3. PROG Conf : where the code responsible for the setting of the appropriate
parameters in the COL PM queue after a device reset is placed, to ensure
the correct management of the PMs. This code is remotely changed every
time a PM is added, modified or deleted.

4. PROG PM x (x = 1..N PM): the N PM modifiable memory blocks are
subsequently located containing the operation code of the PMs, one per
block.

The device operation is based on the execution of the following operating system
algorithm corresponding to the generic code stored in PROG Gen:

1. INITIALIZATION: setup of initial global parameters and device peripherals
initialization.

2. ACTIVATION: activation of the executing code stored in PROG Conf for
the configuration of COL PM queue.

3. IDENTIFICATION: process in which the smart sensor transmits the con-
tents of the PROG Conf queue to the DAD. Thus, the DAD knows the
device memory map and identifies the PMs implemented in the smart sen-
sor. This identification can also be activated through a command.

4. INFINITE LOOP WAITING: where the following subroutines are activated
whenever a data from the sensor is received:
(a) SUB RX : subroutine that receives data from the DAD, which are stored

in the COL RX queue. The transceiver develops a low-power transmis-
sion protocol that enables the smart sensor PM to transparently com-
municate with the DAD. A detailed explanation of this communication
protocol exceeds the scope of this paper. If the reception of a command



204 D. Naranjo et al.

is completed, its processing starts. If the command is for a PM, it is
introduced at the end of the COL V x queue associated with the PM.

(b) SUB TX : subroutine that transmits the data to the DAD in the case
that COL TX queue is not empty.

(c) SUB PM : subroutine responsible for the sequential execution of the
PMs by means of the information stored in the COL PM queue. Each
PM begins with the execution of the received commands associated with
it, if there is any, and then continues with the information processing in
order to generate the information samples and perform the detection of
events. Finally, it ends with the storage of the data to be transmitted to
the DAD in the COL TX queue, if necessary.

The procedure to add, edit or delete a PM is initiated by sending a programming
command, which suspends the device operation until the end of the writing
process in program memory. Afterwards, the smart sensor is reset.

3 Validation of the Proposed Technique

In order to validate the proposed framework a virtual ECG sensor has been
implemented consisting of a PIC18F2431 microcontroller from Microchip as the
processing unit, a CC2430 Chipcom transceiver that corresponds to the com-
munications module and an algorithm in the microcontroller core that simulates
the periodical reception of ECG signals. A processing module for the detection
of heartbeats has been developed, which is an important parameter for the de-
tection of tachycardia, bradycardia and fibrillation, and a processing module to
estimate PQ interval duration, which is of relevance in the detection of auricle-
ventricular conduction defects, atrioventricular blocks or blocks of His bundle
branches [9]. Both modules generate data samples at a rate of 500 Hz and trans-
mit data continuously. The following experimental setup was developed:

1. A transceiver located 3m apart from the virtual sensor wirelessly sent the
processing module to detect the heartbeat (about 400 bytes).

2. After about 4 seconds, the device began sending information samples of heart
rate.

3. Afterwards, the processing module to estimate the duration of PQ interval
was wirelessly sent (about 1 Kbyte).

4. After about 7 seconds, the device began sending information samples of heart
rate and the estimated duration of the PQ interval.

5. Later on, a command was wirelessly sent to remove the processing module for
detecting the heartbeat, and almost immediately, the device began sending
only information samples corresponding to PQ interval.

These update times are comparable to others obtained by other authors with
similar code sizes and greater resources in the devices [3, 15], including generic
Wireless Sensor Networks [10] (see Table 1).



Remote Programming of Biomedical Smart Sensors 205

Table 1. Comparison of the results obtained with related works

Code size Update time Description Resources

This work 1 KB 7 sec Parallel processing modules ROM: 984 B
managed by a generic code RAM: 46 B

(Generic code)

[3,15] 9 KB 10 sec Command interpreter (MedOS) ROM: 6 KB
that acts as a virtual (MedOS +
machine upon FreeRTOS FreeRTOS)

[10] 10 KB 30 sec Code dissemination system ROM: 45258 B
(Seluge) for wireless sensor RAM: 2278 B
networks running TinyOS (only Seluge)

4 Conclusion

The results show the feasibility of the processing architecture and programming
framework proposed as a method for updating remotely software from intelli-
gent sensors (code dissemination) transparently to the user and to the execution
of multiple applications in parallel within one device. The addition, update or
removal of new functionalities does not affect to the rest of them, or the system
integrity. Due to its simplicity and compared to other proposals, the proposed
scheme allows to be used for smart sensors with very limited HW/SW resources,
such as the case of implants. Furthermore, the approaches of other authors ad-
dress the problem through a functional modularity, whereas in the present work
goes further, also establishing a structural modality that affects to the system
architecture. In addition, the referred generic processing architecture provides,
among others, the following facilities to a BSN in a seamless way to the user:
1) update capability of the processing algorithms to include any improvement
or modification that may arise as a result of future research; 2) personalization
of algorithms to remotely fit the particular characteristics of the user; 3) adapt-
ability to the context in which the user is monitored or his/her vital signs; 4)
remote test of algorithms; 5) hardware reusability for different applications so
as to obtain lower development costs and a greater sustainability of the devices.

Future works will be the development of security mechanisms to prevent ma-
licious software modification, and guarantee data protection and error-free and
robust execution of processing algorithms. Once established such mechanisms,
the system will undergo a comprehensive experimental study to verify and val-
idate the operation of the programming and processing architecture, detect er-
rors, correct and document them, in accordance with the regulations for medical
devices (FDA or European Commission). Furthermore, the proposed system en-
ables the software update to correct problems identified a posteriori, according
to the regulations, but with the advantage of being performed immediately.

Acknowledgments. This work was supported in part by the CIBER de Bioin-
genieŕıa, Biomateriales y Nanomedicina (CIBER-BBN) and the intramural Grant



206 D. Naranjo et al.

PERSONA, in part by the Instituto de Salud Carlos III under Grants PI082023
and PI11/00111, and in part by the Dirección General de Investigación, Tec-
noloǵıa y Empresa, Government of Andalućıa, under Grants P08-TIC-04069 and
TIC6214. CIBER-BBN is an initiative funded by the 6th National R&D&i Plan
2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and fi-
nanced by the Instituto de Salud Carlos III with assistance from the European
Regional Development Fund.

References

1. Thorpe, K., Philyaw, M.: The Medicalization of Chronic Disease and Costs. Annu.
Rev. Public Health 33, 409–423 (2012)

2. Raveendranathan, N., et al.: From Modeling to Implementation of Virtual Sensors
in Body Sensor Networks. IEEE Sensors J. 12(3), 583–593 (2012)

3. de Barbosa, T.A., da Rocha, A.: A Smart System to Program Body Sensor Net-
works. In: 5th IEEE Int. Conf. on Intelligent Systems, pp. 168–172 (2010)

4. Ghasemzadeh, H., Loseu, V., Ostadabbas, S., Jafari, R.: Burst Communication by
means of Buffer Allocation in Body Sensor Networks. IEEE J. Sel. Areas Com-
mun. 28(7), 1073–1082 (2010)

5. Mitsch, S., Kurschl, W., Schoenboeck, J.: Modeling Distributed Signal Processing
Applications. In: 6th Int. Workshop on Wearable and Implantable Body Sensor
Networks, pp. 103–108 (2009)

6. Zhu, Y., Keoh, S.L., Sloman, M., Lupu, E.: A Lightweight Policy System for Body
Sensor Networks. IEEE Trans. Netw. Service Manag. 6(3), 137–148 (2009)

7. Mondal, N., Zaman, S., Al Masud, A., Alam, J.: Comparisons of Maximum System
Lifetime in Diverse Scenarios for Body Sensor Networks. In: 11th Int. Conf. on
Computer and Information Technology, pp. 73–78 (2008)

8. Nabar, S., Walling, J., Poovendran, R.: Minimizing Energy Consumption in Body
Sensor Networks Via Convex Optimization. In: Int. Conf. on Body Sensor Networks
(BSN), pp. 62–67 (2010)

9. Augustyniak, P.: Autoadaptivity and Optimization in Distributed Ecg Interpreta-
tion. IEEE Trans. Inf. Technol. Biomed. 14(2), 394–400 (2010)

10. Hyun, S., Ning, P., Liu, A., Du, W.: Seluge: Secure and DoS-Resistant Code Dis-
semination in Wireless Sensor Networks. In: Int. Conf. on Information Processing
in Sensor Networks, pp. 445–456 (2008)

11. Miller, C., Poellabauer, C.: Paler: A Reliable Transport Protocol for Code Distri-
bution in Large Sensor Networks. In: 5th IEEE Conf. on Sensor, Mesh and Ad Hoc
Communications and Networks, pp. 206–214 (2008)

12. Kowalczuk, J., Vuran, M., Perez, L.: A Dual-Network Testbed for Wireless Sensor
Applications. In: IEEE Global Telecommunications Conf., pp. 1–5 (2011)

13. Passama, R., Andreu, D., Guiraud, D.: Computer-Based Remote Programming
and Control of Stimulation Units. In: 5th Int. IEEE/EMBS Conf. on Neural En-
gineering, pp. 538–541 (2011)

14. Naranjo, D., Roa, L., Reina, J., Estudillo, M.: Personalization and Adaptation to
the Medium and Context in a Fall Detection System. IEEE Trans. Inf. Technol.
Biomed. 16(2), 264–271 (2012)

15. Barbosa, T., Sene, I., da Rocha, A., Nascimento, F., Carvalho, H., Camapum, J.:
Application-Oriented Programming Model for Sensor Networks Embedded in the
Human Body. In: 28th Int. IEEE Conf. on Engineering in Medicine and Biology
Society, pp. 6037–6040 (2006)


	Remote Programming of Biomedical SmartSensors
	Introduction
	Distributed Processing Architecture

	Remote Programming Mechanism
	Validation of the Proposed Technique
	Conclusion
	References




