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Abstract. In recent years, cellular networks have been reported to be
susceptible targets for Distributed Denial of Service (DDoS) attacks due
to their limited resources. One potential powerful DDoS attack in cellular
networks is a SMS flooding attack. Previous research has demonstrated
that SMS-capable cellular networks are vulnerable to a SMS flooding
attack in which a sufficient rate of SMS messages is sent to saturate the
control channels in target areas. We propose a novel detection algorithm
which identifies a SMS flooding attack based on the reply rate to mes-
sages sent by a handset. We further propose a mitigation technique to
reduce the blocking rate caused by the attack. Our simulation results
show that the false positive and false negative rates of our detection al-
gorithm are low even when the attack traffic is blended with flash crowd
traffic and/or the attack traffic mimics flash crowd traffic, and that the
blocking rate is successfully reduced through the mitigation technique.

Keywords: SMS flooding attack, DDoS attack, flash crowd, anomaly
detection, modeling, cellular network.

1 Introduction

Text messages continue to grow as the most popular data service of cellular
networks. The total number of text messages sent globally has tripled over the
past three years to reach 6.1 trillion in 2010. In other words, people around the
world are sending 200,000 text messages every second [1]. In the U.S. 66% of
mobile subscribers use text messaging service and over 600 text messages on
average are sent or received monthly by a subscriber [2].

With this growing popularity of text messages, the reliability of Short Message
Service (SMS) is becoming increasingly important. However, previous studies
have shown that the control channels in the cellular networks may be a bottleneck
for both SMS and voice services due to their limited capacity and shared nature.
The stand alone dedicated control channel (SDCCH) is the most vulnerable
since it is used for call setup and location updates as well as SMS [3,4,5]. An
abnormal increase of SMS traffic may result in high occupancy of the SDCCH
and high blocking rate of text messages and voice calls threatening the reliability
of cellular networks.
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There are two kinds of the events that may cause a sudden increase in the
SMS traffic volume in the cellular network: flash crowds and DDoS attacks.
Flash crowds are an unusual burst of legitimate traffic produced by an increased
number of users; these are frequently observed during special occasions [6,7]. For
example, the volume of text messages sent on the New Year’s Eve increases each
year [8] and the resulting congestion causes lost and delayed text messages [9].

DDoS attacks through SMS are another cause of abnormal increase of SMS
traffic. Typical SMS attacks aim to degrade target networks by depleting the
control channel resources with a flood of SMS messages. In previous research, the
feasibility of a SMS flooding attack was proved [10], and mitigation techniques
were proposed [11]. However, they do not address how to detect SMS flooding
attacks.

In this paper, we propose a novel anomaly detection mechanism that iden-
tifies malicious SMS flooding traffic causing intentional congestion in cellular
networks. The difficulty is that the attack traffic mimics flash crowd traffic to
circumvent detection. As the traffic behavior in flash crowds and flooding attacks
are very similar, we need to find some features that can be used to distinguish
them to reduce the false positive rate of our detection algorithm. Due to the
lack of attack traffic traces, we analyze normal SMS traffic to infer the difference
between flash crowds and flooding attacks. We find through the analysis that a
mobile user replies to a message from a close friend with high probability, and is
unlikely to answer a message from an unknown number. Therefore, we infer that
if the reply rate for a handset which sends messages into a congested network
is lower than a threshold, it is likely to be a malicious handset attempting to
deplete the control channels.

We also develop a mitigation technique which classifies SMS traffic as normal,
suspicious, or malicious and separates the traffic into three distinct queues with
decreasing priorities to reduce the blocking caused by attack traffic and allow for
fast identification of malicious handsets. The blocking of the normal handsets’
traffic is efficiently diminished since a higher priority for obtaining the limited
control channels is given to the normal handsets rather than the suspicious and
malicious handsets.

Our simulation results show that our baseline algorithm performs the detec-
tion of unmixed flooding traffic with a very low false positive rate. The detection
of attacks occurring in a flash crowd event and/or mimicking flash crowds is much
more challenging. The mitigation technique, however, reduces the blocking rate
of the messages from normal handsets successfully.

We compare our results to those of SMS-Watchdog, the most similar algorithm
to ours in the literature, and show that we are more effective at distinguishing
between attack traffic and naturally occurring flash crowd traffic.

The remainder of the paper is organized as follows. In Section 2, we discuss
related works. The characteristics of the SMS network architecture and the dif-
ferent types of SMS traffic are introduced in Section 3. Our detection algorithm
follows in Section 4. We evaluate our detection algorithm and mitigation tech-
nique through simulation in Section 5 and conclude in Section 6.
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2 Related Work

The increasing popularity of short messages in cellular networks has led to much
research on SMS capacity. In [3], it was shown that severe congestion may occur
when the SDCCH channels are exhausted as they are shared by SMS, call setup
and location updates. Agarwal et al. [5] conducted capacity analysis using a
queueing model to show that the SDCCHs can be a bottleneck which increases
the blocking probability of SMS as well as voice calls during elevated message
loads. The possibility of an attack exploiting the limited and shared property of
the SDCCHs was addressed in [4].

Enck et al. [10] demonstrated that SMS-capable cellular networks are vulner-
able to a SMS flooding attack where a sufficient rate of SMS messages is sent
from the Internet to local cell phones in order to saturate the SDCCH capacity.
Furthermore, Traynor et al. [11] evaluated the performance of this attack by
modeling and simulation and proposed mitigation techniques. However, they do
not address how to detect flooding attacks. We propose a detection algorithm to
identify SMS flooding attacks and a mitigation technique to lower the blocking
rates at the control channels.

Previous research conducted by Yan et al. [12] proposed a SMS-related attack
detection scheme named SMS-Watchdog that detects abnormal activities of SMS
users by checking deviations from their normal social behaviors. Their approach
is applicable to SMS flooding attacks because the attacker’s behavior may be
changed from the behavioral profile trained before the attack starts.

However, SMS-Watchdog gives false alarms when a flash crowd event occurs
because the behavioral characteristics of normal SMS users are changed dur-
ing flash crowd events. On the contrary, our algorithm can distinguish flooding
attacks and flash crowds reducing the false alarms.

As DoS attacks and flash crowds are the two major concerns threatening the
reliability and stability of the Internet, many studies on how to discriminate
them have been conducted in the IP networks [6,13,14,15]. However, the direct
application of these solutions is unsuitable because the IP flow and text messages
of flash crowds have different properties. For example, the flash crowd traffic in IP
networks is destined to a small number of servers while the messages exchanged
in flash crowd events are scattered over many users in cellular networks.

We characterize flash crowd traffic and attack traffic based on the analysis
of normal SMS traffic. [7] provides us with the statistics of flash crowd traffic
in cellular networks. We obtain real SMS traces of three service providers from
[16] and analyze them to infer the difference between a recipient’s behavior to
normal messages and attack messages.

3 SMS Communication Characterization

3.1 Network Characterization

The basic network structure of SMS is depicted in Fig. 1. A mobile handset B
can receive a text message from one of two sources - another mobile handset A or
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Fig. 1. SMS network structure

External Short Messaging Entity (ESME). An ESME is typically a non-mobile
entity that submits messages to, or receives messages from a Short Messaging
Service Center (SMSC) via the Internet. A text message from either is delivered
to a recipient through a SMSC, a Mobile Switching Center (MSC), and a Base
Station (BS).

A SMSC is responsible for storing and forwarding short messages to a termi-
nating MSC. It obtains routing information from the Home Location Register
(HLR) to locate the proper MSC. The MSC performs the switching functions
of the system and delivers SMS messages to the specific mobile subscriber by
retrieving the subscriber’s location from the Visitor Location Register (VLR).
A MSC can store the messages in a queue for a short time during which it re-
transmits the messages if acknowledgements are not received within a specific
time. If a message is not successfully delivered to the mobile station after the
maximum number of retransmission attempts, the MSC sends an error message
to the SMSC [17,18].

Between a BS and a mobile handset, a message is delivered via the air interface
using control channels. First, a BS transmits a paging request with an identifier
on the Paging Channel (PCH). When a mobile handset hears its identifier, it
responds to the BS on the Random Access Channel (RACH). Then, the BS
assigns a SDCCH to the handset. The handset authenticates with the BS and
receives the text message via the SDCCH. As a SDCCH is used for call setup and
location updates in addition to SMS transfer, it may be flooded by an increase
of SMS requests blocking both voice and SMS communication.

3.2 Normal Traffic Characterization

There have been prior efforts on characterizing normal SMS traffic patterns.
Some researchers analyze SMS traces collected from a nationwide cellular car-
rier with more than 20 million subscribers over a period of three weeks [19,7].
They present thread-level characteristics in addition to the SMS message-level
characteristics, where a thread is defined as messages exchanged between the
same two users within a predefined timeout period. According to their analysis
with 10 minutes as a timeout, the number of messages in each thread, or the
thread length, is 4.9 on average and the average thread duration is 8 minutes.
That implies that the average interval between receiving and responding to a
message is 2 minutes.
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However, not all the recipients make a reply to a message that they have
received. In our own analysis on the SMS trace data provided in [16], 22% of
the messages are ”single” messages which are not followed by another message,
where we only consider the messages from the handsets which generate at least
ten messages per a day on average. Thus, the average length of a thread including
”single” messages is 1 ∗ 0.22 + 4.9 ∗ 0.78 ≈ 4.

Another measurement study on SMS traffic, logged in records from three
different companies over a one month period, examines the distribution of the
intervals between messages belonging to one thread [16]. The empirical results
show that the inter-arrival time and the waiting time of normal messages have
power-law distribution within a thread duration and a new thread is initiated
by an exponential distribution. The arrival rates of calls and SMS messages in
a single sector per second and the service rates of calls and SMS messages at
SDCCH are also known as shown in Table 1.

Table 1. System Variables and Parameters

λcall Arrival rate of voice calls 0.25 calls/sector/sec [11]

λSMS Arrival rate of SMS msgs 0.7 msgs/sector/sec [11]

μ−1
SDCCH,call Service rate of voice calls at SDCCH 1.5 sec [20]

μ−1
SDCCH,SMS Service rate of SMS msgs at SDCCH 4 sec [4]

Flash crowd traffic shows different characteristics from regular SMS traffic.
The traffic looks anomalous because cellular networks suffer a sudden increase
of SMS traffic in a flash crowd event. For example, the volume of messages ex-
changed during the New Year’s Eve in India reaches almost eightfold the normal
traffic level [7]. Such an increase in traffic is affected more by an increase in the
number of SMS users sending and receiving messages rather than an increment
of messages per user. Therefore, the SMS communication in a flash crowd is dif-
ferent from a regular SMS communication in that the increased volume of traffic
is caused by an increased number of users without a change in the number of
messages sent by a user.

We also observe that 60% of handsets participating in a flash crowd do not
send any messages in three days before the event [7]. These new participants
have a higher probability to be mistakenly classified as malicious as they have
weak prior relationship with legitimate recipients.

Even though flash crowd traffic may slow down the message delivery or even
cause some messages to be discarded because of congestion [9], it should be ser-
viced as legitimate because it naturally occurs from normal handsets. Therefore,
we develop an anomaly detection algorithm to distinguish malicious attack traf-
fic from flash crowd traffic even when they are intermingled and malicious attack
traffic mimics flash crowd traffic to avoid the detection.
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3.3 Attack Traffic Characterization

Previous studies on SMS network capacity have proven that the SDCCH can be
a bottleneck in cellular networks due to its limited capacity and shared char-
acteristics [3,5]. This makes a SMS flooding attack feasible because an attacker
can paralyze cellular communications in a certain area by overloading SDCCHs
in that area. Such an attack will be performed by sending enough messages to
potential target lists which can be created by several efficient methods [10].

We assume that an attacker has the capability to compromise a number of
handsets so that they can send attack traffic under the control of the attacker
without any awareness of the owners. Even though we only consider a mobile-
to-mobile attack in this paper, a SMS flooding attack using bulk messaging
services can be detected if we cast each ESME of bulk messaging providers as
an attacking mobile handset in the algorithm.

Furthermore, we assume that the attacker is intelligent enough to mimic the
behavior of normal users in a flash crowd. The attacker can compromise a large
number of handsets and make them generate bogus messages with seemingly
normal rates so that the aggregated traffic saturates the SDCCHs in a target
area. The attacker can even launch the attack purposely during a flash crowd
event to reduce the probability of being detected.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

P
D

F

Reply Rates

Rarely contacting users
Other users

Fig. 2. Probability distribution function of reply rates

Consequently, a flooding attack and a flash crowd cannot be easily distin-
guished by the traffic characteristics determined by senders’ behavior such as
the total volume of generated messages, message generation rate per handset
and contents of the messages. However, we infer that the recipients’ behaviors
for the messages sent by a normal user in a flash crowd event and an attacker
disguised as a normal user are distinguishable.

We suppose that a user who sends out only one message to a recipient dur-
ing over a one month period represents an unknown or unfamiliar sender to the
recipient. Through the analysis of the SMS trace given in [16], we find that the
reply rates for the unfamiliar senders and the other normal users have distin-
guishable distributions as seen in Fig. 2 with a 15% and 62% average value,
respectively.
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Since an attacker is an unknown originator from a recipient’s point of view, it
is expected to have a similar distribution of reply rates to that for an unfamiliar
sender. Thus, we can distinguish an attack handset from a normal one based
on the reply rates regardless of whether the attacker mimics a normal user’s
message sending characteristics.

4 Detection Algorithm

4.1 Attack Model

The purpose of a SMS flooding attack is to paralyze the cellular network in a
specific area by overloading the SDCCHs. In this paper, the target of the attack
is a sector served by the BS of a MSC. The handsets serviced in the target area
are called local handsets and the handsets outside the targeted area are remote
handsets. The incoming attack occurs from remote handsets while the outgoing
attack is performed by the local handsets. Because handsets are authenticated,
while they can be infected with a virus that causes them to launch an attack,
their addresses cannot be spoofed.

The attack can be classified as a mixed attack or unmixed attack according
to whether it occurs in concurrence with a flash crowd or not. An attacker may
launch a mixed attack to accelerate the attack’s efficiency and avoid detection by
having the attack traffic intermingled with flash crowd traffic. Our base algorithm
aims at successfully identifying the messages sent from malicious handsets among
the intermingled traffic even under a mixed attack and keeping the false positive
rate low by adaptively changing the expected reply rate for the benign messages
during the congestion.

From the perspective of the intensity of the attack traffic from a single hand-
set, we can classify the attack as high-intensity or low-intensity. The attacker
can choose low-intensity with a large number of compromised handsets mim-
icking a flash crowd; however, a high intensity attack with a small number of
compromised handsets is easier to carry out. Detection of a low intensity attack
takes more time as the interval between attack messages sent by a handset and
the number of attackers are larger. However, the blocking rate for the normal
handsets decreases efficiently through our mitigation technique even when the
false negative rate is not low.

Consequently, we carry out a performance evaluation for four types of attack
- 1) unmixed attack with high intensity, 2) unmixed attack with low intensity, 3)
mixed attack with high intensity, and 4) mixed attack with low intensity. Intu-
itively, the detection of the mixed attack with low intensity is the most chal-
lenging while the unmixed attack traffic with high intensity is detected with the
shortest delay.

4.2 Algorithm for Identifying Attackers

We deploy a detector on each MSC to detect anomalies in air interfaces under
the coverage of a MSC. Because we make use of the reply rate of mobile handsets
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Alg. 1 : Monitor Threads

1: for each message M observed in W do
2: if M is an outgoing message from L to R then
3: if T = (L,R) exists then
4: Increase Ls by 1
5: else if T = (R,L) exists then
6: Increase Rr by 1
7: else
8: Create T = (L,R)
9: Increase Ls by 1
10: end if
11: end if
12: if M is an incoming message from R to L then
13: if T = (R,L) exists then
14: if M is delivered to L then
15: Increase Rs by 1
16: end if
17: else if T = (L,R) exists then
18: Increase Lr by 1
19: else
20: if M is delivered to L then
21: Create T = (R,L)
22: Increase Rs by 1
23: end if
24: end if
25: end if
26: end for

Table 2. Variables for Alg. 1

M SMS message collected during W

T Message thread represented by a pair of (sender, receiver)

L/R Local/remote handset

Ls/Rs The number of sent messages from L/R

Lr/Rr The number of replies to L/R

for distinguishing benign and malicious traffic, the detector gathers (sender ID,
recipient ID, timestamp) information of both outgoing and incoming messages.
At the end of every time window W with duration ω, the detector looks into all
the information collected during the time window and creates message threads
and updates the number of sent messages and the corresponding replies for a
handset as shown in Alg. 1 with the variables in Table 2.

Note that for incoming messages, only a message delivered to the destination
successfully can increase Rs. Otherwise, the reply rates will be underestimated.

A detector contains an analyzer which identifies the attackers sending over-
loading messages. Upon the detection of congestion, the analyzer is activated and
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Rc ≥ τs Rc ≥ τm 

Rc < τs Rc < τm 

Fig. 3. SMS state transition diagram

calculates the reply rate threshold under normal network conditions, θ, consid-
ering the upper bound on the expected false positive rate for the threshold. Let
X be a random variable of reply rates with finite expected value μ and non-zero
variance σ2. Given the arbitrary distribution of reply rates in the normal traffic
observed before the congestion, the false positive rate is bounded to 1

1+k2 if we
choose μ− kσ as the threshold, and consider a reply rate of less than that value
as an anomaly, which is supported by the one-sided Chebyshev’s inequality:

Pr(X ≤ μ− kσ) ≤ 1
1+k2 .

Accordingly, by setting k = 1 and θ = μ − σ, the false positive rate does not
exceed 0.5. To limit the upper bound of false positive rate to 0.2, we choose k
= 2 and θ = μ − 2σ. Even though a larger k and smaller θ guarantee a lower
expected false positive rate, this might cause a lower detection probability and
longer delay in return. The uncertainty of this effect is caused by the fact that
we do not know distribution of the reply rates for malicious handsets a priori,
although we expect them to be lower than that for normal handsets. In order
to remove this uncertainty and resolve the trade-off, we choose k = 1 and θ =
μ− σ to increase the detection probability and reduce the detection delay, and
use a scoring-based technique [21] to reduce the false positives by confirming the
anomalies as attacks only when the anomaly score exceeds a threshold.

Note that θ is based on the measured distribution of reply rates during nor-
mal network conditions before the congestion occurs. The reply rate from the
handsets in the area under attack will be decreased from its normal rate be-
cause the congestion in the attack area. This congestion will cause messages to
be blocked and thus, send no reply. Therefore, the reply rate threshold for suc-
cessfully delivered messages from a remote handset, τr, should be dynamically
changed to reflect the blocking rate caused by congestion. As the ratio of the
number of unblocked replied messages to that of replies in uncongested network
is (1 − Bavg), we set τr to θ ∗ (1 − Bavg). We use Bavg, the moving average of
blocking rate for ωB to smooth the change of the blocking rate.

The anomaly score representing the degree to which a handset is considered
an anomaly or attacker is initially set to 0. The score increases if the current
reply rate is lower than θ for a normal message under current network condi-
tions and decreases otherwise. When the anomaly score for a handset reaches a
threshold designated for suspicious handsets, τs, the analyzer marks the handset
as suspicious. If the score keeps increasing to a threshold for malicious handsets,
τm, the handset is deemed malicious. As the analysis progresses, the score may
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Alg. 2 : Identify Attackers

1: calculate θ
2: τr = θ ∗ (1−Bavg)
3: Rc = 0
4: for each handset R in T = (R,L) do
5: if R send or receive a message then
6: Rrr = Rr

Rs

7: if Rrr < τr then
8: Rc ++
9: else
10: Rc = max(Rc −−, 0)
11: end if
12: if Rc ≥ τm then
13: Mark R as malicious
14: else if Rc ≥ τs then
15: Mark R as suspicious
16: else
17: Mark R as normal
18: end if
19: end if
20: end for

Table 3. Variables for Alg. 2

Rrr Reply rate for R

Rc Anomaly score representing the likelihood that R is an attacker

Bavg Moving average of blocking rates for duration ωB

θ Reply rate threshold for normal handsets in normal network condition

τr Reply rate threshold for normal local/remote handsets in congested network

τs Anomaly score threshold for suspicious handsets

τm Anomaly score threshold for malicious handsets

go lower and higher than the each threshold causing the change of the status of
a handset as shown in Fig. 3.

The algorithm for an incoming attack is summarized in Alg. 2 and the vari-
ables used in Alg. 2 are presented in Table 3.

4.3 Mitigation Technique

We devise a 3-queue mitigation mechanism in which each kind of traffic classified
by the detector - normal, suspicious, and malicious traffic - is served by one of
three different queues with different weights. Weighted Fair Queueing [22] is used
for scheduling messages in the queues.

Normal traffic is processed with a weight of 2 while suspicious traffic has a
weight of 1. The malicious traffic is placed in the lowest priority queue and
is only served when the two higher priority queues are empty. The blocking
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rate for the messages from normal handsets is efficiently reduced by prioritizing
the process of the normal messages while reducing the number of requests for
the wireless control channels by delaying or refusing service for suspicious or
malicious handsets.

5 Simulation Results

In this section we evaluate our algorithm. We also compare it with the most
similar related work, called SMS-Watchdog, and show that we achieve better
results for the challenging circumstances.

5.1 Simulation Settings

To evaluate the performance of our algorithms, we implement a simulator based
on the characteristics of SMS communication and the proposed algorithms Alg.
1 and 2. We explain the settings in our simulation.

Network Settings. Assuming a SMS network with the network components in
Fig. 1, our detector modules are deployed at the MSCs because they can provide
all the information - (1) the blocking rate of SDCCHs in each sector, and (2)
(sender ID, recipient ID, timestamp) of messages needed to detect the attacks
targeting the SDCCHs in sectors controlled by the MSCs.

The message queues for mitigation techniques are implemented in the BS. The
forwarded messages from the MSC have indicators to which queue they belong.
If the corresponding queue is full, the MSC retries the delivery. The maximum
number of attempts is set to 2. After that, an error message returns to the SMSC
and the message is deleted from the MSC.

Parameter Settings. In Alg. 1, the interval of analysis on message threads,
ω, needs to be set considering the tradeoff between timely detection and compu-
tational overhead. In our simulation, we set ω = 10 seconds because it is short
enough to capture each message of one thread in each time window and long
enough not to overload the detector. We set the value of blocking rate acceptable
in cellular networks, β, to 1%. If the average blocking rate for ω is greater than
β, an analyzer is activated to identify the attackers.

In Alg. 2, the duration for the calculation of the moving average of blocking
rates, ωB, is set to 120 seconds. Since the average waiting time for a reply is 120
seconds, we expect the previous message to have been transmitted 120 seconds
prior to the message just received. Therefore, the average blocking rate for the
last 120 seconds affects the reply rate of the message.

Traffic Settings. We simulate 24 hours of SMS communication. Local and
remote handsets constantly transmit regular SMS traffic during the simulation.
The regular messages are submitted by 4800 handsets at 0.7 msgs/sector/sec
rate according to the normal traffic characteristics.
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Attack traffic is emitted for one hour from 23 to 24 hours. The reply rates for
normal handsets observed for 23 hours before the attack prevent the detector
from misclassifying the normal handsets as malicious handsets due to the tran-
sient low reply rates during the congestion. The longer training period builds a
stronger ”send-reply” relationship among normal users making the discrimina-
tion between the normal and malicious messages easier.

The aggregated volume of the attack traffic is 8 times more than the value
of regular traffic. For the mixed attack, flash crowd traffic fourfold the normal
traffic is generated in addition to the attack traffic.

5.2 Performance Evaluation

We evaluate our algorithm using several fundamental metrics: false positive rate
(FPR), false negative rate (FNR), and blocking rate. The false positive rate is
the fraction of benign handsets that are misjudged as malicious over all benign
handsets. The false negative rate is the fraction of malicious handsets that are
mistakenly judged as benign over all malicious handsets. The blocking rate is
the portion of messages which are blocked due to insufficient channel resources.

We show the performance of our baseline detection mechanism which identifies
the malicious handsets but does not resolve the congestion, and the performance
of the detector with a mitigation technique which reduces the blocking in the air
interface by placing the identified attackers in a low priority queue. The algo-
rithm performs significantly better with mitigation in places because malicious
handsets are removed from the traffic flow making it easier to detect remaining
malicious handsets.

Without Mitigation Techniques. We first examine the FNR and FPR of
the baseline algorithm for unmixed incoming traffic with high intensity with
τm= 1, 2, and 3. The results are presented in Fig. 4a and 4b respectively for
the time elapsed after the start of the attack. The FNR decreases more quickly
for a smaller τm because the attackers’ score, Rc, exceeds the threshold, τm,
in a shorter time. When τm = 1, however, the resulting FPR is over 5% on
average whereas for τm = 2 and 3, FPR is reliably low throughout the attack
period. This is because the attack likelihood score for a normal handset which
has not exchanged messages with recipients before the attack turns to 1 when
the detector sees the first incoming message and exceeds the threshold in the
case that τm = 1.

Our algorithm operates even in more challenging situations. When the at-
tacker generates a high intensity attack traffic in the middle of a flash crowd
event, it is difficult to distinguish malicious traffic from benign traffic because
more than a half of the benign handsets in flash crowds have not participated
in conversational message threads prior to the event. However, even with the
mixed traffic, our baseline algorithm identifies the attackers based on the differ-
ence between reply rates of malicious and benign messages.

Fig. 5a and 5b show more clearly that the FPR increases as τm decreases and
the FNR increases as τm increases. When τm = 1 or 2, the FPR increases to
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Fig. 4. (a) FNR and (b) FPR of unmixed attack traffic with high intensity without a
mitigation scheme
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Fig. 5. (a) FNR and (b) FPR of mixed attack traffic with high intensity without a
mitigation scheme
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Fig. 6. (a) FNR and (b) FPR of two kinds of attack traffic with low intensity without
a mitigation scheme

a high value even though the FNR decreases quickly. The dramatic increase of
FPR for τm = 1 is caused by the sudden increase of new SMS users in flash
crowds. Thus, we set τm to 3 considering trade-off between the FPR and the
FNR.
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With τm = 3, the performance of mixed and unmixed attacks with low-
intensity is shown in Fig. 6. The detection of the attacks is carried out slower
than the high-intensity attacks, but the false positive rates are very close to
those of the corresponding high-intensity attacks. Our observation is that the
intensity of attack messages initiated from a handset determines how fast the
attackers can be detected and the ratio of messages from new active normal
users during the attack determines the accuracy of the detection. The strength
of our detection algorithm is low false positive rates even in the extreme case of
the mixed traffic with low intensity even though the detection of the attacking
handsets is inherently slow due to the low arrival rate of the attack messages.

With Mitigation Techniques. Our detection algorithm identifies the attack-
ing handsets but cannot resolve the blocking caused by the attack messages. We
devise a 3-queue mitigation mechanism which places the three kinds of traffic -
normal, suspicious, and malicious traffic - classified by the detection algorithm
into the corresponding queues and schedules each messages using Weighted Fair
Queueing [22]. By providing normal messages with more wireless channel re-
sources, the blocking rate for normal messages is efficiently reduced.

For message classification, we need to determine the proper value of τs for τm
= 3. The attack likelihood scores for all incoming messages after the detection
starts are initially 0. A handset which has not established message threads with
a recipient before the attack is likely to have 0 as a reply rate and 1 as the
attack likelihood score at the first classification process. So, if we set τs to 1, the
handset is classified as suspicious. With τs set to 2, the handset is still regarded
as normal.
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Fig. 7. Blocking rates for mixed attack traffic with low intensity when a mitigation
technique is applied with (a) τs=1 and (b) τs=2

We determine the proper value for τs taking into account blocking rate as
the blocking rate is the ultimate measure of the performance of the mitigation
system. We show in Fig. 7 the blocking rate for the mixed attack with low
intensity when the mitigation technique is applied. The blocking is mitigated
most efficiently with τs = 1, from 60% to 20% in approximately 20 minutes.
Therefore, we set τs and τm to 1 and 3, respectively.
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Fig. 8. Classification of (a) malicious and (b) normal handset for mixed attack traffic
with low intensity with a mitigation scheme

Fig. 8a and 8b gives us insight into how the detector with the 3-queue scheme
operates to classify the message-sending handsets in case of mixed attack with
low intensity. Most of the malicious handsets are considered as suspicious at first
as we see in Fig. 8a. But, they are subsequently classified as malicious, and so
the ratio of malicious handsets classified as suspicious starts to decrease and
the ratio of malicious handsets classified correctly increases. Fig. 8b shows that
the normal handsets occupy both the normal queue and the suspicious queue.
This is because normal handsets from flash crowds are likely to be classified
as suspicious due to the absence of previous message threads while the normal
handsets which have sent messages and received replies during the prior normal
network situation are likely to be classified as normal.

The normal handsets in normal queue are served with the highest priority
without much competition with the malicious handsets. Moreover, the competi-
tion in the suspicious queue between the normal handsets and malicious handsets
is resolved as more malicious handsets are classified as malicious. Therefore, the
blocking rate for normal handsets decreases efficiently while the messages from
malicious handsets are suspended in lower priority queues or discarded after the
maximum number of retransmissions.

Fig. 9a presents the occupancy in each of the three queues of 3-queue scheme.
This results from the classification performed at the detector. The occupancy
at the normal queue is almost 1 at the start of the attack. As the classification
of suspicious handsets occurs, the occupancy of the suspicious queue increases
and the occupancy of the normal queue decreases. Then, the handsets in the
suspicious queue are judged as normal or malicious by the detector, and the
occupancy of the suspicious queue decreases. As more handsets are classified as
malicious, the occupancy of the normal and suspicious queues decreases because
the messages in these queues are served quickly. The blocking rate in each of the
queues of the 3-queue scheme is shown in Fig. 9b. The blocking rate of a queue
goes up when the occupancy of the queue is high and falls if the queue has space
for new messages.
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Fig. 9. (a) Occupancy and (b) blocking rate for mixed attack traffic with low intensity
with a mitigation scheme

5.3 Comparison with SMS-Watchdog

The work most similar to ours is SMS-Watchdog [12]. In this work, SMS-based
blending attacks are detected using each user’s regular social behaviors. For
example, anomalies are detected by checking if the number of recipients in a
window of messages from a sender deviate significantly from the average number
of unique recipients in training messages.

Because a blending attack has similar characteristics to flash crowds in terms
of the increased number of recipients per sender, the SMS-Watchdog algorithms
is not effective at distinguishing an attack from a flash crowd. Fig. 10a shows that
the false positive rate of SMS-Watchdog’s R detection scheme for a flash crowd
increases to 17% and 20% for a twofold and fourfold increase in the number of
recipients per sender, respectively, in a case in which the number of messages
and senders increases up to 4 times more than that under regular conditions.
On the contrary, our scheme has false positive rate of less than 2% as shown in
Fig. 10b, which means we correctly classify flash crowd traffic.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  600  1200  1800  2400  3000  3600  4200

F
al

se
 p

os
iti

ve
 r

at
e

Time(seconds)

x2 recipients
x4 recipients

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  600  1200  1800  2400  3000  3600  4200

F
al

se
 p

os
iti

ve
 r

at
e

Time(seconds)

x2 recipients
x4 recipients

(b)

Fig. 10. False positive rates of (a) R-type detection in SMS-Watchdog scheme and (b)
our scheme for a flash crowd
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6 Conclusion

We propose a novel detection algorithm which identifies a SMS flooding attack
regardless of whether the attack traffic is mixed with legitimate flash crowd traffic
and/or the attack traffic is mimicking flash crowd traffic. To distinguish malicious
handsets, we consider the reply rate to messages sent by a handset. If the reply
rate of a certain handset is lower than that expected for a normal handset, the
handset is likely to be an attacker. We show that our baseline algorithm performs
the detection of unmixed traffic with a very low false positive rate. The detection
of attackers mimicking benign users during a flash crowd event takes longer, but
the false positive rate is still low.

We propose a 3-queue mitigation scheme to reduce the congestion on the
wireless control channels. The mitigation scheme employs three queues with
different priorities to serve normal, suspicious, and malicious traffic differentially.
We show that the blocking rate of normal handsets is efficiently diminished by
prioritizing normal messages.
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