
Building General-Purpose Security Services

on EMV Payment Cards�

Chunhua Chen1,��, Shaohua Tang1,� � �, and Chris J. Mitchell2

1 School of Computer Science and Engineering,
South China University of Technology,

Guangzhou 510640, China
chen.chunhua@mail.scut.edu.cn, csshtang@scut.edu.cn

2 Information Security Group,
Royal Holloway, University of London,

Egham, Surrey TW20 0EX, UK
c.mitchell@rhul.ac.uk

Abstract. The Generic Authentication Architecture (GAA) is a stan-
dardised extension to the mobile telephony security infrastructures that
supports the provision of security services to network applications. We
have proposed a generalised version of GAA which enables almost any
pre-existing infrastructure to be used as the basis for the provision of
generic security services, and have examined a GAA instantiation sup-
ported by Trusted Computing. In this paper we study another instanti-
ation of GAA, this time building on the widely deployed EMV security
infrastructure. This enables the existing EMV infrastructure to be used
as the basis of a general-purpose authenticated key establishment ser-
vice in a simple and uniform way, and also provides an opportunity for
EMV-aware third parties to provide novel security services. We also dis-
cuss possible applications and issues of privacy and trust.

Keywords: GAA, EMV, key establishment, security service.

� This work was partially sponsored by the National Natural Science Foundation of
China under Grant (No. U1135004 and 61170080), the Guangdong Province Uni-
versities and Colleges Pearl River Scholar Funded Scheme (2011), the Guangzhou
Metropolitan Science and Technology Planning Project (No. 2011J4300028),
the Fundamental Research Funds for the Central Universities (No. 2009ZZ0035
and 2011ZG0015), the Guangdong Provincial Natural Science Foundation (No.
9351064101000003) and the High-level Talents Project of Guangdong Institutions
of Higher Education (2012).

�� The author is a PhD student at the South China University of Technology. This
work was partially performed during a visit to the Information Security Group
at Royal Holloway, University of London, sponsored by the Chinese Scholarship
Council.

� � � Corresponding author.

A.D. Keromytis and R. Di Pietro (Eds.): SecureComm 2012, LNICST 106, pp. 29–44, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

30 C. Chen, S. Tang, and C.J. Mitchell

1 Introduction

Almost any large scale network security system requires the establishment of
some kind of a security infrastructure. For example, if network authentication
or authenticated key establishment is required, then the communicating parties
typically need access to a shared secret key or certificates for each other’s public
keys.

Setting up a new security infrastructure for a significant number of clients is
by no means a trivial task. For example, establishing a public key infrastructure
(PKI) for a large number of users involves setting up a certification authority
(CA), getting every user to generate a key pair, registering every user and corre-
sponding public key, and generating and distributing public key certificates. In
addition, the ongoing management overhead is non-trivial, covering issues such
as revocation and key update.

At the same time, there are a number of existing security infrastructures, in
some cases with almost ubiquitous coverage. When deploying a new network
security protocol it is therefore tempting to try to exploit one of these existing
security infrastructures to avoid the need for the potentially costly roll-out of a
new infrastructure.

This is by no means a new idea (see, for example, [17,18,19,21]). However,
previous proposals have been ad hoc and application-specific. The alternative
approach we consider here involves building a framework on top of an existing
security infrastructure, which exploits the underlying infrastructure to enable the
provision of general-purpose security services. For example, 3GPP has standard-
ised the Generic Authentication Architecture (GAA) [4], which uses the mobile
telephony security infrastructures (including those for GSM1 and UMTS2) to
provide a set of security services. A full description of 3GPP GAA is presented
in [14]. Advantages of such a general approach include the usual benefits of a
layered protocol architecture, including re-usability of applications across under-
lying infrastructures and simplified application development.

In previous work [6,7] we proposed a generalised version of GAA, which aims
to enable almost any pre-existing infrastructure to be used as a basis for the pro-
vision of generic security services. A GAA instantiation supported by the Trusted
Computing (TC) infrastructure has been described [6]. In this paper we build on
the widely deployed EMV [9,10,11,12] (named after Europay, MasterCard, and
Visa) security infrastructure, involving the chip-based EMV credit/debit cards
deployed worldwide.3 We define a GAA instantiation building on the EMV se-
curity services, which we call EMV-GAA.

The remainder of this paper is organised as follows. In section 2 we introduce
a generalised version of GAA. In section 3 we provide an overview of EMV
security services. In section 4 we give details of EMV-GAA. This is followed

1 The Global System for Mobile Communications.
2 The Universal Mobile Telecommunications System.
3 Magnetic stripe cards are even more widely deployed for credit and debit purposes
than EMV cards; however, they cannot store (or process) secret keys, and hence
could not be used to support GAA.

EMV-GAA 31

by an informal security analysis in section 5. We analyse relevant privacy and
security issues, and propose a modified scheme to address possible threats in
section 6. We review related work in section 7, and discuss possible applications
in section 8. In section 9 we draw conclusions.

2 Generic Authentication Architecture

We start by describing the generalised version of the GAA architecture on which
we build our novel scheme. We introduce the main roles in the framework, its
goals and rationale, and its two main procedures. This generalised GAA archi-
tecture was first described in [7], and was elaborated in [6].

2.1 Overview of GAA

As shown in Figure 1, the following entities play a role in GAA.

– The Bootstrapping Server Function (BSF) server B acts as a Trusted Third
Party (TTP), and is assumed to have the means to access credentials be-
longing to a pre-existing security infrastructure. B uses the pre-established
credentials to provide authenticated key establishment services to GAA-
enabled user platforms and GAA-aware application servers. B uses its Fully
Qualified Domain Name (FQDN) as its identifier IdB.

– A GAA-aware application server S is assumed to have the means to estab-
lish a mutually authenticated, confidentiality- and integrity-protected chan-
nel with B, and an arrangement to access the security services provided by
B . The means by which the secure channel between B and S is established
is outside the scope of the GAA framework. In practice, this could be sup-
ported by well-established techniques such as SSL/TLS channels with both
server and client side certificates, IPsec tunnelling, or some other appropri-
ate ‘virtual private network’. A permanent secure channel is also potentially
beneficial from an efficiency viewpoint, because it can be reused for multiple
protocol executions. The functionality of a GAA-aware application server is
also referred to as the Network Application Function (NAF) server. S uses
its FQDN as its identifier IdS .

– A GAA-enabled user platform P is assumed to be equipped with creden-
tials belonging to the pre-existing security infrastructure, and accesses the
security services provided by B .

The user platform and the BSF server need to interact with the pre-existing
security infrastructure, whereas the application server does not (it only needs to
interact with the BSF server and the user platform). Also, the user platform and
the application server do not need to have a pre-existing security relationship.

GAA provides a general purpose key establishment service for user platforms
and application servers. As described below, GAA uses a two-level key hier-
archy consisting of a master session key and server- and application-specific

32 C. Chen, S. Tang, and C.J. Mitchell

Fig. 1. GAA framework

session keys. The master session key is established using the pre-existing secu-
rity infrastructure, and is not used directly to secure GAA-based applications.
Instead it is used to generate the server/application-specific session keys using
a key diversification function. By choosing a function with appropriate proper-
ties, it can be arranged that knowledge of a server/application specific session
key will not reveal any information about the master session key or any other
server/application-specific keys.

2.2 GAA Procedures

As we now describe, GAA incorporates two main procedures: GAA bootstrapping
and Use of bootstrapped keys.

GAA bootstrapping uses the pre-existing security infrastructure to set up a
shared master key MK between P and B . Also established is a Bootstrapping
Transaction Identifier B-TID for MK and the lifetime of this key. B-TID must
consist of a (statistically) unique value which identifies both an instance of GAA
bootstrapping and IdB .

TheUse of bootstrapped keys procedure establishes a server/application-specific
session key SK between P and S, using the master key MK shared by P and B .
The procedure operates in the following way. P first derives a session key SK as:

SK = KDF(MK ,NAF -Id , other values)

EMV-GAA 33

where KDF is a one-way key diversification function, and NAF-Id is an
application-specific value consisting of IdS and an identifier of the underlying
application protocol. Other values may be included in the key derivation com-
putation, depending on the nature of the underlying security infrastructure. P
then starts the application protocol by sending a request containing B-TID to
S. S submits the received B-TID and its own identifier NAF-Id to B to request
the session key SK . Note that B-TID contains IdB, so S knows where to send
the request. As stated above, we require that S and B have the means to es-
tablish a mutually authenticated and confidential secure channel, and hence B
can verify S against IdS . If S is authorised, B derives SK from the MK iden-
tified by B-TID, and sends SK, its lifetime, and other relevant information to
S via the secure channel. P and S now share SK, which they can use to secure
application-specific messages.

Note that key separation is enforced by including NAF-Id as an input to the
key diversification function. Other values used in the computation of SK could
include identifiers for the GAA bootstrapping instance and the user platform.

3 EMV Security

In this section we provide a high-level overview of the main security features
of the EMV payment system. We introduce the main roles in the system, the
associated cryptographic keys and payment messages, and the processes relevant
to this paper.

The EMV payment system involves five major interacting entities: a card-
holder, an EMV payment card, a merchant terminal, an acquiring bank (the Ac-
quirer) and a card issuing bank (the Issuer). The EMV specifications [9,10,11,12]
define the interactions between an EMV smart card and a merchant terminal,
as required to support financial transactions. Prior to engaging in such a trans-
action, the cardholder must complete an agreement with the Issuer, and be
equipped with a chip-based EMV credit/debit card. The cardholder can then
use this card to pay at merchant premises (EMV only supports transactions in
which the cardholder is physically present, i.e. it does not support e-commerce
or telephone transactions).

3.1 Transactions

An attempted EMV transaction can have a variety of outcomes; the transaction
might be:

– approved offline;
– declined offline (by either the card or terminal); or
– sent for online approval by the card issuer.

We focus here on the case where the transaction is declined offline by the termi-
nal, since we use the output of the card in this case as the basis of EMV-GAA
bootstrapping, as described in section 4.2.

34 C. Chen, S. Tang, and C.J. Mitchell

An EMV transaction that is declined offline involves the following steps. Many
of the procedures involved in a typical transaction, including Data Authentica-
tion4, Processing Restrictions, Cardholder Verification, Terminal Risk Manage-
ment and Terminal Action Analysis, are omitted from this description, since
they are not used in in EMV-GAA.

1. When a card is inserted into a terminal, the terminal first selects the EMV
credit/debit payment application. Note that an EMV smart card could con-
tain multiple applications, but will always contain an EMV payment appli-
cation.

2. The terminal initiates Application Processing to start a new transaction
session and to exchange information with the card. Note that in this manda-
tory step the Application Transaction Counter (ATC), a sequence number
maintained by the card, is incremented.

3. The terminal reads Application Data from the card. During this mandatory
step, the terminal acquires cardholder information (including the Primary
Account Number (PAN) and PAN Sequence Number (PAN-SN)) from the
card.

4. To decline the transaction, the terminal requests the card to generate an
Application Authentication Cryptogram (AAC) (using the first GENERATE
AC command [11, page 67]). The AAC is one example of an EMV-specific
construct known as an Application Cryptogram (AC); an AC is a MAC
computed on specific data using a key known only to a card and the card
issuing bank.

5. The card performs Card Risk Management to protect the Issuer from fraud or
excessive credit risk. Details of the card risk management algorithms within
the card are specific to the Issuer, and are outside the scope of the EMV
specifications.

6. The card performs Card Action Analysis to decide whether the transaction
should be approved offline, transmitted online to be authorised by the Is-
suer, or declined offline. The card action analysis process is performed when
the terminal issues the GENERATE AC command. Given that the card is
requested to generate an AAC, the result of card action analysis is always
to decline the transaction offline ([11, page 91]).

7. The card generates an AAC and returns it to the terminal. Details of this
computation are described in section 3.2.

8. The terminal performs Completion, which ends processing of the current
transaction.

3.2 AC Generation

In this section we provide further details of AC generation; we start by describing
the secret keys involved.

4 This procedure enables the terminal to verify the authenticity of the card. EMV
specifies three modes of Data Authentication, namely Static Data Authentication
(SDA), Dynamic Data Authentication (DDA) and Combined Data Authentication
(CDA) [10, page 51]

EMV-GAA 35

The Issuer possesses an AC-specific 128-bit issuer master key, IMKAC, used
to generate the keys required to generate and verify ACs. When personalising
a card, the Issuer uses the PAN and PAN-SN for this card as diversification
information to derive a card-specific 128-bit Application Cryptogram master key
MKAC from IMKAC. This key is installed in the card during personalisation.

When the card receives a GENERATE AC command, it first derives a 128-bit
Application Cryptogram session key SKAC from MKAC, using the current ATC
as diversification information. The card then uses SKAC to produce the AC, a
64-bit cryptographic MAC computed as a function of a transaction-specific byte
string formed by concatenating the following data items:

– values received from the terminal, including the Amount Authorized, the
Transaction Date, and the Unpredictable Number (UN);

– values from within the card, including the ATC, which identify the current
transaction.

The card returns the generated AC to the terminal, together with the Cryp-
togram Information Data (CID), the ATC, and other relevant data.

Depending on the result of the Card Action Analysis, the card will generate
one of the following three types of AC:

– a Transaction Certificate (TC), if the transaction is approved offline;
– an Authorisation Request Cryptogram (ARQC), if an online authorisation

is requested;
– an AAC, if the transaction is declined offline.

The CID contains two bits indicating the type of AC generated.
The Issuer needs to recompute the AC for verification purposes. This requires

that the Account Identification Data of the card (i.e. the PAN and PAN-SN),
the CID, the ATC, the UN provided by the terminal, and all other data objects
used to compute the AC are transmitted to the Issuer. Using the received PAN
and PAN-SN, the Issuer derives MKAC, and from this obtains SKAC using the
received ATC. The Issuer then uses SKAC to compute the particular type of AC
indicated by the CID.

The EMV payment system makes use of a closed PKI to support Card Au-
thentication. We use the term EMV security infrastructure to refer to the set
of EMV cards possessed by cardholders, the Issuer servers, the associated secret
keys, and the supporting PKI.

4 EMV-GAA

In this section we describe a possible means of using the EMV security infras-
tructure to support the generic version of GAA outlined in section 2.1, which we
refer to as EMV-GAA. It is important to note that the scheme we propose here
works with currently deployed EMV cards, using the existing card applications.
That is, card re-issue (or card update) is not required.

36 C. Chen, S. Tang, and C.J. Mitchell

4.1 Architecture

As shown in Figure 2, the following EMV-specific entities play a role in EMV-
GAA.

Fig. 2. EMV-GAA

– The Issuer I issues EMV-compliant cards, and possesses a master key IMKAC

which is used to derive the card-specific master keys MKAC. I must be
trusted for the purposes of supporting the EMV-GAA service by all parties
using this service.

– The GAA-enabled user platform P incorporates a terminal T, an EMV-
compliant card C (with an EMV debit/credit payment application), and the
link between the two. To our knowledge, any EMV compliant card (SDA-,
DDA-, or CDA-capable) could in principle be used to support EMV-GAA,
since it does not make use of any of the Data Authentication procedures. T
consists of a network access device and a card reader. A typical instantiation
of T would be a Personal Computer (PC) with an attached or integrated
card reader, where the card reader may or may not possess an integral key-
pad (as shown in Figure 2). Alternatively, T could be a mobile device (such
as a Personal Digital Assistant) capable of communicating with C, e.g. using
Near Field Communication. We assume that T is equipped with a sup-
porting application that implements the EMV-GAA bootstrapping protocol
described below. This supporting application could be provided by a third
party trusted for the purposes of delivering the EMV-GAA service by all
parties using this service.

EMV-GAA 37

– The BSF server B connects to I via a secure communications channel to
provide the GAA services. B must be trusted by all the parties used the
EMV-GAA service.

We assume that the participating entities are connected via an open network such
as Internet. Note that no assumptions are made about the security properties of
these communications links.

4.2 Procedures

In this section we specify the EMV-GAA bootstrapping and the EMV-GAA Use
of bootstrapped keys procedures.

The EMV-GAA bootstrapping protocol involves the following sequence of
steps.

1. The terminal T sends an initial request to B for the bootstrapping of a
master session key MK .

2. Upon receiving the request, B generates a random number RB, associates it
with a short time interval, and caches it5. B then sends RB to T .

3. T commences communications with an EMV payment card C (if necessary
first prompting the cardholder to insert C into the card reader), and selects
the EMV credit/debit payment application in C. T next initiates a trans-
action session (which automatically causes the ATC to be incremented) and
reads the card information, including the PAN, PAN-SN, etc. T will always
declined the transaction, and will, accordingly, request C to generate an
AAC by issuing the (first) GENERATE AC command. The UN sent with
the GENERATE AC command is set to RB, as selected in step 2. The other
data items sent with the GENERATE AC command can be set to fixed
values (in particular the ‘Amount Authorised’ can be set to 0).

4. C generates the AAC and returns the generated AAC, the CID data, the
ATC, and the other values necessary to verify it. We refer below to the data
sent with the AAC as M .

5. T ends the current transaction session with C.
6. T generates a random number RT , associates it with a short time interval,

and caches it. T then uses the AAC as a secret key K to compute a response
RES as

RES = f(K,RT , RB, IdB,M).

The function f can be implemented in many ways. One possibility, which
complies with clause 5.1.1 of ISO/IEC 9798-4 [15], is to instantiate f us-
ing HMAC [16] based on a suitable cryptographic hash function, where the

5 B will clear RB from its cache when the bootstrapping process completes or when
RB expires.

38 C. Chen, S. Tang, and C.J. Mitchell

various inputs to f are simply concatenated prior to applying HMAC. That
is, RES could be computed as:

RES = HMACK(RT ||RB||IdB||M)

where here and throughout || is used to denote concatenation. Note that the
values RT ||RB and IdB play the role of the nonce and the entity identifier,
respectively, in the ISO/IEC 9798-4 protocol.

7. T sends PAN, PAN-SN, RT , RB, M and RES to B .
8. B checks that RB is equal to the value selected in step 2. If not, B rejects

the bootstrapping request and terminates the protocol.
9. B forwards PAN, PAN-SN and M to I .
10. I uses the information received from B to recompute the AAC, and then

sends PAN, PAN-SN and the AAC back to B .
11. B uses the received AAC as a secret key K to recompute RES, and compares

it with the RES received in step 7. If they do not match, B rejects the boot-
strapping request; otherwise, B generates the master session key MK as

MK = KDF(K , RT , RB).

B also sets the lifetime of MK (LT) in line with its operational policy,
constructs the key identifier B-TID as a combination of RB, RT and IdB,
and stores PAN, PAN-SN, RT , RB, B-TID, MK and LT .

12. B computes

XRES = f(K,RB, RT ,PAN,PAN-SN,LT).

13. B sends RB, RT , B-TID, LT and XRES to T .
14. T checks that RT is the same as the value it selected in step 6. T then

recomputes XRES, and compares it to the value received from B. If either
of these checks fail, the bootstrapping fails.

15. T computes MK in the same way as B, and then stores PAN, PAN-SN, RB,
RT , B-TID, MK and LT .

During bootstrapping, the card-generated AAC is used as a secret key K shared
by T andB to establish the master keyMK . As defined in the EMV specifications
(see [11], Table 33 in Annex A), an AAC contains only 64 bits. Hence, since it
is derived from K, MK has at most 64-bit security. For a stronger MK (with
128-bit security), the protocol above requires the following changes.

– T must execute two separate declined offline EMV transactions with C;
that is T carries out steps 3, 4 to 5 twice to obtain two AACs, and then
concatenates them to form a 128-bit key K . In this case, RB in step 2 needs
to have length double that of the UN, and is used in two parts to initiate
two GENERATE AC commands belonging to two EMV transactions.

– Accordingly, I must generate the two AACs for B in step 10.

Note that the ATC is incremented for every new EMV transaction. Since the
ATC is used as diversification information in the computation of AAC, the two
AACs above will almost certainly be different from each other.

EMV-GAA 39

In the EMV-GAA Use of bootstrapped keys procedure, P and S follow the
procedure defined in section 2.2 to establish a server- and application-specific
session key SK . The session key SK is derived (by B and P) as follows:

SK = KDF(MK , RT , RB,PAN,PAN-SN,NAF -Id).

5 Informal Security Analysis

We now provide an informal security analysis of key aspects of the authentication
and key establishment protocol used by the EMV-GAA bootstrapping procedure
described in section 4.2. We consider a threat model in which an attackerA is able
to observe and make arbitrary modifications to messages exchanged between B
and P, including replaying and blocking messages as well as inserting completely
spurious messages. This allows a trivial denial of service attack which cannot be
prevented. Note that A is not allowed to compromise the implementations of B
and P (including T and C); such attacks on system integrity cannot be prevent
by the key establishment process, and are thus not addressed by the schemes we
propose. We further assume that the communication channel between T and C is
secure, since both devices are controlled by the user.

It is important to note that the security of EMV-GAA rests on the secu-
rity of the underlying EMV security infrastructure; that is A is not allowed to
compromise I or C.

The EMV-GAA bootstrapping protocol makes use of symmetric cryptographic
techniques. The secret key K is an AAC, which can only be generated by the
card C and the Issuer I (since it is a function of a key known only to them),
and is securely transferred to T and B, respectively.

– Entity authentication. The protocol provides mutual authentication between
B and T (strictly, C) using a cryptographic check function. B can verify the
identity of T (strictly, C’s PAN and PAN-SN); that is, the MAC generated
by T on RT , RB and IdB using K allows B to authenticate T (step 11).
Similarly, T can authenticate B by verifying the MAC generated by B on
RB, RT , PAN and PAN-SN (step 14). Messages exchanged in steps 2, 7 and
13 conform to the three-pass unilateral authentication protocol mechanism
described in clause 5.2.2 of ISO/IEC 9798-4:1995 [15], in which the values
RB and RT , generated by B and T respectively, serve as the nonces.

– Confidentiality of the master session key MK . MK is derived from K, which
is shared by B and T . K is an AAC that can only be obtained by B and T .
Hence, A cannot access MK under the assumed threat model.

– Origin authentication. This is achieved by B and T generating MACs on the
exchanged messages using the key K. Integrity protection is also provided
by the MACs. Hence, A cannot alter messages without being detected, since
B and T will abort the bootstrapping procedure if any MAC verification
fails (step 11 and 14).

– Freshness. RB, generated by B, is included in the MAC sent to B in step 7;
similarly RT , generated by T , is included in the MAC sent to T in step 13.

40 C. Chen, S. Tang, and C.J. Mitchell

Hence, A cannot replay messages to T or B, since B and T will abort the
bootstrapping procedure if a received nonce is not fresh (step 8 and 14).

– Key confirmation. On receipt of the message in step 13, T can be sure that
B has generated the MK during the current session. However, T does not
confirm to B that it possesses MK . Note that A can block all the messages
exchanged, and network errors might occur, and hence only T can be sure
that it shares a fresh MK with B (until successful use of the key by T).

– Key control. The protocol is a key agreement process, that is B and T jointly
control the inputs to the computation of MK (i.e. RB and RT).

6 Privacy and Security Issues

6.1 Threats

The EMV payment system is designed to be used in a closed (controlled) en-
vironment. A card terminal at a merchant typically provides a level of tamper-
resistance, and is supplied by (or in conjunction with) themerchant’s issuing bank.
The terminal will be equipped with a pre-defined means of secure communication
with the acquiring bank. By contrast, EMV-GAA operates in a more open envi-
ronment. The terminal is user-controlled, and the communications with B and P
are assumed to use the Internet or other public communications medium.

This change of environment gives rise to two main threats. Firstly, the scheme
involves inserting the EMV card into a new type of terminal, which is itself a
threat. A terminal can cause a card to perform a transaction, the precise na-
ture of which is not apparent to the cardholder. Hence, a security threat arises
whenever a card is inserted into any unauthorised terminal. Secondly, the PAN
could be divulged to unauthorised entities and/or misused, including by a com-
promised terminal, by compromised software on a PC host, or by interception
during transmission. The PAN can be regarded as Personally Identifiable In-
formation (PII), and hence disclosure of the PAN is a privacy threat; it is also
information which could be misused to conduct unauthorised transactions, and
hence disclosure is also a security threat. We next consider the nature of these
threats together with possible mitigations in greater detail.

Before using this service, it is likely that the cardholder will need to agree
terms of use with the card issuer (and/or with the bootstrap server provider).
This could include equipping the cardholder with a special card reader designed
specifically for use with the EMV-GAA service—indeed, this is precisely what
happens when cards are used with the CAP service, discussed below (and hence
low-cost special-purpose card readers are clearly viable). This special reader
could even be delivered as additional functionality in an enhanced CAP reader,
further reducing deployment costs. The cardholder should in any case be ad-
vised never to insert his or her card into an unauthorised terminal. Part of the
functionality of EMV-GAA could be built into the card reader (as is the case
for CAP), thereby mitigating the threat of the card being forced to conduct
unauthorised transactions. Finally we observe that the scheme we propose does

EMV-GAA 41

not require use of the Personal Identification Number (PIN) of the cardholder6,
further reducing the risk of an attacker being able to use a card to create illicit
PIN-authorised transactions.

The use of a special purpose card reader also mitigates the risk of PAN dis-
closure at the cardholder site. PAN disclosure as a result of intercepted commu-
nications can be prevented by using the modified version of the scheme outlined
below; the magnitude of the threat could also be reduced through the use of SSL
on the connection between B and P , a standard precaution for security-related
web connections.

6.2 A Modified Scheme

We now describe a minor modification to the bootstrapping procedure, designed
to remove the need to transmit the PAN. The modified scheme requires the
cardholder to register the EMV card C with the BSF server prior to use. As
a result of the registration procedure, the BSF stores an association between a
card-specific identifier IdC and the pair (PAN, PAN-SN) for C. The identifier
IdC must be computed as a fixed function of data stored on the card, e.g. as
h(SSAD), where h is a cryptographic hash function and SSAD is the Signed
Static Authentication Data, stored on the card and used in SDA.

The bootstrapping procedure is largely as described in section 4.2, except as
follows.

– In step 3, T reads the SSAD from C, and computes IdC for later use.
– In step 7, T sends IdC to B instead of PAN and PAN-SN, and on receipt B

uses IdC to look up the values of PAN and PAN-SN.

7 Related Work

The Chip Authentication Program (CAP)7 uses a EMV payment card in con-
junction with a dedicated handheld device (the CAP reader) to produce one-time
passwords (OTPs) for authenticating users and transactions in online banking.
A dummy transaction with the card is started by requesting it to generate an
ARQC, and after receipt of the ARQC the transaction is aborted. A decimal PIN
is then computed as a function of the ARQC. Although the complete protocol
details are not public, some information is in the public domain [8].

Urien [21] proposed the use of EMV payment cards to support the pre-shared
key TLS protocol (TLS-PSK) [13]. The EMV TLS-PSK protocol provides mutual
authentication, and could be used for on-line banking services. In EMV TLS-
PSK, the pre-shared key identity is made of two parts: an identifier (EMV-ID)
derived from parameters embedded in the card, and a set of cryptograms (i.e.

6 The Cardholder Verification procedure in which the cardholder enters his or her PIN
into the terminal is not used in EMV-GAA.

7 CAP is a MasterCard brand; the corresponding Visa system is called Dynamic
Passcode Authentication (DPA).

42 C. Chen, S. Tang, and C.J. Mitchell

ARQCs). The pre-shared key is a fixed value, deduced from the EMV card con-
tent (EMV-PSK) and additional information. The EMV-PSK is set to h(SSAD),
where h is a cryptographic hash function. The EMV-ID is set to h(h(SSAD)).

8 Applications

GAA offers a simple and uniform interface to generic security services which
operate independently of the underlying security infrastructure. Application de-
velopers are thus able to use the services provided by this interface without
having to understand the detailed operation of the underlying infrastructure,
substantially simplifying the development task and reducing the risk of error.
Moreover, this layered approach also enables the same application to operate
over a variety of different underlying infrastructures in a transparent way.

In ongoing work we are examining ways in which a range of variants of the
GAA service can be used to support an OTP system [5,7] for Internet appli-
cations. Such systems could, of course, be built using the EMV-GAA service.
OTP systems supported by a range of GAA services could be deployed to enable
the provision of ubiquitous OTP services for a large class of users. We are also
developing ways of using GAA to build more general identity management solu-
tions, including single sign-on schemes. Work along these lines has already been
standardised for 3GPP GAA, notably supporting interworking with CardSpace,
OpenID and Liberty [1,3]. We are also developing a way of enhancing the ‘Pwd-
Hash’ mechanism [20] which builds on GAA service to give a user-centric single
sign-on system.

The TLS-PSK protocol using the 3GPP GAA service (as supported by the
mobile telephony authentication infrastructures) has been specified by 3GPP [2].

9 Conclusions

GAA is a framework that enables pre-existing security infrastructures to be used
to provide general purpose security services, such as key establishment. We have
shown how GAA services can be built on the EMV security infrastructure, com-
plementing the previously proposed GAA schemes built on the mobile telephony
authentication infrastructures and Trusted Computing. Use of EMV-GAA could
constitute a potentially serious security and privacy threat (including the possi-
bility of revealing the PAN to unintended parties). To mitigate the risk, we have
proposed a modified scheme to avoid the need to routinely transmit the PAN
across any network links.

EMV-GAA provides a way of exploiting the now very widespread EMV infras-
tructure for the provision of fundamentally important general-purpose security
services. Of course, application-specific security protocols building on the infras-
tructure can be devised independently of any generic service and, indeed, there
is a large and growing literature on such schemes. However, the definition of
a standard GAA-based security service enables the EMV infrastructure to be
exploited in a simple and uniform way, and it also provides an opportunity for
EMV-aware third parties to provide novel security services.

EMV-GAA 43

References

1. 3G AMERICAS: Identity Management Overview of Standards & Technologies for
Mobile and Fixed Internet (2009)

2. 3rd Generation Partnership Project (3GPP): Generic Authentication Architecture
(GAA); Access to network application functions using Hypertext Transfer Proto-
col over Transport Layer Security (HTTPS). Technical Specification TS 33.222,
Version 9.1.0 (2009)

3. 3rd Generation Partnership Project (3GPP): Identity management and 3GPP secu-
rity interworking; Identity management and Generic Authentication Architecture
(GAA) interworking. Technical Report TS 33.924, Version 9.1.0 (2009)

4. 3rd Generation Partnership Project (3GPP): Technical Specification Group Ser-
vices and Systems Aspects, Generic Authentication Architecture (GAA), Generic
Bootstrapping Architecture. Technical Specification TS 33.220, Version 9.2.0
(2009)

5. Chen, C., Laitinen, P., Asokan, N., Mitchell, C.: Leveraging GAA for one-time
password authentication from an untrusted computer (submitted)

6. Chen, C., Mitchell, C.J., Tang, S.: Building General Purpose Security Services on
Trusted Computing. In: Chen, L., Yung, M., Zhu, L. (eds.) INTRUST 2011. LNCS,
vol. 7222, pp. 16–31. Springer, Heidelberg (2012)

7. Chen, C., Mitchell, C., Tang, S.: Ubiquitous One-Time Password Service Using
the Generic Authentication Architecture. Mobile Networks and Applications (to
appear), http://rd.springer.com/article/10.1007/s11036-011-0329-z

8. Drimer, S., Murdoch, S.J., Anderson, R.: Optimised to Fail: Card Readers for
Online Banking. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp.
184–200. Springer, Heidelberg (2009)

9. EMV: EMV Integrated Circuit Card Specifications for Payment Systems Version
4.2—Book 1: Application Independent ICC to Terminal Interface Requirements
(June 2008)

10. EMV: EMV Integrated Circuit Card Specifications for Payment Systems Version
4.2—Book 2: Security and Key Management (June 2008)

11. EMV: EMV Integrated Circuit Card Specifications for Payment Systems Version
4.2—Book 3: Application Specification (June 2008)

12. EMV: EMV Integrated Circuit Card Specifications for Payment Systems Version
4.2—Book 4: Cardholder, Attendant, and Acquirer Interface Requirements (June
2008)

13. Eronen, P., Tschofenig, H.: Pre-shared key ciphersuites for transport layer security
(TLS). Internet Engineering Task Force, RFC 4279 (Informational) (December
2005)

14. Holtmanns, S., Niemi, V., Ginzboorg, P., Laitinen, P., Asokan, N.: Cellular Au-
thentication for Mobile and Internet Services. John Wiley and Sons (2008)

15. International Organization for Standardization, Genève, Switzerland:
ISO/IEC 9798-4:1999, Information technology—Security techniques—Entity
authentication—Part 4: Mechanisms using a cryptographic check function (1999)

16. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-hashing for message authen-
tication. Internet Engineering Task Force, RFC 2104 (Informational) (February
1997)

17. Pashalidis, A., Mitchell, C.J.: Single Sign-On Using Trusted Platforms. In: Boyd,
C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 54–68. Springer, Heidelberg
(2003)

http://rd.springer.com/article/10.1007/s11036-011-0329-z

44 C. Chen, S. Tang, and C.J. Mitchell

18. Pashalidis, A., Mitchell, C.J.: Using GSM/UMTS for single-sign on. In: Proceedings
of SympoTIC 2003, Joint IST Workshop on Mobile Future and Symposium on
Trends in Communications, pp. 146–152. IEEE Press (2003)

19. Pashalidis, A., Mitchell, C.J.: Using EMV Cards for Single Sign-On. In: Katsikas,
S.K., Gritzalis, S., López, J. (eds.) EuroPKI 2004. LNCS, vol. 3093, pp. 205–217.
Springer, Heidelberg (2004)

20. Ross, B., Jackson, C., Miyake, N., Boneh, D., Mitchell, J.C.: Stronger password
authentication using browser extensions. In: Proceedings of the 14th USENIX Se-
curity Symposium, pp. 17–32. USENIX Association (2005)

21. Urienand, P.: Introducing TLS-PSK authentication for EMV devices. In: Proceed-
ings of CTS 2010, International Symposium on Collaborative Technologies and
Systems, pp. 371–377. IEEE Press (2010)

	Building General-Purpose Security Services
on EMV Payment Cards
	Introduction
	Generic Authentication Architecture
	Overview of GAA
	GAA Procedures

	EMV Security
	Transactions
	AC Generation

	EMV-GAA
	Architecture
	Procedures

	Informal Security Analysis
	Privacy and Security Issues
	Threats
	A Modified Scheme

	Related Work
	Applications
	Conclusions
	References

