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Abstract. We present a novel respiratory sounds monitoring concept
based on compressive sensing (CS). Respiratory sounds are streamed
from a body-worn sensor node to a smartphone where processing is con-
ducted. CS is used to simultaneously lower sampling frequency on the
sensor node and over-the-air data rate. In this study we emphasize com-
pressed sensing reconstruction via orthogonal matching pursuit (OMP)
on Android smartphone. Accuracy of the reconstruction and execution
speed are investigated using synthetic signals. We demonstrate applica-
bility of the technique in real-time reconstruction of at least 10 compo-
nents of compressible DCT spectrum of respiratory sounds containing
asthmatic wheezing, acquired at 4x lower sampling rate.

Keywords: asthma, m-health, compressive sensing, orthogonal match-
ing pursuit, smartphone, Android.

1 Introduction

Concept of patient-centric solution for long-term self-monitoring of chronic res-
piratory diseases, such as asthma was shown in [8]. The system featured mon-
itoring of physiological functions via body-worn sensor nodes. Smartphone was
proposed as an access point for the sensor nodes and for convenient interaction
with the patient.

Seizures related to different chronic respiratory disorders exhibit occurrence
of specific pathological sounds superimposed to the sound of normal breathing.
In asthma, these are wheezes, signals continuous in duration, exhibiting concen-
tration of energy into discrete sets of spectral crests (peaks) in frequency band of
normal respiratory sound (100-1000 Hz) [7]. Purpose of long-term physiological
function monitoring is quantification of occurrence and durations of portions of
respiratory cycles occupied by wheezing.

Capture of such information consists of acquisition of respiratory sounds via
microphone or accelerometer and signal processing in order to classify breathing
sounds into a normal or pathological class. In order to fulfil the requirement
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of long-term operation, energy consumption needs to be minimized. Analysis of
energy consumption of the sensor node [9] identified two feasible approaches.
The first includes intensive signal processing on body-worn node at the signal
acquisition site, and transmission of the classification result to the smartphone
for logging and/or presentation. Advantage of such approach is reduced load on
the communication subsystem. Disadvantages are the higher energy consumption
of the sensor node and higher cost of software maintenance/upgrade.

The alternative approach is streaming the signal to smartphone where pro-
cessing is performed. Such approach enables lower power design of the sensor
node and simplifies maintenance of software by moving signal processing into
the domain of smartphone mobile applications development. On the other side,
in this approach the quality of information is heavily dependent on the commu-
nication link between the sensor node and the smartphone. Also, energy costs
of both communication and signal processing on the smartphone can be high.

Compressive sensing (CS) enables simultaneous reduction of energy cost in
both acquisition and communication part on the sensor side by lowering data
rate, as seen in [3] where CS is applied in a wireless sensor network for frequency-
sparse signal detection. Implementations of CS reconstruction algorithms for
popular smartphone platforms can be found in [4]. [6] and [5] have shown re-
construction of streamed CS electrocardiogram signal. In this article, we present
our work on reconstruction of respiratory sounds on an Android smartphone,
part of the CS-based asthma monitoring system shown in Fig. 1. So far, we ex-
perimented with ”orthogonal matching pursuit” (OMP) iterative reconstruction
algorithm [10].

Data 
streaming

Compressive 
signal acquisition

Signal 
reconstruction Classification

Fig. 1. Architecture of the asthma monitoring system

2 Methods and Materials

2.1 Compressed Sensing Paradigm

Let x = {x1, ..., xN}T be an N -dimensional column vector representing samples
of time-discrete signal acquired by the sensor node. Suppose that x can be rep-
resented by only K << N non-zero components {θ1, ..., θK} when transformed
by suitable transformation matrix Ψ, as shown by (1):
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θ = Ψx. (1)

Compression of N -dimensional signal x to the M -dimensional vector y, M < N
is performed on the sensor node by inner product of rows (i.e. measurement vec-
tors) of M ×N dimensional measurement matrix Φ and signal x:

y = Φx = ΦΨ−1θ. (2)

Vectors of compressed data y are streamed over a wireless link to the smart-
phone. The original signal, represented by its sparse coefficients estimates θ̂, is
obtained by solving an undetermined system (3). Compressive sensing theory
states that the good estimate of a sparse solution is the one with minimal l1-
norm:

θ̂ = argmin||z||1, subject to y = ΦΨ−1z. (3)

2.2 Orthogonal Matching Pursuit Algorithm

The premise of the algorithm is that as θ is K-sparse, only K of N columns-
vectors {ϕ1, ..., ϕN} of ΦΨ−1 participate in the compressed signal y. Algorithm
searches for the column ϕj most highly correlated to y and uses it to calculate a

signal estimate θ̂ by solving associated over-determined system by least-squares
method. Residual of y is found and the algorithm advances to the next iteration
until K components are found.

We evaluate straight-forward implementation described in [10] on Android
smartphone, using Java and Android SDK. Matrix operations, including least-
squares algorithm were implemented using Efficient Java Matrix Library (EJML)
[1]. All tests described in the following sections were performed on a Samsung
Galaxy S2 device running Android OS v2.3.5 and were compared against referent
implementation in Matlab [2].

2.3 Testing

Testing was conducted in three parts. In the first part we evaluated the accuracy
of signal reconstruction. Secondly, the execution speed was tested. Finally, the
algorithm was tested on respiratory sound signals.

Reconstruction Error. Reconstruction error was evaluated against signal
sparsity K, and compressed signal lengths M for the fixed signal block length of
N = 256 samples. Similar test-setup as in [10] was used: 1-s on random indices
were used as sparse input signal. As a measurement matrix, a dense random ma-
trix of uniformly distributed ±1 values was used. Identity transformation matrix
was used, because input signal was already sparse. Experiment was repeated 100
times for different combinations of N , M and K.
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Two metrics for reconstruction error evaluation were used. First was the per-
centage of reconstructed signal blocks inwhich all samples have been reconstructed
on correct indices. Goal was to measure the similarity to referent OMP algorithm
by evaluating occurrence of estimates at incorrect indiceswhen sparsityK becomes
too large or compressed signal length M too short compared to original signal
length N . The second metric was the accuracy of amplitude reconstruction, mea-
sured by normalized l2-error (4), averaged over all repetitions of the experiment.

Err =
||x̂− x||2
||x||2 (4)

Execution Speed. OMP guarantees deterministic execution time. It breaks
down the problem of solving an under-determined system of M equations and
N unknowns to a set of K least squares problems of order t which is increasing
by each iteration t1, ..., tK .

Dependency of execution time was verified for signal length N = {128, 256,
1024}, signal compression ratios of 4× and 8× and signal sparsity of K =
{2, ...30}. Android method System.nanoT ime() was used for time measurement.
Results were averaged over 300 repetitions.

Respiratory Sounds. In order to test recovery of both compressible spectrum
of wheezing and broadband spectrum of normal breathing,N×N inverse discrete
cosine transform (IDCT) matrix Ψ was used as a transformation matrix. Sparse
measurement matrix Φ containing uniformly distributed discrete set of {0, 1}
was used, effectively defining a mask for random selection of M out of N rows of
IDCT matrix. At the same time, indices of 0-s in Φ define which of the (discrete)
time-domain samples can be omitted from sampling.

Pre-recorded respiratory sounds acquired from various Internet sources (such
as R.A.L.E.) were used as input signals. The dataset consisted of 10 recordings
N01...N10 of normal respiratory sounds (total duration 76 s), and 12 recordings
W01...W12 of wheezing (in total 44 s). Each recording originated from a different
patient. Intervals of intra-respiratory silence and normal breathing were removed
from W01...W12 in order to produce continuous sections of signal compressible
in frequency. All recordings were bandpass-filtered to 100-1000 Hz, resampled to
Nyquist frequency of 2048 samples/s, normalized by amplitude, and segmented
into blocks of N = 256 samples.

This test was repeated 100 times on each N -block of every recording, with
combinations of parameters M = {64, 128} and K = 10. Results were evaluated
by three metrics. The first was the accuracy of reconstruction of amplitudes,
measured by normalized l2-error as already described by (4). Remaining two
metrics address frequency-locations (indices) of reconstructed spectral samples:
percentage of indices reconstructed within set of frequencies containing 90 %
of energy of original DCT spectrum, and percentage of reconstructed samples
exhibiting grouping of two or more indices in an uninterrupted sequence. Results
were averaged over all repetitions of the same signal-block, and furthermore over
all blocks within each recording.
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3 Results

3.1 Accuracy

Fig. 2(a) shows good fit between our implementation and the referent OMP from
Matlab. On the other hand, Fig. 2(b) shows worse fit when examining l2-error
(4). For the case of relaxed conditions of reconstruction, (lower signal sparsity
K, lower compression rate/higher M), l2-error of our algorithm converges to
a value of around 10 %. Nevertheless, relations between N , M and K obey
terms stated by CS theory. It can be seen that at 30 % reconstruction error,
maximum obtainable compression rate N/M = 4 with 8 components recovered,
or alternatively 16 components can be recovered at N/M = 2.
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(a) Percentage of blocks with all data reconstructed at correct indices, N = 256.
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(b) Error of amplitude estimation, N = 256.

Fig. 2. Accuracy of signal reconstruction by our version of OMP executed on Android,
compared to referent OMP implementation, both tested on an identical data set
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3.2 Execution Speed

Results corroborating the expected theoretical relations are visualized in Fig. 3.
It is interesting to notice that higher compression ratios N/M , apart from in-
creasing energy saving in communication, also shorten execution of reconstruc-
tion of the same targeted number of components K proportionally.

Let’s evaluate constraints for real-time operation on respiratory sounds. If
the sampling rate of the original time-domain signal was 2 kHz, block-size was
N = 256 and a 50 % block overlap was used, duration between subsequent
blocks would be 64 ms. As seen from Fig. 3, at most K = 10 components could
be recovered in real-time at N/M = 4. The time for real-time construction of
measurement matrix is not considered.
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Fig. 3. Duration of execution versus N , M and K, measured on Samsung Galaxy S2

3.3 Reconstruction of Respiratory Signals Spectra

Characteristic reconstruction examples of DCT spectrum blocks originating from
normal and wheezy signals shown in Figs. 4(a) and 4(b) can be compared in
Figs. 4(c) and 4(d). Several effects can be observed, justifying the choice of three
metrics described in Section 2.3. Most obvious is the grouping of reconstructed
samples at spectral crest frequencies of the wheeze, and less evident for broad-
band normal breathing. Also, two side-effects arise: reconstruction of frequencies
beyond those containing most of signal block energy, and error of amplitude/
energy estimation.

Overall results are shown in Fig. 5. Percentage of indices reconstructed within
90 % of the energy of an original DCT block decreases with M for both normal
and wheezy respiratory signals. Relative l2-error ceases with increase of M , with
wheezes exhibiting lower error, as a consequence of higher accuracy of estimation
of high energy wheeze crests. Percent of grouped indices rises with M , and is
higher for compressible spectrum of wheezing.
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(a) Spectrogram, normal (N08)
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(b) Spectrogram, wheezing (W07)
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(d) Reconstruction, wheezing

Fig. 4. Examples of DCT reconstructed by OMP for single block of normal respiratory
signal and block with wheezing (N = 128, M = 32, K = 10)
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(a) M = 64
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(b) M = 128

10 20 30 40 50 60
30

40

50

60

70

%
 in

di
ce

s 
in

 9
0 

%
 b

lo
ck

 e
ne

rg
y

% of grouped indices

 

 

Wheeze Matlab
Wheeze Android
Normal Matlab
Normal Android

(c) M = 64
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(d) M = 128

Fig. 5. Overall comparison of DCT spectrum reconstruction accuracy on data sets
N01...N10 and W01...W12, N = 256, K = 10
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4 Conclusion

Our implementation of OMP algorithm was shown. Results were compared to
referent OMP algorithm in Matlab. Compression ratio of at least 4× can be
achieved in reliable reconstruction of 10 frequency components for signal-block
lengths of 256 samples in real-time on a smartphone, as demonstrated on spec-
trum of frequency-compressible respiratory signals. Drawbacks of current im-
plementation are low accuracy of amplitude estimation, and operation on real
matrices only. In the future we plan to extensively evaluate CS sampling setups
and further investigate tradeoff between accuracy and execution speed of other
CS algorithms. Reconstruction algorithm is to be accompanied by a suitable
classification algorithm using features drawn from the reconstructed spectrum.
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