
JSGuard: Shellcode Detection in JavaScript

Boxuan Gu1, Wenbin Zhang1, Xiaole Bai2,
Adam C. Champion1, Feng Qin1, and Dong Xuan1

1 Department of Computer Science and Engineering,
The Ohio State University, Columbus, OH, 43202, USA

{gub,zhangwen,champion,qin,xuan}@cse.osu.edu
2 Alliance Data System, Columbus, OH, 43202, USA

alan.bai@alliancedata.com

Abstract. JavaScript (JS) based shellcode injections are among the
most dangerous attacks to computer systems. Existing approaches have
various limitations in detecting such attacks. In this paper, we propose
a new detection methodology that overcomes these limitations by fully
using JS code execution environment information. We leverage this in-
formation and create a virtual execution environment where shellcodes’
real behavior can be precisely monitored and detection redundancy can
be reduced. Following this methodology, we implement JSGuard, a pro-
totype malicious JS code detection system in Debian Linux with kernel
version 2.6.26. Our extensive experiments show that JSGuard reports
very few false positives and false negatives with acceptable overhead.

Keywords: malicious JavaScript code, shellcode detection, web secu-
rity, intrusion detection, browser security.

1 Introduction

JavaScript (JS) is a scripting language that is widely used to enrich the function-
ality of client-side applications, e.g., Web browsers and Adobe Reader. Unfor-
tunately, the user experience improvement brought by JS is often accompanied
by security risks since JS codes can programmatically access these applications’
computational objects. There are several types of JS based attacks against client-
side applications [20, 40, 41], the most dangerous of which exploits target pro-
cesses’ memory errors using shellcodes. Shellcodes are segments of executable
codes that are injected into vulnerable processes’ address spaces. After the shell-
codes are injected and the control flow transfers to them, attackers can execute
arbitrary code in the target hosts that can steal sensitive information, furtively
download and activate malware, and carry out other nefarious tasks.

A typical example of JS based shellcode injection attacks is exploiting Mi-
crosoft Internet Explorer’s (IE’s) HTML object memory corruption vulnerabil-
ity [53] using an HTML document with a specially crafted JS code embedded.
After IE loads the document, the JS code is parsed, compiled, and then exe-
cuted, which creates large objects containing shellcodes in IE’s heap via heap

A.D. Keromytis and R. Di Pietro (Eds.): SecureComm 2012, LNICST 106, pp. 112–130, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

JSGuard: Shellcode Detection in JavaScript 113

spraying [47]. The shellcodes are activated once IE’s control flow is hijacked and
redirected to them.

Recently, such JS based shellcode injection attacks are growing increasingly se-
vere [14,40]. This stems from 2 facts: (1) users do not update their Web browsers
in a timely manner yet spend more and more time surfing the Internet [21]; and
(2) numerous browser plug-ins have been released, many of which have vulner-
abilities [45]. The deteriorating situation is also witnessed by the popularity of
“drive-by download” attacks [41] where users are duped into downloading JS
codes that dynamically generate shellcodes and activate them via client-side
vulnerabilities.

Unfortunately, existing solutions that detect JS based shellcode injection at-
tacks are insufficient. Some approaches can miss detecting shellcodes since these
approaches do not capture the accurate program execution environment, which
is required for exposing the malicious features of shellcodes. Some approaches
cannot effectively handle attacks in which shellcode is divided into several parts
that are connected using control-flow-redirection instructions (e.g., jmp). We will
present 2 representative examples in §2 that illustrate the limitations of existing
detection approaches. We provide a review of existing solutions in §6.

In this paper, we focus on detecting malicious JS codes that inject shellcode
into target applications. We propose a detection system that effectively over-
comes the problems of existing solutions. Similar to existing work, we assume
that the JS interpreter does not have exploitable memory errors and that such
exploitable errors exist in the application (e.g., the Web browser) that runs the
JS interpreter, plug-ins, or extension modules. We also assume that the appli-
cation and its plug-ins and extensions are not malware. Therefore, we target
malicious codes coming from external untrustable sources. Although we use a
Web browser as an exemplary client-side target application in the rest of this
paper and our prototype system is also built within a Web browser, our system
can be extended to protect other client-side applications such as Adobe Reader.

To the best of our knowledge, our system is the first that creates an emulation
environment within the target application process’s address space that shadows
the address space information during emulation to detect malicious shellcodes
in JS codes. We perform such shadowing only when necessary. Our system ac-
curately and comprehensively captures customized application information and
real-time memory information at runtime in a lightweight manner; stand-alone
machine simulators cannot easily obtain this information. From extensive exper-
iments, we find that JSGuard yields very few false negatives and false positives.
These results illustrate the promise of our detection methodology. In particular,
we make the following contributions:

– We propose a new methodology that can comprehensively detect shell-
codes in JS code. We propose leveraging the JS code execution environment
information to instantiate a lightweight emulation environment that reveals and
monitors shellcodes’ real behaviors. Our emulation environment also enables ex-
amination of invoked system calls and their parameters as well as the execution
flow to detect malicious shellcodes.

114 B. Gu et al.

– We propose a technique for reducing detection redundancy at multiple lev-
els. We fully utilize JS code execution environment information to reduce the
number of times the detection system is activated and a JS string is checked.
This information includes native methods, stack frames, and properties of each
individual JS object.

– We implement JSGuard, a prototype system using the above methodology
in Debian Linux with kernel version 2.6.26. We integrate JSGuard into the Fire-
fox 4 Web browser. Our system is adaptive and extensible. It is designed to run
in the target process’s address space. JSGuard can efficiently fetch and use JS
code execution environment information for shellcode detection.

– We conduct extensive experiments based on real traces and thousands of
malicious shellcode samples. The experimental results show that our malicious
JS code detector has high detection accuracy with acceptable overhead.

Paper Organization. The rest of this paper is organized as follows. §2 provides
background information and motivating examples. §3 presents our system design
and implementation. §4 presents detection examples. §5 evaluates JSGuard’s
performance. §6 reviews related works. §7 concludes.

2 Background and Motivating Examples

In this section, we provide a brief background on detecting shellcode in JS ob-
jects. Then we use 2 examples to illustrate the limitations of existing approaches.

2.1 Background: Detecting Shellcode in JS Objects

Malicious JS code usually places shellcode into objects generated at runtime and
then activates it by exploiting vulnerable applications’ memory errors. Therefore,
detecting shellcode in JS objects is critical. Existing detection approaches can
be classified into 2 categories: content analysis and hijack prevention.

Content Analysis. The approaches in this category are based on scanning
JS objects’ contents to determine if they contain malicious shellcode. It can be
further divided into 2 sub-categories: static analysis and dynamic analysis. In
static analysis, input data are first disassembled and then screened via code-
level pattern analysis and matching. Patterns can be complicated signatures
or simple heuristics that are obtained from studying known malicious codes. A
representative work is Nozzle [43]. Static analysis detection is fast, but it is known
that determining program behavior via static analysis is generally undecidable
and, often, it can be effectively thwarted by obfuscation techniques [5].

Dynamic analysis based methods detect malicious shellcode by exploiting in-
formation generated during shellcode execution. A representive work is [18] that
uses libemu [28] to detect shellcode in JS strings. The state of the art of dynamic
analysis is network-level emulation, which decodes input data into instruction
sequences and then emulates their execution [28,37–39]. If any of them exhibits
malicious behavior during emulation, the input data are classified as malicious.

JSGuard: Shellcode Detection in JavaScript 115

Even though network-level emulation can achieve better detection completeness
than static analysis, it is still prone to evasion. This is because it assumes that
the working shellcodes either are self-contained or use specific memory access
behaviors, i.e., their executions are independent of the dynamics of the JS code
execution environment. Without knowledge of the execution environment, these
approaches can be fooled by shellcode whose execution takes advantage of virtual
memory information in the target process.

Hijack Prevention. As suggested by the name, hijack prevention approaches
focus on preventing shellcode from being fully executed. This is often achieved
by inserting special characters into the shellcode. A representative example is
Bubble [22]. In Bubble, a JS string object is divided into multiple units, each
25 bytes long. In each unit, Bubble inserts 0xCC (i.e., int 3) into a randomly
selected position. If a JS string object contains shellcode and the shellcode is
executed, an interrupt handler will be activated when the control flow reaches
the insertion point. However, existing hijack prevention approaches cannot ef-
fectively detect shellcodes split into parts that are “connected” at runtime via
instructions that alter control flow, e.g., jmp and call.

In the following, we first introduce the heap spraying technique. Then we
present 2 examples using it that can evade content analysis and hijack prevention
approaches.

2.2 Heap Spraying

Heap spraying is an attack technique to thwart address space layout randomiza-
tion (ASLR) [6, 36], a memory protection mechanism where objects’ positions
are randomly arranged in a process’s address space. ASLR intents to prevent
attackers from easily predicting target object addresses. However, the memory
space that can be randomized is often limited, especially in 32-bit operating sys-
tems. If we allocate many large objects in the heap, then new objects will likely
be placed in a contiguous memory area after a number of allocations, making
their positions predictable. This technique is called heap spraying [17, 47].

2.3 Example 1: Thwarting Content Analysis Approaches

Fig. 1(a) shows a shellcode that is modified from an example illustrated in [37].
In the shellcode, eaddr is used to calculate the addresses at which the encrypted
payload can be accessed. Since heap spraying can make the positions of some
heap objects predictable, a skilled attacker can write JS code that first sprays
target processes’ heaps, and then inserts the shellcode into the objects whose
addresses can be predicted and determined. In this example, we assume that the
starting address of the shellcode is 0x0000 and eaddr is 0x0008.

This shellcode modifies its instructions at runtime. From address 0x0014 to
address 0x0093, there is an encrypted payload, which often appears to be a mean-
ingless or invalid instruction sequence. When the control flow reaches address
0x000a, the instruction addb $0xe2, 0xa(%esi) will be executed. This instruc-
tion modifies the contents of memory at address 0x0012. After it is executed, the

116 B. Gu et al.

1 0000 6a7f push $0x7f

2 0002 59 pop %ecx

3 0003 6a08 push $eaddr;eaddr=0x08

4 0005 5e pop %esi

5 0006 46 inc %esi

6 0007 4e dec %esi

7 0008 fec1 incb %cl

8 000a 80460 ae2 addb $0xe2 ,0xa(%esi)

9 000e 304 c0e0b xorb %cl ,0xb(%esi ,%ecx)

10 0012 00fa addb %bh ,%dl

11 0014

12 <encrypted payload >.........

13 0093

(a)

1 0000 6a7f push $0x7f

2 0002 59 pop %ecx

3 0003 6a08 push $eaddr

4 0005 5e pop %esi

5 0006 46 inc %esi

6 0007 4e dec %esi

7 0008 fec1 incb %cl

8 000a 80460 ae2 addb $0xe2 ,0xa(%esi)

9 000e 304 c0e0b xorb %cl ,0xb(%esi ,%ecx)

10 0012 e2fa loop 0xe

11 000e 304 c0e0b xorb %cl ,0xb(%esi ,%ecx)

12 0012 e2fa loop 0xe

13

(b)

Fig. 1. (a) Self-modifying shellcode example. The second column indicates the address
of each instruction, the third column indicates the instruction binary code, and the
fourth column is the IA-32 assembly code. The shellcode is mapped to address 0x0000.
(b) Execution trace of the self-modifying shellcode shown in Fig. 1(a).

instruction at address 0x0012 is modified to loop 0xe, which forms a backward
loop to decrypt instructions from 0x0093 to 0x0014. The loop is controlled by
register ecx, which decreases by 1 upon each execution of loop 0xe. Within
the loop, the instruction at address 0x000e, xorb %cl, 0xb(%esi,%ecx), is for
decryption. It decrypts 1 byte per iteration. When ecx becomes 0, the loop
terminates, the content stored from 0x0093 to 0x0014 is fully decrypted, and
the control flow continues to the instruction at address 0x0014, the last de-
crypted instruction. We can see this from the shellcode execution trace shown
in Fig. 1(b).

As there is no information that is dynamically generated during shellcode
execution, e.g., register values at runtime, static analysis based detection ap-
proaches cannot effectively handle the decryption procedure after the shellcode is
interpreted as an instruction sequence; these approaches only see the encrypted
payload as a meaningless or invalid instruction sequence. Malicious behaviors
that are only exhibited during execution are thus effectively concealed.

The shellcode shown in Fig. 1(a) can also be used to evade detection by current
dynamic analysis based tools [18, 28, 37–39]. Given an input stream containing
the shellcode shown in Fig. 1(a), network-level emulation based approaches will
copy the input stream into a memory space that performs this emulation, and
all read/write operations will be performed in the emulated memory space. The
real contents of virtual memory units at the addresses calculated from eaddr are
difficult to obtain. Then the shellcode’s encrypted payload cannot be correctly
decoded and emulated. In addition, these approaches do not use information in
other objects to detect shellcode in the current object, which precludes shell-
code detection. Since the use of heap spraying can enable prediction of objects’
positions in a heap, it is not difficult for attackers to design shellcode in JS code
that makes use of information stored in different objects. For example, if 2 JS
objects have predictable heap positions, attackers can store shellcode in one and
critical information for decryption in the other.

We also notice that some tools based on network-level emulation use heuris-
tics based on the GetPC code [24, 37] in shellcode detection, e.g., [18] uses

JSGuard: Shellcode Detection in JavaScript 117

sub-shellcode1 sub-shellcode2 sub-shellcode3

1 be20010505 movl $Saddr ,%esi

2 8976 f8 movl %esi ,-0x8(%esi)

3 836 ef810 subl $0x10 ,-0x8(%esi)

4 31c0 xor %eax ,%eax

5 eb09 jmp Offset1

1 8846 f7 movb %al ,-0 x9(%esi)

2 8946 fc movl %eax ,-0 x4(%esi)

3 b00b mov $0x0b ,%al

4 8b5ef8 movl -0x8(%esi),% ebx

5 8d4ef8 leal -0x8(%esi),% ecx

6 8d56fc leal -0x4(%esi),% edx

7 cd80 int $0x80

8 eb04 jmp Offset2

1 31db xor %ebx ,%ebx

2 89d8 mov %ebx ,%eax

3 40 inc %eax

4 cd80 int $0x80

Fig. 2. A shellcode can be divided into multiple parts (3 parts here). Each part, denoted
by sub-shellcode, can be connected to another part by using a jmp instruction.

libemu [28]. Besides the aforementioned evasion methods, attackers can also
evade detection by writing shellcode without call group instruction or fstenv

instruction opcodes, e.g., using purely alphanumeric shellcode [31]. Note the
shellcode shown in Fig. 1(a) has no bytes that can be decoded as the GetPC
code.

2.4 Example 2: Thwarting Hijack Prevention Detection

In this subsection, we discuss how to design shellcode that evades hijack pre-
vention detection. Fig. 2 shows a shellcode that can open a root shell. This
shellcode can be divided into 3 parts as shown in Fig. 2. The first part, de-
noted sub-shellcode1, is 16 bytes long. The second part, sub-shellcode2, is 21
bytes long. The third part, sub-shellcode3, is 7 bytes long. In sub-shellcode1,
Saddr is 0x05050120 pointing to some part of an object. The memory at ad-
dress (Saddr-16) stores arguments of the system call used to open a root shell.
These include an ASCII sequence /bin/sh. At the end of sub-shellcode1, there is
an instruction jmp Offset1, where Offset1 is the offset between sub-shellcode1
and sub-shellcode2. This instruction diverts control flow from sub-shellcode1 to
sub-shellcode2. In sub-shellcode2, Offset2 is the offset between sub-shellcode2
and sub-shellcode3. At the end of sub-shellcode2, instruction jmp Offset2 di-
verts control flow from sub-shellcode2 to sub-shellcode3.

Using heap spraying, the arguments and the sub-shellcodes can be placed into
2 different objects whose positions can be predicted. Let the arguments be placed
in object1 and sub-shellcode1, sub-shellcode2, and sub-shellcode3 be placed in
object2. Because the data structures of object1 and object2 are known to the
attacker, it is not difficult to arrange and predict the addresses of the arguments
and the above 3 sub-shellcodes in memory.

Consider a Web browser with a certain memory vulnerability that can be
exploited to overwrite a function pointer and thus execute arbitrary code. The
attacker can use sub-shellcode1’s address to overwrite the function pointer. After
the web browser’s control flow is directed to sub-shellcode1 and the instruction
jmp Offset1 is executed, the control flow can be directed to sub-shellcode2,
and then to sub-shellcode3 through the instruction jmp Offset2. In this way,
the entire shellcode can be executed and a root shell is opened eventually.

118 B. Gu et al.

Existing hijack prevention approaches may fail to detecting such shellcode
with high probability. For example, if the 3 sub-shellcodes are placed at the
beginning of 3 25-byte blocks in object2, the probability that the entire shellcode
can evade detection by Bubble [22] is (25−16)/25× (25−21)/25×(25−7)/25 =
4.1%. This implies, on average, more than 4 attacks can succeed per 100 trials.

Example 2 also illustrates the importance of JS code execution environment
information for an attack. The arguments of the system calls used by the shell-
code embedded in object2 rely on information stored in object1.

These examples presented in §2 clearly demonstrate the criticality of fully
leveraging JS code execution environment information in order to detect shell-
code in JS objects. In addition, to guarantee detection completeness, we need to
check all possible instruction sequences that can be decoded.

3 System Design and Implementation

In this section, we present the design methodology of JSGuard, its architecture
and key components, and implementation. The detailed workflow will be further
illustrated by examples in §4.

3.1 Design Rationale

Fundamentally, the limitations of existing approaches arise because they do not
fully use the JS code execution environment information during detection. This
motivates our proposal of a new detection approach that overcomes the lim-
itations by efficiently and fully exploiting this information, including: (1) the
virtual memory contents of the target application running the JS interpreter;
(2) the host system’s context information, e.g., system call information; and (3)
the JS code semantics, which include stack frames, native method information,
JS object properties, etc.

This information is used at the core of JSGuard in the following 2 ways:

– Creating a Virtual Execution Environment for Detection. When our detec-
tion system is activated, the real environment information at that moment is
used to instantiate a virtual environment where potentially malicious JS strings
are executed and monitored. Such real environment information is critical for
observing the real behaviors of possible shellcodes as they exhibit real execution
flow. In malicious shellcodes, process state information can be used to redirect
the execution flow, e.g., for encryption or decryption (as illustrated in Exam-
ple 1) or it can be leveraged to compute arguments for system calls to perform
malicious actions (as illustrated in Example 2). Without precise virtual memory
information, the shellcode’s execution flow or characteristics can be changed and
its malicious behavior may not be captured.

Using the real environment information also enables leveraging a target
system’s binary code to emulate system calls appearing in a decoded instruction
sequence, especially those that do not change processes’ states but can be used to
take part in shellcode computation. This kind of emulation can help us observe
more possible shellcode behaviors.

JSGuard: Shellcode Detection in JavaScript 119

Live JSString
Objects

List of
Trustable Sites

Malicious JSString
Detector

Shellcode Analyzer

JSGuard Core

JS Interpreter

Client-Side Application Address Space

Fig. 3. The overall architecture of JSGuard

– Facilitating Multiple-level Redundancy Reduction. We propose reducing de-
tection overhead at 3 levels. First, the number of JS objects to be checked should
be minimal. Second, given a JS object to be checked, checking occurs only as nec-
essary (e.g., after mutable objects have changed). Finally, the detection system
should be activated as infrequently as possible.

We achieve this multiple-level redundancy reduction at JSGuard’s core using
the following execution environment information: stack frames, properties of JS
objects, and native methods. The JS interpreter maintains a stack frame for each
JS function being interpreted including its origin information. By searching the
current stack frames, we can determine if JS functions are internal functions or
from trustable sites. If not, objects generated in JS functions are to be checked. In
addition, since external components are targets of malicious code, our detection
system is activated right before control flow enters them. External components
are called by JS code via external native methods. Native method information
is used to distinguish built-in JS native methods that are secure (as we assume
the JS interpreter is secure) from external ones that are written by users to
call their external components. We only activate our detection system before
external native methods are called.

3.2 JSGuard Architecture and Key Components

JSGuard aims to detect whether JS codes embedded in webpages generate mali-
cious shellcode. If a JS code generates such shellcode at runtime, it is considered
malicious. Like other work [18,22], JSGuard focuses on detecting shellcode in JS
string objects, as it is difficult to insert shellcode in other types of objects.

As illustrated in Fig. 3, JSGuard resides in the address space of the target
process. Besides the JSGuard core, the core functionality block that performs
detection, JSGuard also involves the JS interpreter and a list of trustable sites.
The JS interpreter determines the origins of JS functions being interpreted; only
those from external untrusted sites are further checked by the JSGuard core.
The list can be maintained manually or automatically. New sites can be added
to it according to JSGuard’s detection results for them as well as the user’s
knowledge. These sites can be those that are often visited by the user, e.g., the
site of the company he or she is working for. They can be also those maintained
by reputable companies or organizations, such as Microsoft, CNN, etc. If users
are concerned about a trustable site, they can always force JSGuard to check it.
The list entries can be trustable organizations’ hostnames or domain names.

120 B. Gu et al.

JS Interpreter

JSString Objects Library
(Candidate Pool)

JSString Operations Garbage Collector (GC)

Malicious JSString
Detector

Fig. 4. Malicious JS string
detector takes JS strings
from a pool maintained
by string-related opera-
tions and the JS inter-
preter’s GC

1 #define BENIGN 0

2 #define MALICIOUS 1

3

4 struct JSString {

5 size_t length;

6 jschar *chars ;

7 };

8

9 int maliciousJSStringDetector (checkinglist) {

10 JSString *string;

11 check = checkinglist ;

12 while (check != NULL) {

13 string = check -> string;

14 if(ShellcodeAnalyzer (string ->chars)== MALICIOUS)

15 return MALICIOUS ;

16 check =check ->next ;

17 }

18 checkinglist = NULL ;

19 return BENIGN;

20 }

Fig. 5. Workflow of malicious JS string detector

As shown in Fig. 3, JSGuard core has 2 key components: the malicious JS string
detector and the shellcode analyzer.Themalicious JS string detector runs in the JS
interpreter. It prepares JS strings to be checked at runtime and then feeds them to
the shellcode analyzer. The shellcode analyzer checks if an input object’s content
contains malicious shellcode or a part thereof and reports the results back to the
malicious JS string detector. If a malicious JS string is found, interpretation stops;
otherwise, it continues. In the following, we detail these components.

Malicious JavaScript String Detector. As shown in Fig. 4, the detector
retrieves and checks JS strings from a checking list, which contains all JS strings
that might have malicious shellcode. The checking list is maintained by in-
strumenting string-related operations and the JS interpreter’s garbage collector
(GC). In particular, when a new string JS is created, it is inserted into the check-
ing list; when the GC reclaims a JS string, the string will be removed from the
checking list after its content is zeroed.

The basic workflow of the malicious JavaScript string detector is shown in
Fig. 5. The function maliciousJSStringDetector() has an input checking-

list. When called, it scans all strings in checkinglist and feeds them to shell-
codeAnalyzer(), which detects malicious shellcode in JS string contents. If
shellcodeAnalyzer()finds a JS string containing malicious shellcode, it returns
MALICIOUS to maliciousJSStringDetector(). Then maliciousJSStringDe-

tector() stops checking the remaining JS strings in checkinglist and returns
MALICIOUS to the JS interpreter, which stops interpreting JS code. If no JS
string is found to be malicious, then maliciousJSStringDetector() returns
BENIGN to the interpreter, which continues interpreting JS code. In JSGuard’s
core, maliciousJSStringDetector() is called immediately before JS code calls
an external component.

checkinglist contains the JS strings to be checked. Every time a JS string
is generated, all current stack frames are checked. If there are any JS functions
from external untrusted sites, then we add the JS string to checkinglist. We

JSGuard: Shellcode Detection in JavaScript 121

Client-Side Application Address Space

Shellcode Analyzer

Instruction
Decoder

Instruction
Emulator

Malicious Behavior Detector

Emulated Memory
Emulated Registers

JSCode Execution Environment Information Interface

Fig. 6. Shellcode analyzer archi-
tecture

1 #define MALICIOUS 1

2 #define BENIGN 0

3 #define MALICIOUS_SEQUENCE 1

4 #define BENIGN_SEQUENCE 0

5

6 int ShellcodeAnalyzer (base_addr , base_size) {

7 for (i = 0; i< base_size ; i++)

8 if (MaliciousInstructionSeq (base_addr + i))

9 return MALICIOUS ;

10 return BENIGN;

11 }

12

13 int MaliciousInstructionSeq (addr){

14 InitializeEmulationEnvironment ();

15 instruction = InstructionDecoder (addr);

16 if (End(instruction)) return BENIGN_SEQUENCE ;

17 instruction.exe_depth = 1;

18 while (instruction) {

19 if (MaliciousSystemCall (instruction))

20 if (instruction.exe_depth > exe_depth_thresh)

21 return MALICIOUS_SEQUENCE ;

22 InstructionEmulator (instruction);

23 UpdateEmulationEnvironment ();

24 target = ComputeTarget (instruction);

25 prevInstruct = instruction ;

26 instruction = InstructionDecoder (target);

27 if (End(instruction)) break ;

28 SetExecutionDepth (instruction , prevInstruct);

29 }

30 return BENIGN_SEQUENCE ;

31 }

Fig. 7. Workflow of shellcode analyzer

do so because only JS codes from external untrusted sites attempt to generate
shellcode that exploits target applications’ vulnerabilities. As JS strings are im-
mutable objects, we can safely remove the strings from checkinglist after they
have been checked once [22].

Shellcode Analyzer. The shellcode analyzer architecture is shown in Fig. 6.
This module consists of an instruction decoder, an instruction emulator, a ma-
licious behavior detector, an emulated memory system, and emulated registers.

Given a position in a JS string content, the instruction decoder decodes instruc-
tions starting at that position and sends each decoded instruction to the emulator.
For each instruction the emulator receives, it emulates the execution thereof, for
which the emulated memory system and registers provide a virtual runtime envi-
ronment.TheJScode execution environment informationprovided to the shellcode
analyzer includes the target process’s address space, current registers, and other
context information as necessary.The emulator executes each instruction sequence
and the malicious behavior detector determines whether there is anymalicious be-
havior. If any such behavior is detected, then the instruction sequence is considered
malicious. As a result, the shellcode analyzer concludes there is malicious shellcode
in the content buffer. Hence the JS string object is considered malicious.

During instruction sequence emulation, if there is an instruction that reads
memory, the memory values are first fetched from the real memory units in
the target process’s address space. Next, these values are stored in the emu-
lated memory system. Future read operations to the same memory units will

122 B. Gu et al.

be directed to the emulated memory system. If there is a write memory opera-
tion, it will be directed to the emulated memory system. The write operation is
never performed on the corresponding real memory units in the target process’s
address space to avoid disturbing “normal” JS code execution.

The shellcode analyzer workflow is shown in Fig. 7. From each input data
position, the shellcode analyzer uses the target process’s virtual memory infor-
mation to emulate the execution of the decoded instruction sequence. There are
2 input parameters for ShellcodeAnalyzer(): (1) base address, the starting
address of the input data to be analyzed; and (2) base size, the input data size.

The key function of the shellcode analyzer is MaliciousInstructionSeq(),
which detects a malicious instruction sequence. The workflow of MaliciousIn-
structionSeq() is shown in lines 13–31 in Fig. 7. The while loop from line 18
to line 29 in Fig. 7 emulates a sequence of instructions, which continues until
one of the following occurs: (1) a malicious behavior is detected; (2) a privileged
or invalid instruction is encountered;1 (3) an illegal memory access occurs; or
(4) the number of executed instructions exceeds a threshold.

In our system, a malicious behavior is defined as a malicious system call in-
vocation. In Linux and Microsoft Windows systems, not all system calls can
compromise the target host’s security. This depends on system call numbers and
parameters, which are stored in registers before system call instructions are ex-
ecuted. Through the JS code execution environment information interface, the
system call number and its parameters can be accurately obtained to determine
if the system call invocation is intended to compromise the host’s security. For
example, in Linux, the system call number 11 corresponds to the system func-
tion execve, which executes a program. During instruction emulation, if the
instruction is a system call instruction and the value of the emulated eax is 11,
then the system call number is 11. After checking parameters stored in other
emulated registers and the emulated memory system, if its first parameter is
/bin/sh, then we can conclude that the instruction tries to open a root shell.
In this case, the system call instruction will be considered malicious.

Shellcodes normally need several instructions to initialize system call parame-
ters. Hence, we also use the exe depth of an instruction that invokes a system call
to decrease false positives. An instruction’s exe depth is defined as the number
of instructions from the starting point to it during emulation of an instruction
sequence. For example, suppose that a statement S in a for loop is executed
100 times. Then the execution depth of S is 2 (for statement and S).

Our system can also leverage heuristics used in current network-level em-
ulation tools [18, 28, 37–39] to detect shellcode in JS strings during emulation.
However, these heuristics are confined to detect particular types of shellcode that
exhibit self-decrypting behavior [18, 28, 37, 38] or match specific memory access
patterns [39]. In addition, as illustrated in §2, they are ineffective at detecting
shellcode that fully exploits JS code execution environment information.

1 Privileged instructions can only be executed in kernel mode; shellcodes normally run
in user mode. An exception occurs if a shellcode contains a privileged instruction.

JSGuard: Shellcode Detection in JavaScript 123

3.3 Implementation

The JSGuard prototype system is implemented in Debian Linux with kernel ver-
sion 2.6.26 using C and C++ with gcc 4.3.2. The key component is the JSGuard
core, which comprises 2 major parts. The first part is a modified JS interpreter
integrated with the malicious JS string detector. This part is based on the Spider-
Monkey JS interpreter [49], which is used in various Mozilla products including
Firefox. The second part is the shellcode analyzer module. We implement it as
a C library in Debian Linux system. When the malicious JS string detector calls
the module, it is loaded into the address space of the application running the
JS interpreter. We also implement a Firefox extension that maintains the list of
trustable sites, which is loaded into Firefox’s address space upon execution.

Modified JS Interpreter. In this part, we implement a malicious JS string
detector, which scans JS string objects from a checkinglist and then calls the
shellcode analyzer to determine if they have malicious content. The checking-

list is maintained by the code that we add into all functions related to JS string
operations. First, we instrument all functions related to JS string object creation.
In this way, we can track all JS string objects generated during execution of the
external JS code. Populating the checkinglist with all strings fundamentally
guarantees the completeness of our detection. Second, before adding a JS string
to checkinglist, we also use the list of trustable sites and current stack frames
to decide if the JS string should be added to checkinglist. If all JS functions
being interpreted are from trustable sites or internal JS functions, the string will
not be added to checkinglist; otherwise, it will.

After analyzing the source code of the SpiderMonkey JS interpreter, we find
all call points that invoke native methods and insert calls to the malicious JS
string detector at these points. Since the JS interpreter also uses native methods
to implement some built-in JS class methods, we check if a native call is calling
a JS built-in method at native call points. If this is the case, we do not activate
the malicious JS string detector; otherwise, we activate it. This is due to our
assumption that the JS interpreter has no exploitable memory errors. The native
methods for JS built-in class methods are parts of the JS interpreter, so they
do not have exploitable memory errors. However, when control flow leaves the
JS interpreter to external functions, the malicious JS string detector will be
activated to check all JS strings in the checkinglist.

We modify the JS interpreter’s garbage collector to maintain the checking-

list and integrate the modified JS interpreter into the Firefox 4 Web browser.

Shellcode Analyzer. The shellcode analyzer prototype focuses on the IA-32
architecture and the Linux OS. We implement an instruction emulator and an
instruction decoder, which is based on the Bastard project’s libdisasm with
version 0.23-pre [50].

When encountering a system call instruction (sysenter or int 0x80) in em-
ulation, the shellcode analyzer will determine, with the parameters stored in the
emulated memory/register system, whether it is one of 36 system calls that can

124 B. Gu et al.

be used to compromise the Linux system [32]. Besides these “malicious” sys-
tem calls, we also use the exe depth threshold to determine if the instruction
truly tries to compromise the host’s security; we set the threshold to 10 since
most unencrypted malicious shellcodes have at least 10 instructions [38, 55]. To
avoid an infinite loop during instruction sequence emulation decoded from a po-
sition of a JS string’s content, we set the threshold to 8000 for the number of
executed instructions. According to current research, this threshold suffices to
detect malicious shellcodes [37, 38].

4 A Detection Example

We illustrate our detection system’s effectiveness by presenting the detection
procedure for Example 2 in §2.3. Example 1 in §2.2 can similarly be detected.

Assume that an attacker tries to exploit a Firefox external component in Linux
using a malicious JS code. He first uses heap spraying to allocate large JS objects,
then inserts the arguments and the 3 sub-shellcodes, as shown in Fig. 2, into 2 ob-
jects. We denote these objects as object1 and object2. The objects are allocated in
2 contiguous memory areas and their addresses are predictable, say, 0x05250020
and 0x05350020, respectively. The JS code places the arguments in object1 with
Saddr set to 0x05250084 and places sub-shellcode1, sub-shellcode2 and sub-
shellcode3 into object2 with their addresses set to 0x05350084, 0x0535009D
and 0x053500B6 respectively. Then the offset between sub-shellcode1 and sub-
shellcode2 is 9 and the offset between sub-shellcode2 and sub-shellcode3 is 4.
Hence, in Fig. 2, Saddr is 0x05250084, Offset1 is 9, and Offset2 is 4.

The attack starts when the 3 sub-shellcodes are ready in the heap. The JS
code calls the vulnerable component. Before control flow is diverted from the JS
interpreter to the external component, the JS interpreter with JSGuard invokes
maliciousJSStringDetector() to check whether there are malicious JS strings
arranged in the heap. maliciousJSStringDetector() will scan JS strings in
checkinglist and send them iteratively to the shellcode analyzer. At a certain
moment, the shellcode analyzer receives the content of object2.

The shellcode analyzer decodes every possible instruction sequence starting
from each byte position of the content, and then executes it. Each instruction
in the instruction sequence starting from the address 0x05350084 will be de-
coded and then executed. When the instruction jmp Offset1, i.e., jumping to
0x0535009D, is decoded and executed, the shellcode analyzer will follow the
control flow and begin to decode instructions starting from 0x0535009D and
execute them. Note 0x0535009D is the starting address of the sub-shellcode2
instruction sequence. In this way, the instruction sequence of sub-shellcode2
is discovered and executed. When system call instruction int $0x80 is exe-
cuted, we can obtain its parameters since the contents of the emulated regis-
ters/memory system precisely reflect the runtime changes during the emulation.
The shellcode analyzer discovers that this system call instruction tries to open
a root shell. Meanwhile, this instruction’s exe depth exceeds the threshold. Thus

JSGuard: Shellcode Detection in JavaScript 125

this system call instruction will be considered malicious. As a result, the en-
tire emulated instruction sequence is considered malicious. The shellcode ana-
lyzer concludes that object2 content contains malicious shellcode and returns
to maliciousJSStringDetector(). When the malicious JS string detector re-
ceives MALICIOUS from the shellcode analyzer, it in turn concludes that object2
is a malicious JS string and the JS code being interpreted is malicious. It throws
an exception and stops interpreting JS code.

5 Evaluation

We conduct extensive experiments to evaluate JSGuard, particularly its detec-
tion effectiveness and runtime overhead. We do so on a HP Pavilion a815n with
an Intel Pentium 4 3.06 GHz CPU and 1 GB RAM. The computer is connected
to a university campus network through 100 Mbps Ethernet; it runs Debian
Linux with kernel version 2.6.26.

5.1 Effectiveness

Detection effectiveness is measured by false positives and false negatives.

– False Positive: 0/2000. We implement a Firefox extension that automati-
cally fetches websites listed in a file. We set the time interval between 2 fetches
to be 50 s, which is generally sufficient for JS codes embedded in a webpage to
be fully executed. Every 50 s, the extension iteratively reads a URL from the file
and then loads the webpage in a browser window. We construct a benign URL
list containing 2000 URLs taken from the Alexa ranking of top global sites [1].
These are real websites with various content and Web applications. JSGuard
classifies all of them as benign.

– False Negative: 0/5063. We collect 12 real world malicious webpages con-
taining JS code that generate shellcode to launch attacks; we also collect 51 plain
malicious shellcodes from the Internet. All of them target Linux systems. Based
on the 51 plain shellcodes, we use the following tools to generate 5000 polymor-
phic or/and metamorphic malicious shellcodes: the Metasploit project’s Jump-
CallAdditive, Pex, PexFnstenvMov, PexFnstenvSub, and ShikataGaNai [51] as
well as ADMmutate [30] and TAPiON [2], which are also used in other shellcode
detection tools [37, 38, 54, 55] to test their effectiveness. We then create 5051
JS codes that generate these malicious shellcodes at runtime and invoke native
methods that are not built in to the JS interpreter. For example, the JS method
document.write() eventually calls a native method. Finally we craft 5051 ma-
licious webpages with these malicious JS codes. We put these 5051 malicious
webpages and the 12 real world malicious webpages on our internal Web server
and we visit them using Firefox with JSGuard on a client computer. JSGuard
classifies all of them as malicious. In addition, we also write 2 heap spraying
JS codes, dynamically generate the 2 shellcode examples presented in §§2.2–2.3,
and feed them to JSGuard. It correctly classifies them as malicious.

126 B. Gu et al.

Table 1. The overhead of checking trustable sites only. “Original version” is Firefox
without our system. “Trustable List Only” is Firefox with our detection system enabled
(JSGuard core disabled).

Firefox Version Total Time Time/Page Overhead/Page

Original Version 491.953 s 1.63984 s N/A

Trustable List Only 492.254 s 1.64085 s 0.00101 s

Table 2. The overhead purely incurred by the JSGuard core block. “JSGuard Core
Only” is Firefox with our system enabled (checking trustable sites disabled).

Firefox Version Total Time Time/Page Overhead/Page

Original Version 491.953 s 1.63984 s N/A

JSGuard Core Only 1651.45 s 5.50483 s 3.86499 s

Table 3. The overhead incurred by JSGuard. The version with JSGuard is Firefox
with our entire JSGuard system enabled.

Firefox Version Total Time Time/Page Overhead/Page

Original Version 491.953 s 1.63984 s N/A

With JSGuard 753.059 s 2.51019 s 0.87035 s

5.2 Overhead

To measure JSGuard’s overhead, we use 2 versions of Firefox 4: one integrated
with JSGuard and an “original” version without JSGuard. We use the 100 most
popular websites as described by Alexa [1] as the testing dataset. In our experi-
ments, we visit each website 3 times using each version of Firefox. The time we
measured, rendering time, includes the times for downloading a webpage from
the Internet, page parsing and rendering, and executing all JS codes therein.

We performed 3 types of experiments to measure overhead incurred: (1) by
only checking trustable sites; (2) by only using the JSGuard core functionality
block; and (3) by using entire JSGuard system.

In the first experiment, we disable JSGuard and measure the overhead purely
incurred by checking trustable sites. We use the 10,000 most popular websites
from Alexa [1] to form a list of trustable sites. The experiment results are shown
in Table 1, which shows that this overhead is very low. Thus our detection sys-
tem has little impact on the rendering time when all JS functions called during
runtime are internal ones or from trustable sites. The second experiment mea-
sures the overhead purely incurred by running JSGuard core without checking
trustable sites. It is an extreme case where every site the user visits is assumed to
be malicious, i.e., every JS string is put into checkinglist so long as all inter-
preted JS functions are from external sites. From Table 2, the average overhead
incurred by JSGuard core is 3.865 s. Note that this performance is measured in
the worst-case scenario with a low-end machine. Indeed, studies show that overall
user frustration increases when page load times exceed 8–10 s [8,33]. Hence, per-
formance is acceptable even in this extreme case. The third experiment measures

JSGuard: Shellcode Detection in JavaScript 127

the overhead incurred by the entire JSGuard system. We construct a random
list of 50 trustable sites from our testing dataset. The remaining 50 sites in our
testing dataset are thus considered untrustable. Table 3 shows the experiment
results. JSGuard’s average overhead is modest: ∼0.87 s.

6 Related Work

Detecting shellcode in JS objects is essential to protect vulnerable applications
from JS based shellcode injection attacks. As §2.1 noted, existing shellcode de-
tection approaches fall into 2 categories: content analysis and hijack prevention.

Content analysis is particularly popular in detecting shellcode from network
messages. In [52], Toth and Kruegel proposed identifying exploit code by detect-
ing NOP sleds. However, attacks can bypass this detection technique by either ex-
cluding NOP sleds or by using polymorphic techniques [11, 16, 30]. Chritodorescu
and colleagues [12,13] proposed techniques to detectmalicious patterns in executa-
bles using semantic heuristics. Lakhotia andEric in [27] used content analysis tech-
niques to detect obfuscated calls in binaries. Chinchani and van denBerg proposed
a rule-based scheme in [11].Wang et al. proposed SigFree [55] that checks if network
packets contain malicious codes using “push and call” patterns and the number of
useful instructions in the longestpossible execution chain.Thesemethods arebased
on static analysis. Although they are efficient in detecting shellcode, they still can
be thwarted by using binary obfuscation [5]. To improve detection completeness,
Polychronakis et al. proposed a new network-level emulation approach [37, 38] to
detect polymorphic shellcode.Gene [39] used network-level emulationwith specific
memory access pattern heuristics to detect shellcode forMS-Windows systems.Gu
et al. proposed the virtual memory snapshot based emulation approach in end sys-
tems to detect shellcode in networkmessages before they are processed by network
server programs [23]. ShellOS provides a framework leveraginghardwarevisualiza-
tion to detect shellcode [46]. It requires users to dump the entire target process’s
states and load them into ShellOS in order to construct an emulation environment.
A powerful shellcode analyzer named ”Shellzer” is proposed in [56]. It conducts
analysis by instrumenting each instruction, which may incur undesirable overhead
for online detection.

All these approaches are useful for detecting shellcode in network messages,
but they are not directly applicable to detecting shellcode in JS strings, as such
shellcode is not transmitted in its binary form. Instead, each byte of the shell-
code is transmitted using its ASCII representation. In general, ASCII charac-
ter sequences cannot be successfully decoded into the corresponding shellcode
instruction sequences [18], though this is sometimes possible [35]. Nozzle is a
well-known JS shellcode attack detection tool. It scans a heap object, inter-
prets the object content to build a control flow graph (CFG), and then uses the
CFG to check weather the content contains shellcode [43]. Egele et al. propose
an approach that uses libemu [28] to check if the content of a JS string con-
tains a sufficiently long valid instruction sequence using network-level emulation
and GetPC code based heuristics. Hijack prevention based approaches can be

128 B. Gu et al.

used before or during shellcode execution. Such approaches include randomiza-
tion [4, 6, 7, 26, 36], OS extension [3, 25] and flow tracking techniques [34, 42]. In
general, these approaches have good detection completeness due to their exten-
sive use of context information. However, their troubleshooting to find out the
root cause is inefficient [55], which often requires heavy playback or log analy-
sis. Recently, Gadaleta et al. proposed Bubble [22], a lightweight approach that
encumbers complete execution of injected shellcode.

Recently, several machine learning based systems were proposed to detect
malicious JS code. Zozzle applies Bayesian classification to hierarchical features
of the JavaScript abstract syntax tree to identify syntax elements that strongly
predict malware [15]. Jsand [14] emulates JS code in a virtual browser environ-
ment using machine learning methods to capture malicious features. Prophiler [9]
constructs a filter that can quickly discard benign pages and forward potentially
malicious pages to heavyweight analysis tools. JSGuard can complement these
systems by providing malicious code training samples.

We note that some works like Cujo [44] and Blade [29] can also prevent drive-
by-download attacks. However, their focus differs from ours, which is malicious
shellcode detection in JS code. These works cannot prevent in-memory execution
of injected shellcode. We are aware that tools like [10,19] have been proposed to
audit JS activities, but they are not malicious shellcode detection systems.

7 Conclusion

In this paper, we have proposed a new methodology to detect JS shellcode that
fully uses JS code execution environment information in an efficient manner.
Following the methodology, we implemented JSGuard, a prototype malicious JS
code detection system on Debian Linux. Extensive experiments with real traces
and thousands of malicious shellcodes illustrate our detection system’s perfor-
mance with acceptable overhead and very few false negatives or false positives,
which validated our methodology’s promise for this purpose.

References

1. Alexa Top Sites, http://www.alexa.com/topsites
2. Bania, P.: TAPiON (2005), http://pb.specialised.info/all/tapion/
3. Baratloo, A., Singh, N., Tsai, T.: Transparent Run-Time Defense Against Stack

Smashing Attacks. In: USENIX Annual Technical Conf. (2000)
4. Barrantes, E.G., Ackley, D.H., Forrest, S., Palmer, T.S., Stefanović, D., Zovi, D.D.:

Randomized Instruction Set Emulation to Disrupt Binary Code Injection Attacks.
In: CCS (2003)

5. Bayer, U., Moser, A., Kruegel, C., Kirda, E.: Dynamic Analysis of Malicious Code.
Journal of Computer Virology (2006)

6. Bhatkar, S., DuVarney,D.C., Sekar, R.: AddressObfuscation: An Efficient Approach
to Combat a Broad Range of Memory Error Exploits. USENIX Security (2003)

7. Bhatkar, S., Sekar, R.: Data Space Randomization. In: Zamboni, D. (ed.) DIMVA
2008. LNCS, vol. 5137, pp. 1–22. Springer, Heidelberg (2008)

http://www.alexa.com/topsites
http://pb.specialised.info/all/tapion/

JSGuard: Shellcode Detection in JavaScript 129

8. Bouch, A., Kuchinsky, A., Bhatti, N.: Quality is in the Eye of the Beholder: Meeting
Users’ Requirements for Internet Quality of Service. In: CHI (2000)

9. Canali, D., Cova, M., Kruegel, C., Vigna, G.: Prophiler: A Fast Filter for the
Large-Scale Detection of Malicious Web Pages. In: WWW (March 2011)

10. Chenette, S.: Toorconx the ultimate deobfuscator (2008),
http://www.toorcon.org/tcx/26_Chenette.pdf

11. Chinchani, R., van den Berg, E.: A Fast Static Analysis Approach to Detect Exploit
Code Inside Network Flows. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS,
vol. 3858, pp. 284–308. Springer, Heidelberg (2006)

12. Christodorescu, M., Jha, S.: Static Analysis of Executables to Detect Malicious
Patterns. USENIX Security (2003)

13. Christodorescu, M., Jha, S., Seshia, S., Song, D., Bryant, R.E.: Semantics-Aware
Malware Detection. IEEE S&P (2005)

14. Cova, M., Kruegel, C., Vigna, G.: Detection and Analysis of Drive-by-Download
Attacks and Malicious JavaScript Code. In: WWW (2010)

15. Curtsinger, C., Livshits, B., Zorn, B., Seifert, C.: Zozzle: Fast and Precise In-
Browser JavaScript Malware Detection. USENIX Security (2011)

16. Detristan, T., Ulenspiegel, T., Malcom, Y., van Underduk, M.S.: Polymorphic
Shellcode Engine Using Spectrum Analysis. Phrack (2003),
http://www.phrack.org

17. Ding, Y., Wei, T., Wang, T., Liang, Z., Zou, W.: Heap Taichi: Exploiting Memory
Allocation Granularity in Heap-Spraying Attacks. In: ACSAC (2010)

18. Egele, M., Wurzinger, P., Kruegel, C., Kirda, E.: Defending Browsers against Drive-
by Downloads: Mitigating Heap-Spraying Code Injection Attacks. In: Flegel, U.,
Bruschi, D. (eds.) DIMVA 2009. LNCS, vol. 5587, pp. 88–106. Springer, Heidelberg
(2009)

19. Feinstein, B., Peck, D.: Caffeine Monkey, http://www.secureworks.com/research/
blog/wp-content/uploads/CaffeineMonkey DEFCON15.pdf

20. Fogie, S., Grossman, J., Hansen, R., Rager, A.: XSS Attacks: Cross Site Scripting
Exploits and Defense. Syngress (May 2007)

21. Frei, S., Duebendorfer, T., Ollmann, G., May, M.: Understanding the web browser
threat. In: DefCon 16 (August 2008)

22. Gadaleta, F., Younan, Y., Joosen, W.: BuBBle: A Javascript Engine Level Coun-
termeasure against Heap-Spraying Attacks. In: Massacci, F., Wallach, D., Zannone,
N. (eds.) ESSoS 2010. LNCS, vol. 5965, pp. 1–17. Springer, Heidelberg (2010)

23. Gu, B., Bai, X., Yang, Z., Champion, A.C., Xuan, D.: Malicious Shellcode Detec-
tion with Virtual Memory Snapshots. In: INFOCOM, pp. 974–982 (2010)

24. Ionescu, C.: GetPC code,
http://securityfocus.com/archive/82/327348/2006-01-03/1

25. Kc, G.S., Keromytis, A.D.: e-nexsh: Achieving an Effectively Non-Executable Stack
and Heap via System-Call Policing. In: ACSAC (2005)

26. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering Code-Injection Attacks with
Instruction-Set Randomization. In: CCS (2003)

27. Lakhotia, A., Eric, U.: Stack Shape Analysis to Detect Obfuscated Calls in Binaries.
In: IEEE Int’l. Conf. on Source Code Analysis and Manipulation (2004)

28. libemu, http://libemu.carnivore.it/
29. Lu, L., Yegneswaran, V., Porras, P., Lee, W.: BLADE: An Attack-Agnostic Ap-

proach for Preventing Drive-By Malware Infections. In: CCS (2010)
30. Macaulay, S.: ADMMutate: Polymorphic Shellcode Engine,

http://www.ktwo.ca/security.html

http://www.toorcon.org/tcx/26_Chenette.pdf
http://www.phrack.org
http://www.secureworks.com/research/blog/wp-content/uploads/CaffeineMonkey_DEFCON15.pdf
http://www.secureworks.com/research/blog/wp-content/uploads/CaffeineMonkey_DEFCON15.pdf
http://securityfocus.com/archive/82/327348/2006-01-03/1
http://libemu.carnivore.it/
http://www.ktwo.ca/security.html

130 B. Gu et al.

31. Mason, J., Small, S., Monrose, F., MacManus, G.: English Shellcode. In: CCS (2009)
32. Mutz, D., Robertson,W., Vigna, G., Kemmerer, R.A.: Exploiting ExecutionContext

for the Detection of Anomalous System Calls. In: Kruegel, C., Lippmann, R., Clark,
A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 1–20. Springer, Heidelberg (2007)

33. Nah, F.F.-H.: A Study on Tolerable Waiting Time: How Long are Web Users
Willing to Wait? Behaviour & IT 23(3), 153–163 (2004)

34. Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analysis,
and Signature Generation of Exploits on Commodity Software. In: NDSS (2005)

35. Obscou. Building IA32 ’Unicode-Proof’ Shellcodes. Phrack (2003),
http://www.phrack.org/

36. PaX, http://pax.grsecurity.net/docs/aslr.txt
37. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Network–Level Polymor-

phic Shellcode Detection Using Emulation. In: Büschkes, R., Laskov, P. (eds.)
DIMVA 2006. LNCS, vol. 4064, pp. 54–73. Springer, Heidelberg (2006)

38. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Emulation-Based Detection
of Non-self-contained Polymorphic Shellcode. In: Kruegel, C., Lippmann, R., Clark,
A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 87–106. Springer, Heidelberg (2007)

39. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Comprehensive shellcode
detection using runtime heuristics. In: ACSAC (December 2010)

40. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All Your iFRAMEs Point
to Us. USENIX Security (2008)

41. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.: The Ghost
In the Browser: Analysis of Web-based Malware. In: HotBots (2007)

42. Qin, F., Wang, C., Li, Z., Kim, H.-S., Zhou, Y., Wu, Y.: LIFT: A Low-Overhead
Practical Information Flow Tracking System for Detecting Security Attacks. In:
MICRO (2006)

43. Ratanaworabhan, P., Livshits, B., Zorn, B.: NOZZLE: A Defense Against Heap-
spraying Code Injection Attacks. USENIX Security (2009)

44. Rieck, K., Krueger, T., Dewald, A.: Cujo: Efficient Detection and Prevention of
Drive-by-Download Attacks. In: ACSAC (December 2010)

45. Secunia. Secunia PSI study: 28% of all detected applications are insecure (2007),
http://secunia.com/blog/11

46. Snow, K.Z., Krishnan, S., Monrose, F.: Shellos: Enabling fast detection and forensic
analysis of code injection attacks. USENIX Security (2011)

47. Sotirov, A.: Heap Feng Shui in JavaScript. In: BlackHat Europe (2007)
48. Sotirov, A., Dowd,M.: Bypassing BrowserMemory Protections. In: BlackHat (2008)
49. SpiderMonkey JavaScript engine, http://www.mozilla.org/js/spidermonkey/
50. The Bastard Disassembly Environment, http://bastard.sourceforge.net
51. The Metasploit Project, http://www.metasploit.com
52. Tóth, T., Kruegel, C.: Accurate Buffer Overflow Detection via Abstract Payload

Execution. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516,
pp. 274–291. Springer, Heidelberg (2002)

53. Vulnerability Note VU#492515: Microsoft Internet Explorer HTML object mem-
ory corruption vulnerability, http://www.kb.cert.org/vuls/id/492515

54. Wang, X., Jhi, Y.-C., Zhu, S., Liu, P.: STILL: Exploit Code Detection via Static
Taint and Initialization Analyses. In: ACSAC (2008)

55. Wang, X., Pan, C.-C., Liu, P., Zhu, S.: SigFree: A Signature-Free Buffer Overflow
Attack Blocker. USENIX Security (2006)

56. Fratantonio, Y., Kruegel, C., Vigna, G.: Shellzer: A Tool for the Dynamic Analysis
of Malicious Shellcode. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011.
LNCS, vol. 6961, pp. 61–80. Springer, Heidelberg (2011)

http://www.phrack.org/
http://pax.grsecurity.net/docs/aslr.txt
http://secunia.com/blog/11
http://www.mozilla.org/js/spidermonkey/
http://bastard.sourceforge.net
http://www.metasploit.com
http://www.kb.cert.org/vuls/id/492515

	JSGuard: Shellcode Detection in JavaScript
	Introduction
	Background and Motivating Examples
	Background: Detecting Shellcode in JS Objects
	Heap Spraying
	Example 1: Thwarting Content Analysis Approaches
	Example 2: Thwarting Hijack Prevention Detection

	System Design and Implementation
	Design Rationale
	JSGuard Architecture and Key Components
	Implementation

	A Detection Example
	Evaluation
	Effectiveness
	Overhead

	Related Work
	Conclusion
	References

