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Abstract. We present the first anonymous transferable conditional
e-cash system based on two recent cryptographic primitives, i.e., the
Groth-Sahai(GS) proofs system and the commuting signatures, thus the
unlinkability and anonymity of the user is obtained. We solve an open
problem by dividing the deposit into two parts, so that the user is unlink-
able in the transferrable protocol and the deposit protocol. Comparing
the existing conditional e-cash, the size of the computation and commu-
nication of our scheme is constant.
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1 Introduction

Conditional e-cash is introduced firstly by L. Shi [11], which allows a participant
to spend cash bank-issued electronic coin based on the outcome in the future. If
the outcome is not favorable to the payer, he loses and the payee can cash the
electronic coin from the bank; otherwise, the payer cashes back e-cash. There are
many applications of conditional e-cash. For example, outsourcing computations
make sure that the worker has completed the computation and can retrieve the
payment simultaneously. For another example, the prediction markets obtain
the outcome based the prediction in the future and the betting systems, where
many people can bet in an anonymous betting systems and obtain the electronic
coin depending on the result in the future.

Conditional transferable e-cash consists of the payers (the payees) U1,U2, · · · ,
Un, the bank B, the judge J and the publisher P . Firstly, the publisher publics
two commitments about two event outcomes. The user U1 registers one of the
two outcomes at the publisher. Secondly, he withdraws a coin co from the bank
B, and then spends the coin to the user U2. The payee U2 can spend the coin
to the third user U3, or deposit the coin to the bank B. When the publisher
publishes the outcome, only one user can win the coin, and then the user cashes
from the bank B. The bank B checks the coin, and decides to exchange the
coin for credit to the account of the user or announce the judge to recover the
identity of the double spenders. Meanwhile, traditional transferable e-cash also
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allows the user to directly spend the e-cash to other ones without depositing the
e-cash into the bank.

There are some differences between transferable conditional e-cash system and
traditional transferable e-cash system [7,6,13,9,5,12]. Firstly, in the transferable
conditional e-cash, the user anonymously spend the conditional e-cash, while in
traditional e-cash, the merchant and the user must supply the identity in order to
receive money and serves respectively. Secondly, in the transferable conditional
e-cash, the payee can not spend the e-cash until the outcome of the condition
is published and only if the outcome is favorable to the payee, while the user
can spend an e-cash without any conditional in the traditional transferable e-
cash. And last, the payer can cash the e-cash in case of an unfavorable to the
payee outcome of the condition, but these can not also be done in the transfer-
able e-cash. Thus, new tools need to be developed to construct the transferable
conditional e-cash.

1.1 Related Results

E-cash is the digital equivalent of regular money. It has many properties, such
as divisibility, transferability, conditionality, et. al. Transferability is one of the
most important properties among these basic properties. Okamoto and Ohta
[16,12] proposed two transferred e-cash systems, however their systems can only
provide weak anonymity. Chaum and Pedersen [7] analyzed the size of the e-
cash in the transferred e-cash system, and they claimed that it is impossible
to transfer a coin without increasing its size. Next, Canard et al. [13] proposed
an anonymous transferable e-cash system, and analyzed the anonymity [6] in
transferred e-cash. To solve the problem about the size of the e-cash system,
Fuchsbauer et al. [9] constructed the first practical transferred constant-size fair
e-cash in the standard model. However, each user has to keep in memory the
data associated to all past transactions to prove her innocence in case of a fraud.
Moreover, the anonymity of all subsequent owners of a double-spent coin must
be revoked.

The conditional e-cash is another application in e-cash. L. Shi [11] firstly
introduced the definition of the conditional e-payments, where the payer can
anonymously spend the e-cash to the payee or transfer the e-cash to another.
However, the conditional e-payments is on-line and depends on the expensive
cut-and-choose techniques.

M. Blanton [3] improved the efficiency of the conditional e-payments and for-
malized it by uisng zero-knowledge proof, CL signature and verifiable encryption.
However the payer can recognize a coin he has already observed previously and
also decide whether he has already owned the coin he is receiving. Moreover the
deposit is not anonymous.

O. Blazy et al. [4] proposed an anonymously transferable e-cash, which is a
traditional transferable e-cash. It achieves the optimal anonymity in the trans-
ferable e-cash, namely observe-then-receive full anonymity (OtR − Fa), spend-
then-observe full anonymity (StO−FA) and spend-then-receive full anonymity
(StR− FA).
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J. Groth and A. Sahai [10] constructed the first efficient non-interactive proof
systems in the standard model. It considers a large class of statements over
bilinear groups. The witness indistinguishable guarantees that any adversary
cannot distinguish the user uses which witness. Their randomizability allows us
to improve the NIZK proofs.

G. Fuchsbauer [8] presented a system of commuting signatures and verifiable
encryption. It allows one to encrypt a message and corresponding signature
while preserving its public verifiability. Given a commitment, a signer can create
a verifiably encrypted signature on the committed message.

1.2 Our Construction

We propose an anonymous transferable conditional e-cash based on Groth-Sahai
proofs [10] and the commuting signatures [8]. In our paper, we firstly improve
the commitments and the corresponding proofs by the commuting signatures, so
the transferrable spending is unlinkable and the user is anonymous. Meanwhile,
we divide the deposit protocol into two parts to obtain the anonymity of the user
in the deposit protocol. Secondly, we introduce a publisher, who can commit two
secret value for two outcomes, so the conditional e-cash is obtained. Finally, we
compare the efficiency of our construction to that of [11] and [3]. our contribution
is listed as follows:

– We solve an open problem, which the identity of payee is unlinkable in the
conditional transfer and deposit protocol. Meanwhile, the payers cannot be
linked to payees or to ongoing or past transactions.

– We present the first anonymous transferable condition e-cash.
– We compare the efficiency of our construction to that of [11] and [3], and

show that the computation and communication is constant in our scheme.

1.3 Organization of the Paper

The rest of this paper is organized as follows. In Section 2, we describe the pre-
liminaries on the various cryptographic tools and assumptions. Security model of
the conditional e-cash is presented in Section 3. In Section 4, we give the general
description. The main protocol is presented in Section 5. The security analysis
is given in Section 6. In Section 7, we conclude the paper.

2 Preliminaries

In this section, we introduce the background knowledge that will be used for our
scheme.

2.1 Bilinear Map

A pairing is a bilinear mapping from two group elements to a group element.
Let ê be a bilinear map such that ê : G1 ×G2 → G3 and the following holds.
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– G1, G2 and G3 are cyclic multiplicative groups of prime order p.
– Each element of G1, G2 has unique binary representation.
– The elements g, h generate G1 and G2 respectively.
– ê : G1 ×G2 is a non-degenerate bilinear map so ê(g, h) generates G3 and for

all a, b ∈ Zn we have ê(ag, bh) = ê(g, h)ab.
– We can efficiently compute group operations, compute the bilinear map and

decide membership.

2.2 Mathematical Assumptions

The security of our construction is based on the following existing mathematical
assumptions, namely, the Symmetric External Diffie-Hellman(SXDH) [10] and
the asymmetric double hidden strong Diffie-Hellman assumption(q-ADH-SDH)
[1].

Definition 1. Symmetric External Diffie-Hellman. Let G1, G2 be cyclic
groups of prime order, g1 and g2 generate G1 and G2 respectively, and let ê : G1×
G2 → G3 be a bilinear map. The Symmetric External Diffie-Hellman (SXDH)
Assumption states that the DDH problem is hard in both G1 and G2 of a bilinear
group pair (G1, G2), namely, we give g1, g

a
1 , g

b
1 ∈ G1 and g2, g

a
2 , g

b
2 ∈ G2, for

random a, b, it is hard to distinguish gab1 and gab2 from G1 and G2 respectively.
It implies that there is no efficiently computable isomorphism from G2 to G1 or
vice versa.

Definition 2. q-ADH-SDH. Let g, f, k ∈ G1, h ∈ g2 and x, ci, vi ∈ Zn be

random. Given (g, f, k, gx;h, y = hx) and (ai = (k · gvi) 1
x+ci , bi = f ci , di =

hci , ui = gvi , wi = hvi)

for 1 ≤ i ≤ q − 1, it is hard to output a new tuple (a = (k · gv) 1
x+c , b =

f c, d = hc, u = gv, w = hv) with (c, v) �= (ci, vi) for all i. i.e. one that satisfies
ê(a, y · d) = ê(k · u, h), ê(b, h) = ê(f, d) and ê(u, h) = ê(g, w).

2.3 Useful Tools

Groth-Sahai Proof. Groth and Sahai [10] constructed an NIZK proof system
that lets us prove statements in the context of groups with bilinear maps in
the standard model. In order to proof the statement, the prover firstly commits
to the group elements or Zp elements. Then the prover does the proof of the
group elements or Zp elements and sends the commitments, the proofs and cor-
responding parameters to the verifier. The last the verifier verifies the correct
of the proof. In this paper, We use SXDH-based GS commitments and proofs
to commit to elements and prove relations satisfied by the associated plaintexts.
The witness indistinguishability guarantees the anonymity of the payers and the
payees during the withdraw, conditional transfer and deposit.

Randomization. Belenkiy et al. [2] proposed the randomizable proofs of com-
mitments and the NIZK proofs. For example, let u1,1 = g1, u1,2 = gμ1 , u2,1 =
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gv1 , u2,2 = (gμ1 )
v, r1, r2 ∈ Zp, we obtain a commitment for X ∈ G1, namely

c(X) = ((u1,1)
r
1 · (u2,1)

r
2, X · (u1,2)

r
1 · (u2,2)

r
2) = (c1, c2). In order to randomize

the commitment, we choose two random values r′1, r′2 ∈ Zp and compute the

randomization as c(X)′ = (c1 · (u1,1)
r′1 · (u2,1)

r′2 , c2 · (u1,2)
r′1 · (u2,2)

r′2). Mean-
while we adapt its proof (π, θ) for commitments (ci)i to another (π, θ) for (c′i)i.
The property guarantees the anonymity of the payers and the payees. The bank
can not link any withdrawal protocol, spending protocol and deposit protocol.
Meanwhile, the randomizable proof is publicly verifiable.

Commuting Signatures. Commuting signatures and verifiable encryption [8]
combines a signature scheme with GS proofs. This allows one to commit a com-
mitment to a message, a verification or a corresponding signature and proves
that the committed values are correct, as he does these to that message. We
only briefly review two results of [8] relevant to our paper in the following.

SigCom allows a signer who is given a commitment c to a message, to make
a commitment to cσ to a signature on that message and a proof that cσ contains
a valid signature on the value committed in c.

AdCκ allows anyone to commit to a key and adapt a proof, and outputs a
commitment and a proof asserting that a commitment contains a valid signature
on a committed message.

Following the definition of [8], we instantiate the specific signature with the
Structure-Preserving signature (SP-signature) [1,15].

3 The Model

In this section, we firstly describe the algorithms for anonymous transferable
conditional e-cash. The main differences between our algorithms and [4] is that
we introduce a publisher and a new algorithm Publish() to give the bank the two
commitments of the outcomes. We also extend the model given in [4] to include
the publisher.

3.1 Algorithms

The conditional transferable e-cash system consists of withdraw protocol, spend-
ing(transferring) protocol, deposit protocol and identify procedure. We give the
procedures as follows, where λ is a security parameter.

– ParamSetup(1λ). It is a probabilistic algorithm that outputs the public pa-
rameters params.

– BKeyGen(),JKeyGen(),UKeyGen(),PKeyGen(). It is a probabilistic algo-
rithm executed respectively by B,J or U , that output a key pairs (pkB, skB),
(pkJ , skJ ), (pkU , skU ) and (pkP , skP).

– Withdraw(U(skU , pkU , pkB, pkJ , CB, CJ ),B(skB, pkB, Cpr, Cpe, pkU )). It is
an interactive protocol where U withdraws one conditional transferable coin
co from B. At the end, U outputs a coin or ⊥, and B checks the public key
of the user, deducts a coin from the user and obtains a view V or ⊥.
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– Publish(B(skB, pkB, CB, CJ ).P(Cpr , Epr, Cpe, Epe). It is an interactive pro-
tocol between the B and P . At the end, B obtains two commitments repre-
senting the two outcomes.

– Spend(U1(co, skU1 , pkB, pkJ , CB, CJ ),U2(skU2 , pkB, pkJ )). It is an interac-
tive protocol in which U1 spends/transfers the coin co to U2. At the end, U2

outputs a coin co′ or ⊥, and U1 outputs ok or ⊥.
– Deposit(U(co, skU , pkB, pkJ ),B(pkB, skB, pkU )). It is an interactive protocol

where U deposits a coin co to the bank. The bank outputs a commitment
and corresponding proof or ⊥. U deposits corresponding coin to the bank
using new commitment and corresponding proof.

– Identify(pkU , co, co′, skJ ). It is a deterministic algorithm executed by the
judge which outputs a public key pkU of double spender.

3.2 Security Properties

In this section, we give the security definitions for the transferable conditional e-
cash system. Every security property is given by a game between the adversaryA
and the challenger C. Firstly, we describe the ability of the adversary as arbitrary
and adaptive queries to oracles. The oracles are defined as follows.

– OSetup(). This oracle allows the adversary A to add a new user into the
system, or to corrupt a honest user. When the adversary interacts with the
oracle, A can obtain the keys of the user or the bank. If a honest user is
corrupted, the secret key is ⊥.

– OWith(). This oracle can act the bank or the user in the withdrawal protocol.
The adversary A can withdraw a conditional e-cash from the oracle acting
the bank. He can also obtain some e-cash from the oracle acting the user.

– OSpend(). This oracle can allows the adversary A to act a payee to receive a
conditional e-cash, or act a payer to spend a conditional e-cash.

– ODepo(). This oracle can act the bank or the user in the deposit protocol.
The adversary A can obtain a conditional e-cash from the oracle acting the
user, or spend some e-cash to the oracle acting the bank.

– OIdt(). This oracle can act the judge in the identity procedures. The adver-
sary A can submit two e-cash to the oracle and obtain the identity of the
user spending the two e-cash.

– OPubl(). This oracle can act the publisher to extract the secret value. Then
the adversary A can obtain the secret by interacting with the oracle.

In our paper, we think the publisher, the bank and the judger are trust orga-
nizes. The judge can not remove the identity of an honest user except that the
bank gives the two spending from double spenders. The publisher only publics
and announces the events correctly, and can also not extract a outcome before
publishing the outcome. Meanwhile, This is the request of the fair e-cash [14].
We require all the length of the conditional e-cash is the same.In the following,
we will define the security properties formally.

Anonymity. We also used the definition about anonymity in [4], but our scheme
only achieve the OtR − FA(FA) and StO − FA(PA1). It guarantees that no
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coalition of users, publisher and judger can able to distinguish if the the spending
protocol is executed by users or by a simulator.

Firstly, we give the security description of FA.

– (Initialization Phase.) A runs the ParamSetup(1λ) and obtains the public
parameters params and the key pairs (pkB, skB), (pkJ , skJ ) and (pkP , skP).
Then A gives pkB to C and keeps the skB to itself.

– (Probing Phase.) A can perform a polynomially bounded number of queries
to the oracles in an adaptive manner. A can add and corrupt any user by
the OSetup(). For each OWith() and OSpend(), A can act as bank or user in
the withdrawal protocol or spending protocol. The adversary A can obtain
the identity of the user from the OIdt(), or extract the secret value from the
oracle OPubl().

– (Challenge Phase.) C chooses two public keys pkU0 and pkU1 , and presents
them to A. The two public keys must be the conditional e-cash received by
the adversary A. Then A acting the bank or the user interacts with the C. A
can specify which public C uses, with the restriction that he can not ask C to
over-spend any coin, and can also not require the oracle OIdt() and OPubl().
And last, A obtains a coin coM.

– (End Game Phase.) A decides which public key C uses.

For the security description of PA1. The every phase is similar to the FA except
that the two public keys is any keys in the Challenge Phase.

For all non-uniform polynomial timeA, the advantage breaking the anonymity
is defined by

AdvanonTCE,A = Pr[Expanon−1
TCE,A (λ) = 1]− Pr[Expanon−0

TCE,A (λ) = 1]

where TCE be a anonymous transferable conditional e-cash system. The
ExpanonTCE,A(λ) is the same as that in [4] except that we give the A an ability
to access the private key skpe and skpr.

If the AdvanonTCE,A is negligible for any polynomial-time adversary A, we will
say that our scheme is anonymous.

Unforgeability. No coalition of users and merchants can deposit more coins
than they have withdrawn from the bank.

– (Initialization Phase.) C runs the ParamSetup(1λ) and obtains the public
parameters params and the key pairs (pkB, skB), (pkJ , skJ ) and (pkP , skP).
Then C gives pkB to A and keeps the skB to itself.

– (Probing Phase.) A can perform a polynomially bounded number of queries
to the oracles in an adaptive manner. A can add and corrupt any user by the
OSetup(). We define the e-cash received by the A is coa and initialize it with
zero. For each OWith(), A acting as user and withdraw a conditional e-cash
co0 in the withdrawal protocol. In the transferring protocol, the A acting
as payer transfers an e-cash co1 to the payee, or acting as payee receives an
e-cash co2. The A deposit an e-cash code to the C acting as the bank in the
deposit protocol. And last, the counter of the A is coa = co0 + co2.
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– (End Game Phase.) A wins the game if it can deposit coa + 1 to C, namely
code > coa.

For all non-uniform polynomial time A, the advantage breaking the unforgeabil-
ity is defined by

AdvunforTCE,A = Pr[ExpunforTCE,A(λ) = 1]

where TCE be a anonymous transferable conditional e-cash system. The
ExpunforTCE,A(λ) is the same as that in [4] except that we give the A an ability
to access the private key skpe and skpr.

If the AdvunforTCE,A is negligible for any polynomial-time adversary A, we will
say that our scheme is unforgeable.

Double-Spending. It guarantees that coalition of users and merchants can not
be able to double-spend a coin with the same serial number.

This is similar to the unforgeability in the Initialization Phase.

– (Probing Phase.) A can perform a polynomially bounded number of queries
to the oracles in an adaptive manner. A can add and corrupt any user by the
OSetup(). In order to identify the identity of an honest user, the adversary A
extracts the message committed in commitments and corresponding proof,
and then forges a new coin. Meanwhile, the adversary can deposit the new
coin to the bank, and the output of the algorithm Identify() can not output
the public key. If the adversary can give a new coin as above, he must break
the unforgeability of the commuting signature and the soundness and witness
indistinguishability of GS proofs.

– (End Game Phase.) A wins the game if it can deposit a coin, the output of
the Deposit() is ⊥ and the Identify() cannot output the public key.

For all non-uniform polynomial time A, the advantage breaking the double-
spending is defined by

AdvunforTCE,A = Pr[ExpideTCE,A(λ) = 1]

where TCE be a anonymous transferable conditional e-cash system. The
ExpideTCE,A(λ) is the same as that in [4] except that we give the A an ability
to access the private key skpe and skpr.

If the AdvideTCE,A is negligible for any polynomial-time adversary A, we will
say that our scheme can identify the double-spending.

Exculpability. No coalition of the banks and users can accuse an honest users
of have double-spending a coin.

This is shown similarly to the FA in the Initialization Phase and the Probing
Phase.

– (Probing Phase.) A can perform a polynomially bounded number of queries
to the oracles in an adaptive manner. A can add and corrupt any user by
the OSetup(). We know the commute of the user and the bank is anonymous.
If the adversary A wants to forge another coin and frames an honest user,
he must break unforgeability of the commuting signature.
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– (End Game Phase.) A wins the game if it can forge a corresponding e-cash
and prove the spending is correct.

For all non-uniform polynomial time A, the advantage breaking the exculpability
is defined by

AdvunforTCE,A = Pr[ExpexcuTCE,A(λ) = 1]

where TCE be a anonymous transferable conditional e-cash system. The
ExpexcuTCE,A(λ) is the same as that in [4] except that we give the A an ability
to access the private key skpe and skpr.

If the AdvexcuTCE,A is negligible for any polynomial-time adversary A, we will
say that our scheme can frame an honest user making a double-spending.

Conditional Transfer. The payer can cash back his coin when an unfavorable
outcome happens. The payee can anonymously transfer the coin from the payer
to the payee until the time that the outcome is published. After publishing
the outcome, the publisher can extract the secret value, and send it to the
corresponding user and the bank. Then the user deposit the conditional e-cash
to the bank. Thus, the coin can be transfer to many users.

4 General Description

In a transferable e-cash with a condition, the payer anonymously transfers e-cash
before the outcome of the condition is published. The e-cash is valid to the payer
and the last payee, and only one of the two users can deposit the e-cash. When
the outcome is published, the publisher sends the extraction key to the winner
by an authenticated and secure channel. If a user submits the e-cash to the
publisher and wants to deposit the e-cash to the bank, the bank detects whether
the user has happened a double-spending. If so, the bank recovers the identity of
the user by the identify procedure. The transferable conditional e-cash consists of
the withdrawal protocol, spending (transferring) protocol, deposit protocol and
the identify procedure. We provide a new algorithm to construct the transferable
e-cash system based on the outcome of a condition. The general description is
given as follows.

The payer firstly withdraws an e-cash from the bank, and decides to spend the
e-cash to other user based on a condition. The transferring protocol is anonymous
to protect the identity of the payer U1 and the payee U2. To achieve anonymity,
two tricks are adopt to our e-cash system. Firstly, commuting signature technol-
ogy is used in our system. Generally, commitments and the corresponding proofs
are used in the interaction between U1 and U2 to achieve anonymity. However
this is not enough, i.e., if U2 transfers the e-cash to other payee U3, the bank
knows that the e-cash is from the same user U1. Thanks to commuting signature
technology, we can modify the commitments and proofs to achieve anonymity.
Secondly, we divide the deposit into two parts to obtain the anonymity of the
last user in the deposit protocol. More precisely, since the identity of the user
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is supplied in the deposit protocol, the bank can link the spending of the last
user and the deposit of the user. To obtain the anonymity of the last user in the
deposit protocol, we divide the deposit into two parts. The first part is exchang-
ing in which we can exchange the spending to another spending mo provided by
the bank. The other part is cashing, where the user updates the spending mo
to mo′ using the commuting signatures, and provides mo′ and an account num-
ber to the bank. In our scheme, the most important problem is how to obtain
the conditional e-cash, namely, two outcomes for the user U1 and another user
Ui. We achieve this goal by introducing a publisher, which gives two commit-
ment/extraction keys. The two commitment/extraction keys commit two secret
value for the two outcomes. When the outcome is favorable to a user, the corre-
sponding secret value is sent to the corresponding user by an authenticated and
secure channel. This publisher is very important, since he publishes the condi-
tions of two events and the correct outcome to decide who can deposit the e-cash
to the bank.

5 Conditional Transferable E-cash

Conditional transferable e-cash allows the user to spend a conditional e-cash to
other one based on the outcome in the future. In the follow, we give the details
of our scheme.

5.1 Setup

The bank B, the judge J , the publisher P and each user U generate key pairs
(pkB, skB), (pkJ , skJ ), (pkP , skP) and (pkU , skU ) respectively. The bank also
generates a pair of commitment/extraction key (CB, EB), which is used to com-
mitted the serial number of the e-cash. The users register their public keys to
the judge as membership certificate: certi = SPSignpkJ (pkUi), this is simi-
lar to the action that the users obtain an identity from the country and then
open a bank account from the bank. The publisher gives two pairs of commit-
ment/extraction keys, one is (Cpr, Epr) which is used to commit the coin for the
payer, and another is (Cpe, Epe) which is used to commit the coin for the payee.
If the outcome is favorable to the payer, the payer will obtain the secret key
Cpr, otherwise the payee will obtain Cpe. The judge also generates two pairs of
commitment/extraction keys (CJ , EJ ) and (Csp, Esp), the first key will be used
for identification of double spenders, and another key is used for the proof of our
scheme. The bank maintains a database DB, which is used to save the e-cash
spent. The database is initialized to empty.

5.2 The Withdrawal Protocol

The withdrawal protocol allows the user U1 to withdraw a coin co from the
bank B. We define the commitments of the publisher as pn, pm for the outcomes,
which is favorable to the payer, the payee respectively, and the commitments
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p̃n, p̃n′ , which is used to supply some information to adversary for the security
proof. The publisher publics the two commitments. And then the user registers
the outcome at the publisher. The jn and ˜jn are defined as commitments that
commit a message n using CJ and Csp. The bn is defined as commitment that
commits a message n using CB. The pn and p̃n are defined as commitments
that commit a message n using Cpr and Cpe. In the following, We will give the
protocol in detail.

1. U1 picks at random a nonce n1 and makes commitments bn1 using the com-
mitment key of the bank, which represents the serial number of the coin, jn1

to n1 using the commitment key of the judge, which is used to verify the
spending chain of users and a proof πn1 that two committed values are equal

[9]. Moreover, U1 makes commitments jpkU1
, ˜jpkU1

to the public key of the
user, which is used to recover the identity of users when a double-spending
happens, and a proof πpkU1

that two committed values are equal. U1 also
gives the commitment of the signature of the public key of user jcU1

, which
is made by the judge. At last, U1 gives the proof πcU1

[10,4] that the value
in jcU1

is a valid signature on the value in jpkU1
.

TheuserU1 sends the followingvalues to thebank:{pkU1, jpkU1
, jn1 , jcU1

, πcU1
}.

2. In order to supply two outcomes, B picks at random n and m, and gener-
ates two commitments pn and pm using the commitment keys Cpr and Cpe

respectively. B also gives the other two commitments p̃n and p̃m which is
used to prove the scheme completely. Meanwhile two proofs πn and πn′ are
given to prove two committed values are equal respectively. If the outcome
is favorable to the payer, the publisher P will give the extraction key to the
payer. Then the payer can open the commitment pn and obtain the value n.

3. B verifies the NIZK proof πcU1
and the public pkU1 . If they are correct, the

bank B chooses a random nonce n0 for the coin and generates two commit-
ments jn0 and bn0 using the commitment keys CJ and CB respectively. The
bank also gives a proof πn0 that the two committed values are equal. Then
the bank B produces a committed signature csc1 on the values n,m,n0,n1 and
pkU1 by running SigCom on pn,pm,jn0 , jn1 and jpkU1

, and also outputs the
proof πs1 [10,4]that the signature csc1 is valid to commitments pn,pm,jn0 ,
jn1 and jpkU1

.

The bank B sends the following values to the user: {pn, p̃n, πn, pm, p̃m, πm, jn0 ,
bn0 , πn0 , csc1 , πs1}.

Finally, the user U1 forms the coin co1 = (pn, p̃n, πn, pm, p̃m, πm, jn0 , bn0 , πn0 ,

jn1 , bn1 , πn1 , jpkU1
,˜jpkU1

, πpkU1
, jcU1

, πcU1
, csc1 , πs1).

5.3 The Spending(Transferring) Protocol

This is a protocol which makes a payer U1 to transfer a coin to the payee U2.
In order to obtain the anonymity of the user, U1 needs randomize the coin coi
before he spends the coin to the third user. U1 also converts the proof πsi to a
new proof by running AdCκ, which will hide the identity of the user.
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1. U2 picks at random a nonce n2 and makes a commitments bn2 using the
commitment key of the bank, which represents the coin, jn2 to n2 using the
commitment key of the judge, which is used to verify the spending chain
of users and a proof πn2 that two committed values are equal. Moreover,

U2 makes commitments jpkU2
, ˜jpkU2

and a proof πpkU2
that two committed

values are equal. At last, U2 gives the proof πcU2
that the value in jcU2

is a
valid signature on the value in jpkU2

.

The user U2 sends the following values to U1: {jpkU2
, jn2 , jcU2

, πcU2
}.

2. U1 firstly checks the proof πcU2
. If the verification is correct, U1 randomizes

co1 to co11 = (p1n, p̃
1
n, π

1
n, p

1
m, p̃1m, π1

m, j1n0
, d1n0

, π1
n0
, j1n1

, d1n1
, π1

n1
, j1pkU1

,˜j1pkU1
,

π1
pkU1

, j1cU1
, π1

cU1
, c1sc1 , π

1
s1). Then U1 computes a committed signature csc2

on the values committed in j1n1
, jn2 and jpkU2

using SigCom, and also out-

puts the proof π′
s2 that the signature csc2 is valid to commitments j1n1

, jn2

and jpkU2
. To hide the verification key of U1, U1 also converts π′

s2 to πs2 by
running AdCκ.

The U1 sends the following values to U2: {co11, Csc2
, πs2}.

Finally, the user U2 forms the coin co2 = (co11, jn2 , bn2 , πn2 , jpkU2
,˜jpkU2

, πpkU2
,

jcU2
, πcU2

, csc2 , πs2 ).

5.4 The Deposit Protocol

When the outcome is published, the winner contacts the publisher and provides
the corresponding proof to the publisher by an authenticated channel. If the
proof is correct, the publisher sends the secret value to the winner. Without loss
of generality, the outcome is favorable to the payee, so the payee will obtain the
corresponding extraction key Epe. To achieve the anonymous of the user during
the deposit, we divide the deposit protocol into two sections, exchanging and
cashing.

Exchanging. Ui spends the coin co� = (n�, p�n,m, p�m, co�1, co
�−1
2 , · · · , co2�−1,

j1n�
, b1n�

, π1
n�
, j1pkU�

,˜j1pkU�
, π1

pkU�
, c1jU�

, π1
cU�

, c1sc�
, π1

s�
) to the bank, that is, Ui runs

the protocol with the bank playing the role of U2. In order to detect the double-
spending, the bank firstly verifies the correctness of the secret value and com-
mitment (m, pm) and checks whether m equals the value committed in pm. Then
B opens the commitments b�n0

, b�−1
n1

, · · · , b2n�−1
, b1n�

contained in the coin, using
the extraction key of the bank. And last, the bank obtains the serial number
s = m||n0||n1||n2|| · · · ||n�, and checks whether the coin is found in the database
DB. If it does not, the bank sends the value mo = (m, cm, cσm , πcm) to the user
Ui, which represents a correct deposit of the user. The bank also saves the serial
number to the database DB. Otherwise, the bank running the following identify
procedures.

Cashing. In order to cash the coin from the bank, the user Ui converts the
value mo = (m, cm, cσm , πcm) to mo′ = (m, c′m, c′σm

, π′
cm) using AdCκ. Then
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Ui directly contacts the bank B through an authenticated channel, supplies his
account number and exchanges this piece of currency for credit to his account.

If the outcome is favorable to the first payer U1, the user U1 deposits the coin
to the bank as the above procedure except that the U1 spends the coin co11 and
the bank B will obtain the serial number s = n||n0||n1|| · · · ||n�.

5.5 The Identify Procedures

If B can find another serial number beginning with n in his database, i.e. s′ =
n||n′

0||n′
1||n′

2|| · · · ||n′
�. He compares the two serial numbers s and s′ and stops at

the last t such that nt = n′
t. Finally, the bank sends the two coins to the judge.

In order to identify the defrauder, the judge computes the identity committed
in jpkU�

using his extraction key EJ .

5.6 Efficiency

We analysis the efficiency by comparing the computation and communication.
Shi et al. [11] requires O(m1m2k) computation and communication, where m1

and m2 are cut-and-choose parameters and k is a security parameter for RSA-
based systems. We know that in cut-and-choose techniques with a parameter m
a dishonest user can cheat with probability 1/m, therefore a protocol that has
the overhead of O(m2k) is too heavy for any user. Blanton needs O(λlogm3),
where λ is a security parameter for groups with bilinear maps and m3 is the
probability of cheating.

On a contrary, we use the commitments and corresponding proofs for repre-
senting a conditional e-cash. The proofs are given by the NIZK proof using GS
proofs. Thus, the payer only needs to send some commitments and proofs to the
payee in the spending protocol, transferring protocol and the deposit protocol,
and the communication number only needs one time. Therefore, computation
and communication in our scheme are constant, namely O(λ), where λ is the
system parameter or a security parameter for groups with bilinear maps.

6 Security Analysis

We now give the security of our scheme. The scheme fulfills the security require-
ments given in Section 3.

Theorem 1. Our conditional transferable e-cash scheme provides anonymity,
unforgeability, identification of double-spender and exculpability under the fol-
lowing assumptions: SXDH assumption, unforgeability of the commuting signa-
ture scheme, soundness of NIZK proofs and witness indistinguishability of GS
proofs.

Proof. We briefly analyze the security properties as follows.

Anonymous. The anonymous of our scheme only achieves the FA and PA1.
Our scheme commits all messages sent between the users when transferring a
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coin. If the adversary wants to determine which one is the user chosen by the
Challenge in Challenge Phase, he needs to extract the public key committed in
jpkUi

. Thus, the adversary can break the soundness of NIZK proofs and witness
indistinguishability of GS proofs [6].

In the following, we give the prove of the FA by a game between an adversary
A and a challenge C. For fair e-cash, the judge and the publisher is necessary,
so they can not extract the secret key except that the bank give the proof that
the user happens a double-spending.

(Initialization Phase.)Let C supplies a system parameter λ to the adversary A
acting as the bank. The adversary A obtains the key pairs of the bank, the judge
and the publisher. And then (A) sends the public keys and the commitment keys
to the C.

(Probing Phase.)In the withdrawal protocol, the C acting the payer with-
draws conditional e-coins, then converts the coins to new coins by the algorithm
SigCom. The A any payee accepts the e-coins from the A act the payer in the
spending protocol. In the deposit protocol, the user deposits a coin to the A
acting the bank. By the above interact, the A obtains some commitments and
corresponding proofs. The length of the coins are the same.

(End Game Phase.)The C chooses two coins co0 and co1 from these coins in
the Probing Phase, and then flips a fair coin to decide to use co0 or co1 for the
deposit protocol. The GS proofs is soundness, so we know the commitments and
the corresponding proofs are correct. If the adversary A can distinguish which
coin the user deposits, coi(i=0/1), he must distinguish which public key the
user uses, pkUi , namely i = 0 or i = 1. We know if the A can solve the SXDH
problem, he can distinguish which commitment the user uses. But the probability
of solving the SXDH problem is ignore. For the commuting signatures, the A can
not forge any commuting signatures, so he can not give any help to distinguish
i = 0 or i = 1.

So we know the A can win if he can forge a commuting signature, solve the
SXDH problem and break the soundness of the NIZK proofs.

Unforgeability. Let A be an adversary. We outline the success probability of
A is negligible by interacting with a challenger C. The C gives the public key of
the bank. The A generates the remaining parameters.

For each KeyGen(), A can create a new user or corrupt an honest user. So A
obtains some key pairs. In withdrawal protocol,A can act as a user and withdraw
some coins from the challenger, we defined the coins as coui. For each spending
protocol, A can act as a user and spend(transfer) some coins to challenger, we
defined the coins as couo. he also gets some coins from challenger, we defined
the coins as co1ui. In deposit protocol, A deposits some coins to challenger, and
other users deposit some coins which come from A, to challenger. We defined all
the deposit as co1uo. So the A obtains the value of the coins is co = coui + co1ui −
couo − co1ui. If co > 0, the A has spent a coin which is not withdrew from the
bank.

We know the other users and the bank are honest, and the NIZK proof πsi

is soundness. If the A can spend more coins which are not withdrew from the
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bank, he must give a forgery of a new triples (n, n0, pkU1) from the bank. Thus,
A outputs a new signature on a message as a forgery, namely A breaks the
unforgeability of commuting signature.

Double-Spending. C gives the public key of the judge for identifying the iden-
tity of the double-spender. A sets up the remaining parameters.

When A can spend a coin twice without revealing the identity of the A, the
output of the Identify() is not the public key of any user. Because each valid coin
contains a valid certificate for the public key, by the soundness of NIZK proofs,
we know the A must forge a new valid certificate for the public key registered in
judge. Therefore, A breaks the soundness of NIZK proofs and the unforgeability
of commuting signature.

Exculpability. The exculpability is that the A acting the bank can accuse an
honest user of happening a double-spending. We request that the signature is
issued by an honest user rather than the bank.

If a user is identified as a double spending, the A needs to supply two cor-
respond spending to the user. The two spending containing two serial numbers
s and s′ in which ni = n′

i. By the soundness of NIZK proofs, the two coins
contain correct signatures. In order to accuse the honest user of happening the
double-spending, the A forges a signature on a coin. Therefore, A breaks the
unforgeability of commuting signature.

7 Conclusion

In this paper, we presented the first anonymous transferable conditional e-cash.
One of the most features in our protocol is that the spending and deposit protocol
is anonymous. In this protocol, we can modify commitments and corresponding
proof using the commuting signature and the GS proofs. How to design a efficient
conditional transferable e-cash will be a new think.
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