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Summary. In recent years researchers have shown that the analogue
signalling behaviour of digital devices can be used for identification and
monitoring purposes. The basic postulate of these so-called physical-layer
identification (PLI) approaches is that devices are sufficiently variable in
their behaviour to be distinguishable and that an attacker would be
unable to adequately emulate this behaviour. Recent work, however, has
shown that at least some PLI implementations can be defeated using elec-
tronic equipment capable of generating arbitrarily shaped signals known
as arbitrary waveform generators (AWGs).

In thisworkwefirst present a framework todeterminewhether anAWG,
specified in terms of resolution, sampling rate, distortion, andnoise param-
eters, could beused todefeat a givenPLI system.We then utilise this frame-
work in the formulation of a cost-minimisation problem to find the most
cost-effective values of these parameters; i.e. we characterise the least ex-
pensive, and hence lowest performing, AWG an attacker would require to
defeat a PLI system. The use of the framework is illustrated by applying it
to a previously proposed PLI approach. Results indicate that the PLI sys-
tem could be defeated using an AWG with a substantially lower sampling
rate and resolution than the PLI system sampler.

1 Introduction

Identifying digital devices based on signalling differences manifested at the phys-
ical layer (known as physical-layer identification or PLI) has been shown to be
effective for a wide range of technologies. From wired [1] and wireless [2–6] net-
working devices to sensor [7, 8] and RFID devices [9–11], PLI approaches are
able to reliably distinguish between highly similar devices with accuracies of
over 90% [12,13].

The methodology of PLI is similar to that of biometrics [14]: (1) identify
and acquire a recurring and ubiquitous signal, S, to serve as a ’fingerprint’, (2)
extract a set of features from the signal, L = f(S), and (3) employ a classification
technique to compare a test feature set with a database of existing feature sets
in order to verify the purported identity of the test subject. When a threshold
technique is used in (3) to compare feature sets, a reference feature set, LR, is
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used with a distance measure, d(·), to check whether the differences between L
and LR are within a certain threshold, d(LR, L) ≤ th.

While PLI could be used to corroborate higher layer mechanisms used for
authentication, intrusion detection, and forensics, its use in these areas is predi-
cated on the belief that the slight variations in the signalling behaviour of devices
are difficult, if not impossible, to control and duplicate. In light of recent work
by Danev et al. [15] and Edman and Yener [16], which showed that wireless
signals can be successfully forged using arbitrary waveform generators (AWGs),
it is no longer possible to merely assert the inherent unreproducibility of signals.
Instead, we now require a framework to not only judge the security of PLI sys-
tems, in absolute terms and in relation to each other, with respect to existing
AWGs but one that also specifies the performance an AWG of the future would
need to defeat a given PLI system.

1.1 Paper Contributions and Structure

While existing work has shown that certain PLI systems can be defeated us-
ing AWGs, ours is the first work to consider the problem of whether a specific
AWG can defeat an arbitrary PLI system. In what follows we propose, and pro-
vide implementation details of, a general framework for determining whether
an AWG, characterised by sampling rate, resolution, signal-to-noise ration, and
total harmonic distortion, could produce a forged signal that would be accepted
by a given PLI system. By estimating the cost associated with an increase or
decrease in each parameter, we can also find the least expensive—i.e. lowest
performing—AWG necessary to defeat the PLI system.

As a result of this work, researchers and designers of PLI systems will be
able to 1) determine if a PLI system is secure from an attacker using a given
AWG; 2) compare and evaluate the relative security of systems; 3) investigate
the strengths and weaknesses of different PLI methodologies to decide which
features and comparison techniques are most effective in securely identifying
devices; and 4) evaluate the trade-offs associated with selecting higher or lower
performing equipment for acquiring device signals.

In the next subsection we provide an overview of the two works that motivated
our research: we discuss which PLI systems were attacked, the equipment used,
and the authors’ results. In Section 2 we describe two ways in which PLI systems
can be subverted, define our threat model, and note the most relevant parameters
used to characterise AWGs. The modelling of the attacker’s AWG is detailed in
Section 3, where we also discuss how a cost minimisation problem can be defined
that utilises the model to determine the most cost-effective values for the AWG
performance parameters. In Section 4 we demonstrate the use of the framework
by analysing the matched filter PLI system outlined by Gerdes et al. in [1, 12].

1.2 Related Work

In both [15] and [16] two types of attacks were carried out against the PLI
approach (which utilised the demodulation characteristics of 802.11b signals)
proposed by Brick et al. [5]; in addition, a transient-based PLI approach for
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sensor nodes proposed by Danev and Capkun [8] was also examined in [15]. The
PLI system of [5] was compromised in both works by creating signals with the
features of known devices and through the replay of observed frames. For the
former attack, false-accept rates (FAR) of 98% and 75% were reported for [15,16],
respectively; in the latter attack, the FAR for [16] was 55% while the replay
attack met with similar success as the generation attack for [15]. The difference
in attack success rates can probably be attributed to not only the threat models
but the vastly different hardware used to implement the PLI system and carry
out the attacks.

In [15] universal software radio peripherals (USRP) operating at 128 Megasam-
ples/s and controlled with the GNU Radio library were used for both the genuine
and attacker devices, with the attacker device being programmed to produce the
features of the genuine devices as measured by, and at, the PLI system (which
consisted of an Agilent Digital Signal Analyser operating at 40Gigasamples/s
with 8000MHz of bandwidth). The replay attack was carried out using a Tek-
tronix AWG 7000 (20 Gigasamples/s); the frames used for the replay were cap-
tured at the attacker’s location using the PLI system. In [16] both the PLI system
and the attacking device were built using the same USRP (14-bit analogue-to-
digital converter operating at 100 Megasamples/s and dual 16-bit digital-to-
analogue converter operating at 400MHz). The attacker sought to reproduce or
generate signals, which it captured, from one of three laptops used to represent
legitimate users.

In their analysis of the PLI system of [8], Danev et al.were able to successfully
replay frames captured by the PLI system over a wired channel; however, when
a wireless channel was used the system could only be defeated if the attacker
assumed the genuine device’s physical location.

2 Preliminaries

The following notation and nomenclature will be used when discussing the ana-
logue signalling behaviour of digital devices and the PLI system used to identify
those devices. We will also assume that devices transmit data using frames, as
in IEEE 802.3 and 802.11b.

A record, r, is defined as a discrete time/voltage sampled version (obtained
using an analogue-to-digital converter) of the analogue signal that makes-up

the data frame. For the PLI system, Lj
i is used to represent the feature vector

derived from the jth frame of the ith device; Lj
i (k) denotes access to the kth

element of the feature vector. In addition, a collection of feature vectors from
the ith device are denoted as Li, where Li(j) is used to refer to the individual

vector Lj
i . The feature vectors of frames that are to be tested by the system are

always accompanied by the subscript T ; the reference feature vector(s) used to
establish a device’s baseline behaviour by the subscript R. A generic analogue
signal is denoted by s̃ and a sampled version of it s.

2.1 Attack Types

We define and discuss the two classes of attacks that can be used against PLI
systems.
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Type I Attack. We define a type one attack as an attack in which an attacker
is attempting to accurately reproduce those portions of a device’s signal used for
identification. In the terminology of [15], this type of attack can be carried out
through feature replay or signal replay. In the former case, the attacker attempts
to replicate only the specific features used by the PLI system for identification;
those portions of the signal not used for identification needn’t be considered.
For a signal replay attack, the attacker acquires a sampled version of a device’s
signal and attempts to produce near-perfect copies of those portions of the signal
used for identification using an AWG.

We provide a demonstration of how our framework can be used to measure
the resiliency of PLI systems to signal replay attacks in Section 4. Because the
PLI system analysed in that section uses each sample point of the device’s signal
as features, the feature replay attack is not examined in this work. We note that
the framework can be used to evaluate feature replay, though.

Type II Attack. In a type two attack the attacker does not seek to produce
a high-fidelity copy of a device’s signal but rather exploits the limitations of
the identification technique used by the PLI system. For example, consider a
PLI system using a threshold-based approach where the distance measure is
simply the sum of the differences between the test and reference feature vectors
(d(LR, LT ) = LR(1) − LT (1) + . . . + LR(n) − LT (n), with d(LR, LT ) ≤ th for
LT to be accepted). To defeat the PLI system the individual differences between
all the elements of the feature vectors needn’t be sufficiently small, only the
sum of the differences; thus an attacker could simply engineer a signal such that
LT (n) ≥ th− LR(1) + LT (1) − . . .− LR(n) to satisfy the threshold.

A type two attack could be effected through manipulation of a signal generated
by a device under the attacker’s control or the attacker could craft a signal using
an AWG. The only limitation faced by the attacker is that their signal must
behave according to the standard governing data transmission for the device
(for example, in the case of 10Mb Ethernet the voltage levels, signal transitions,
etc must be in accordance with those specified in the 802.3 standard [17]).

To carry out such an attack, however, requires more knowledge of the PLI
system and associated target device than a type one attack. Whereas a type one
attack can be carried out simply by observing frames from the targeted device,
in a type two attack, assuming a threshold scheme is used by the PLI system,
the attacker must possess both the device’s reference feature set and thresholds
for future outputs to be able to construct their signal. By knowing these along
with the distance measure, an attacker might be able manipulate their signal, in
whole or in part, to produce a signal falling within the threshold for the device.
We are aware of no attacks of this type having been demonstrated against PLI
systems.

While this type of attack is not amenable to a general analysis, due to the com-
plicated and PLI-specific relationship between the signal, feature vectors, and dis-
tance function, so long as an AWG is used to actually generate a specially crafted
signal our framework can be used to determine if the attack would succeed for a
given AWG. A type two attack is proposed and evaluated in Section 4.
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Fig. 1. (Threat model) Assuming lossless channel (a) attacker and PLI system, using
the same samplers, are able to measure device’s signal s̃d and obtain same sampled
version sd, and (b) attacker uses a non-ideal AWG to synthesise the analogue signal
s̃a from sd, and the PLI system, using the same sampler as in (a), measures s̃a to
determine whether the attacker’s signal is distinguishable from sd

2.2 Threat Model

To simplify our analysis we chose to ignore channel effects and equip both the
attacker and PLI system with ideal samplers of the same resolution and sampling
rate (these parameters are explained below). In consequence of these assump-
tions, an attacker would be able to 1) capture the same device signal, s̃d, as the
PLI system (Figure 1a), and 2) generate a forged version of s̃d, denoted by s̃a,
using an AWG and know it be identical to what will be measured at the PLI
system, taking into account differences in the sample rates and resolutions of the
AWG and PLI system sampler, to produce the sampled signal sa (Figure 1b).

To justify ignoring channel effects at this time, despite the very real obstacle they
present to an attacker, as demonstrated in [13], we note that a non-ideal channel
is not only a problem for an attacker. Simply changing a device’s position with re-
spect to the PLI system significantly degrades our ability to re-identify it (unless
training data has been previously acquired for the new position) [8]. Our analysis
thus presents a best-case scenario for the attacker. In actuality an attacker would be
required to model the channel and integrate its effect into the signal to be produced
by the AWG.

The decision to provide the attacker and PLI system with identical samplers
was mostly a practical matter: doing otherwise would have required multiple
oscilloscopes to carry out our experiments. It is also difficult to see the benefit of
an attacker using a sampler with a higher resolution and sampling rate than the
PLI system as, irrespective of the sampling rate and resolution of the attacker’s
AWG, the forged signal would be downsampled at the PLI system. In addition,
we would argue, and indeed it is assumed in our AWG framework, that an
attacker captures s̃d at a resolution and sampling rate greater than or equal to
that of their AWG for the simple reason that upsampling the captured signal
could add no new information. Both of these cases could be tested at a future
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DAC

x̂
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Fig. 2. (Arbitrary waveform generator) the code specifies the levels of discrete signal
x̂, which the low-pass filter smooths to create x̃ (NOTE: x̂ has discrete levels but is
continuous in time)

time, and the framework is, in any case, flexible enough as-is to accommodate
different samplers for the attacker and PLI system.

We also note that while both the channel and tap of Figure 1 are depicted using
lines, this is not meant to imply that the framework is limited to analysing wired
PLI systems. In the case of a wireless channel, an antenna would serve as the tap and
if down-mixing were used by the PLI system (as in [8]) appropriate mixers could be
placed in front of the ideal samplers and after the non-ideal AWG. If down-mixing
were not used by the wireless PLI system, we could either stipulate that the sam-
pling rate of the non-ideal AWG be no less than twice the carrier frequency used by
the devices or place a mixer after the AWG to up-mix the generated signal.

2.3 AWG Characteristics

An arbitrary waveform generator creates an analogue version of a digitized
waveform. The three core components of an AWG are the waveform source
memory, digital-to-analogue converter (DAC), and low-pass filter (Figure 2);
optional components include scaling circuits, DC offset circuits, and differential
outputs [18]. An analogue signal is created by feeding the binary values of the
digitized waveform (known as codes) to the DAC, where a stepped, analogue
output is generated; the stepped output is smoothed by the low-pass filter.

Because of the central role of the DAC in recreating the digital signal, we
will concentrate our performance analysis exclusively on it and assume the other
components of the AWG to be ideal. In any case, the parameters related to the
DAC we will be discussing are always given with respect to the output of the
AWG, so we are merely overestimating the minimum performance of the AWG.

According to [19], the most important specifications used to evaluate the
dynamic performance of a DAC are settling time, glitch impulse area, distor-
tion, spurious free dynamic range (SFDR), and signal-to-noise ratio (SNR). In
addition to these parameters, we will also discuss DAC resolution. Definitions
for each of these parameters may be found in the appendix. Static performance
measures (gain, offset, differential non-linearity [DNL], and integral non-linearity
[INL], see [20]) are not discussed due to the fact that dynamic non-linearities
dominate at high frequencies [21]. Our distortion model does, however, allow us
incorporate errors due to static non-linearities.

3 Framework Overview

A system diagram of our framework is given in Figure 3. The attacker begins
with sd, a sampled version of some authenticated device’s signal, s̃d, that is
acquired at the PLI systems sampling rate, fp, and resolution, Rp. Because of
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Down-
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sampler
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Fig. 3. (Framework overview) Operations used to simulate (red) attacker producing
analogue signal s̃a from authentic device’s sampled signal sd, and (blue) PLI system
sampling and comparing attacker’s forged signal to baseline behaviour of device to
determine whether authentic and forged signal are distinguishable

the lossless channel assumed in our threat model, sd is the same for the attacker
and the PLI system. The first step the attacker takes is to downsample sd to
the sampling rate of their AWG. Allowing fa = P/Q × fp (P/Q ≤ 1) to be
the sampling rate of the AWG, sd is downsampled by P/Q. The downsampled
signal is then discretised according to the resolution of the AWG, Ra. To simulate
the distortion and noise present in all real-world AWGs, the downsampled signal
must be passed through a distortion function and have noise (in our case, additive
white gaussian noise) added to the resulting signal to produce the attacker’s
output, s̃a. However, before noise is added to the distorted signal, it is upsampled
to the PLI system rate—i.e. it is upsampled by Q/P—and a reconstruction filter
is applied. Upsampling at this point is done for two reasons.

In the first place, distortion and noise measurements of actual AWGs are
made after the generated signal has passed through a reconstruction (low pass)
filter. Applying our distortion model to an upsampled signal would introduce
high frequency distortion components that would otherwise be filtered by the
AWG’s reconstruction filter. Secondly, since we are synthesising signals for the
PLI system to compare with actual sampled data to determine the similarity
between the two, the synthesised data must be at the same sample rate as the
original. In actuality the attacker’s AWG would produce a continuous-time signal
that would then be sampled by the PLI system at the rate fp; upsampling the
discrete representation of the attacker’s signal simulates this sampling.

At the PLI system, s̃a is discretised according to the sampler resolution Rp

(the sampling of the signal having been accomplished by the AWG model).
The preceding involves only the first step of the PLI methodology; steps two

and three, wherein the attacker’s signal is subjected to feature extraction and
comparison, are specific to the PLI system under examination.

The methodology used to model the attacker’s AWG and the PLI system is
detailed in the next subsection, while a cost-based method for determining the
most economical values for the parameters outlined in Section 2.3 for the AWG
are covered in Section 3.2.

3.1 AWG and Sampler Models

The functionality of the AWG and sampler models of the framework are explained
within the context of the performance parameters given in Section 2.3. Note: the
text in parenthesis immediately following each parameter indicates which aspect
of the framework (with reference to Figure 3) the parameter bears upon.
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Settling Time. (Down-sampler, Up-sampler, Reconstruction filter) It is the
settling time of the DAC used in the AWG that sets the ultimate limit on the
maximum sampling rate of the AWG. Allowing τ to denote the settling time
of the DAC, the sampling rate of the AWG, f , must be less than or equal to
the inverse of the settling time (f ≤ 1/τ). If we stipulate that the settling time
of the attacker’s AWG, τa is much less than the inverse of the sampling rate,
fp, of the PLI system sampler (τa << 1/fp) the settling time may be ignored
as it unlikely that the attacker’s signal would be sampled during the transition
period (modern AWGs are capable of meeting this requirement, see [22]). By
this assumption, the glitch area may be similarly ignored.

Based on the above, we need focus only on the sampling rate of the AWG
and PLI system sampler. To simulate the attacker downsampling the signal sd
by integer amounts—i.e. the new sample rate is given by 1/n × fp, where n
is an integer—we can simply discard every nth data point; however, to down-
sample by a non-integer factor, of say P/Q requires upsampling (insertion of P
zeros between data points), application of an anti-alias filter, and downsampling
(discarding every Q datapoints) [23]. An FIR least-squared filter with a cutoff
frequency of P/Q ∗ fp/2 (the Nyquist frequency) is used as the anti-aliasing fil-
ter in our implementation. The Nyquist frequency of the attacker’s AWG was
chosen as most commercially available DACs are able to generate signals up to
their own Nyquist frequency [24].

The same procedure is used to restore the attacker’s signal to the PLI system
sample rate (the signal is upsampled by Q/P ).

Resolution. (Discretisers) Because of the filtering used to downsample and
upsample signals, the sample points of the resampled signals will not be exact
multiples of the increment voltage of either the attacker’s AWG or the PLI
system’s sampler. In order to incorporate the effects of the finite resolution of the
AWG and sampler, it is therefore necessary to discretise these signals by rounding
each sample to the nearest multiple of the increment voltage. (Algorithm 1 details
how the sampled signal s is discretised for an n-bit AWG/sampler with full-scale
voltage VFS .)

Algorithm 1. Set resolution

Input : s, n, and VFS

Output: s∗ (n-bit representation of sd)
foreach si ∈ s do

i← argminm

(∣∣∣si −m VFS
2n−1

∣∣∣
)
; //m is an integer

s∗ ← s∗ ∪
(
i× VFS

(2n−1)

)
;

end

Distortion. (Distortion) A full and proper accounting of how the output of a
DAC deviates from its ideal output depends not only on the behaviour of the
non-ideal components used to construct the DAC [25] but also on its architec-
ture [26,27]. As such, it is not possible to utilise a single distortion model in our
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framework. Rather, an attacker would need to select (based upon market avail-
ability or the manufacturing resources at their disposal) a distortion model for
the DAC used in their AWG. While several so-called behavioural models have
been proposed for many different DAC architectures and deployments [28–32],
to simply illustrate how distortion models can be used in our framework we have
selected a model that, while not tied to any particular architecture, nonetheless
produces adjustable amounts of static and dynamic distortion.

Allowing s[i] to denote the ith sample point of the sampled signal s and s∗

the distorted version of s, distortion of both types can be introduced using the
polynomial [33]

s∗[i] = D(s[i]) = β + αs[i] + γ × (β + αs[i])2 + δ × (β + αs[i])3

+ η × (β + α× (s[i] − s[i− 1]))2 + κ× (β + α× (s[i] − s[i− 1]))3 (1)

In (1), static distortion is generated through the scaling of individual sample
points, while dynamic distortion is introduced by taking the difference between
two sample points.

To achieve a certain amount of distortion using this model one would create a
test signal (see the [34]), apply (1) to it, and vary the coefficients until the desired
THD was reached. Unfortunately, we are aware of no set procedure for how the
coefficients should be modified. In the absence of formal guidelines, we follow [33]
and set the initial values of the coefficients to α = 1, β = 0 (no gain or offset error,
as these can be compensated for), γ = 0.003, δ = 0.0001, η = 0.0001, κ = 0.002
and vary each coefficient (excepting α and β) by a constant multiple, m, to
achieve a specified distortion. Our distortion model is then

s∗[i] = D(s[i],m) = β + αs[i] + m× γ × (β + αs[i])2

+ m× δ × (β + αs[i])3 + m× η × (β + α× (s[i] − s[i− 1]))2

+ m× κ× (β + α× (s[i] − s[i− 1]))3 (2)

In our framework the THD of the AWG is established using a procedure similar
to that of real AWGs: Equation 2 is applied to a test signal1, consisting of a
single period of a 10 MHz sine wave, sampled at the sample rate of the AWG,
and m varied until the THD equals the value specified. Common test signals
used in real world measurements for several DACs we examined were 1,2,4,5,
and 10 MHz (see [35], e.g.). A 10 MHz test signal was selected due to the fact
that the PLI system used to illustrate our framework extracts features from a 5
MHz square wave and 10 MHz sits between the fundamental frequency and the
first harmonic of 15 MHz (see Section 4.3). As noted at the beginning of Section
3, the test signal is upsampled before the distortion measurements are made.

Having found an m that produces the specified THD, (2), is applied to the
attacker’s signal and the resulting distorted signal upsampled by Q/P to the
PLI system sample rate (Algorithm 2).

1 The attacker’s signal is not used with the model to establish the THD of the AWG
because it is composed of multiple frequencies, and while the THD can be calculated
for any particular frequency over the bandwidth of the signal, we cannot say which
particular THD represents the THD of the AWG.
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Algorithm 2. Set distortion

Input : s, P,Q, and thd
Output: s∗ (distorted version of s)
st ← create test signal;
sD ← st ; //distorted test signal

m← 1;
//THD(·) calculates THD using Equation 2 of [34]

while THD(st, sD) 	= thd do
if THD(st, sD) > thd then decrease m;
else increase m;
foreach si ∈ st do

sD ← sD ∪ D(si, m);
end
sD ← upsample (sD, Q, P );

end
foreach si ∈ s do

s∗ ← s∗ ∪ D(si,m);
end
s∗ ← upsample (s∗, Q,P );

Spurious Free Dynamic Range (SFDR). The distortion model described
above only allows one or the other of THD/SFDR to be specified (the other may
be calculated). We chose to specify THD as it more informative, in the sense that
the SFDR may remain constant while harmonic distortion continues to increase.

Noise. (Noise) Just as is the case for distortion, there are several ways to model
the noise performance of DACs [36,37]. Again, for the purposes of illustration, we
have selected a simple, non-behavioural model that uses additive white Gaussian
noise (AWGN) for the attacker’s AWG.

As noted in [34], the signal-to-noise ratio of an AWG is calculated in such a
way as to exclude the effects of distortion. Therefore, we use the signal produced
by the distortion model in the numerator of the SNR ratio (see Equation 1
of [34]); i.e. a distorted signal, s, produced using (2), is defined as being free
of noise. Having calculated the power of this signal, ps = P (s), to achieve a
specified signal-to-noise ratio, snr, we need merely generate a noise signal, sn of
equal length with power P (sn) = ps/snr and add the two to produce a signal
with both distortion and noise, s∗ = s + sn (Algorithm 3).

Algorithm 3. Set SNR

Input : s and snr
Output: s∗ (noisy version of s, with SNR of snr)
ps ← P (s) ; //P (·) calculates power

pn ← ps/snr;
sn ← create signal of white Gaussian noise, having power pn;
s∗ ← s+ sn;
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3.2 Finding Minimum AWG Performance

By following the procedure outlined above, it is possible to simulate an attacker
generating a forgery of an authenticated device’s signal using an AWG of a
specified sample rate, resolution, THD, and SNR. This forged signal can then
be used in steps two and three of the PLI methodology (feature extraction and
comparison) to determine whether the attacker’s AWG is sufficient to defeat a
given PLI system.

To judge the security of any particular PLI system, one could of course gather
performance information on all the AWGs currently available, construct AWG
models for each, and simulate attacker signals. To evaluate the relative secu-
rity of different systems a similar process would be followed for each, with the
system that required the most expensive AWG necessary to defeat it adjudged
the most secure. Consider, however, a PLI system for which no existing AWG
is capable of defeating. While, through trial and error, the framework could be
used to find a number of AWGs that would defeat the system, if we wished to
actually manufacture such an AWG, how would we decide which combination of
performance parameters would be cost-effective?

This is to say, given two theoretical AWGs capable of defeating a particular
PLI, the same in every respect except that one has five bits of resolution and
a THD of -90 dBc while the other has a resolution of six bits and a THD of
-70 dBc, the attacker would want to select the cheaper of the two to manufac-
ture. Finding the most cost-effective AWG may be accomplished by utilising the
above framework in the constraint function of a cost-minimisation (constrained
optimisation) problem that accounts for the marginal cost for improvements in
each performance parameter. Such a formulation would also be useful in the case
where a wide enough gap exists between the cost of manufacturing an AWG ca-
pable of defeating the system and simply purchasing an existing AWG that is
known to be able to defeat it. Similarly, we would need to know the lowest per-
forming theoretical AWG necessary to defeat a system to be able to say that
the system is secure against attacks using AWGs with sample rates, resolutions,
THDs, and SNRs below a certain level.

Cost Minimisation Formulation. The cost, or objective, function in our for-
mulation, fc(f, n, snr, thd), returns the cost necessary to obtain an AWG with
a sampling rate of f , resolution of n, SNR of snr, and THD of thd. Allow
sa = AWG(sd, f, n, snr, thd) to be the attacker’s forgery of an authenticated de-
vice’s signal, sd, produced using the AWG with the aforementioned parameters.
Furthermore, let th = d(LR, f(sT )) be the maximum distance allowed between
a signal, sT , claiming to originate from the device and the device’s feature set,
LR, where the function f(·) extracts features specific to the PLI approach from
the sampled signal sT and d(·) is the distance measure the approach employs.
Our minimisation problem is then

min
f,n,snr,thd

fc(f, n, snr, thd) subject to d(LR, f(sa)) ≤ th (3)

The derivation of a sample cost function is covered in Section 4.4.
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Equation 3 describes a mixed-integer non-linear programming problem, with
black box constraints. To ease the process of solving of it, we can impose upper and
lower boundaries on each parameter, in addition to stipulating integer values for
each.

Given the assumptions of our threat model, the upper bounds for the sam-
pling rate and resolution must be those of the PLI system sampler. Modern
DACs are capable of achieving THDs < −80 dBc [35] and SNRs > 75 dB [38],
so our theoretical DAC must be capable of exceeding at least these numbers.
Lower bounds are calculated using the framework by setting all parameters to
their upper values and then choosing one parameter to decrease until the signal
generated by the AWG model violates the constraint of (3); the value at which
the constraint is violated is then the lower bound for that parameter. This pro-
cess is repeated for each parameter. Lower bounds are thus specific to the PLI
system under consideration.

To convert (3) to an integer non-linear problem, we mandate that thd and
snr be integers (n is already an integer), while for the sampling rate we define
fa to be some fraction P/Q of the PLI system sampling rate (where P and Q
are integers, passed separately to the optimiser). As the signal the attacker is
attempting to forge is sampled at the PLI system sampler rate, and our upsam-
pling/downsampling routine will first upsample by P and then downsample by
Q, the attacker’s effective sample rate would be P/Q× fp.

4 Framework Application

We demonstrate the use of the framework on the PLI approach of Gerdes et
al. , which was proposed to identify wired Ethernet devices. In what follows we
provide a brief overview of their PLI approach, describe our implementation of
it, and detail how the framework was used to analyse the security of it.

4.1 Overview of PLI Approach

Using the nomenclature of Section 2 and the generic PLI methodology of Section
1, the PLI approach of Gerdes et al. is to [12]: (1) capture the beginning of a
10Mb Ethernet frame, known as the synchronisation signal, where a slope-based
trigger is used by the sampler to detect the beginning of the frame, (2) extract a
specified number of contiguous sample points, using the triggering sample point
as a reference for which sample point to start with, and (3) check if the inner
product of the extracted features and reference features lies between the two
thresholds established for the device.

More explicitly, as laid out in Sections 4.2–3 of [12], for device k to be accepted
as device i the inner product between the reference features, LRi, of the ith device
and the features, Lj

Tk, extracted from the jth record, rjk, of the kth device must
fall between the thresholds th+i and th−i.

The reference feature vector, derived from an arbitrary record, rli, of the ith

device is LRi = rli[trg
l
i+m : trgli+n], where trgli is the sample point in the record

rli at which the scope triggered and m and n are the first and last sample points,
relative to the trigger, of the span of sample points used as the feature set for the
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device. To account for triggering error and slight deviations in signal levels, the
test feature set is actually taken to be Lj

Tk = f(rjTk, trg
j
k) = rjTk[trgjk + m− δ :

trgjk + n + δ], where δ is the number of extra sample points to include in the
feature vector.

Stating the preceding in terms of a constraint equation, we have that for a
record from device k to be identified by the PLI system as having originated
from device i, it must satisfy

th−i ≤ max

(
n−m∑
h=1

LRi[h] × Lj
Tk[h + Δ]

)
≤ th+i (4)

where Δ may vary from 0 . . . 2 × δ and th+/−i are established using the last 25
accepted records but only updated after 20 records are accepted (see Sections
4.2.2.3 and 4.3.3 of [12]).

4.2 Attacks Against PLI Approach

Type I Attack. For the type one attack the attacker attempts to replay the
synchronisation portion of the original waveform, but with a different payload,
using the lowest performing AWG possible.

Type II Attack. As an example of a type two attack, let us assume that the
attacker is still attempting to produce a high fidelity copy of the targeted device’s
signal but wishes to compensate for the inherent error of their DAC so that a
lower performing AWG can be used. If the error distribution of the DAC is such
that it is just as likely to overshoot the desired output value as undershoot it,
for the attacker to maximise the amount of allowable error between the forged
signals and the authentic signals they should construct a single frame based
upon the average of multiple observed waveforms and transmit it with a custom
payload. The proof follows.

Following the procedure set out in Section 4.3.3 of [12], the thresholds for the
next m records from device i are determined by taking the mean of distance
measures for the previous n records and adding, for the upper threshold, or sub-
tracting, for the lower threshold, the standard deviation of those same measures
times some constant, K. Allowing the output of the distance measure for the jth

record to be represented by dj = d(LRi, f(sji , trg
j
i )) the thresholds are then

th+/−i(d
j · · · dj+m−1) = μ(dj−n · · · dj−1) ±K × σ(dj−n · · · dj−1) (5)

where μ(·) and σ(·) are the mean and standard deviation, respectively.
As d(·) is the sum of products, forging a signal that produces (th+ + th−)/2

allows for the maximum, equal amount of deviation for each sample point in
either direction. The average of the signals used to calculate the thresholds is
just such a signal.

We note that d(·) for this PLI approach is effectively using correlation to find
the maximum alignment between LR and LT , and by extension the records, sR
and sT , used to create the feature vectors. Allow LT∗ to equal those elements of
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LT found to produce the maximum output of the distance measure with LR and
l to be number of elements of LR (i.e. we extract the m− n contiguous sample
points from sT that produce the maximum correlation with the m − n sample
points of sR that constitute LR). The distance measure for the jth record may
then be simplified to

dj =

l∑
k=1

LR[k] × Lj
T∗ [k] (6a)

= LR · Lj
T∗ (6b)

The mean of the distance measure for n training records can be expressed by

μ(d1 · · · dn) =
d1 + d2+, . . . ,+dn

n
(7a)

=
LR · L1

T∗ + LR · L2
T∗+, . . . ,+LR · Ln

T∗

n
(7b)

=
LR · (L1

T∗ + L2
T∗+, . . . ,+Ln

T∗
)

n
(7c)

= LR · μ (
L1
T∗ · · · �Ln

T∗
)

(7d)

It is worth noting that although an infinite number of arbitrary signals (though
not an infinite number of signals falling within the guidelines set by the 802.3
standard [17]) could be generated to produce a distance measure equal to the
mean of the previous n records, finding the average signal only requires that
an attacker observe n waveforms, align, and then average them. Of course an
attacker could not know the which frames would exactly constitute the n train-
ing records, and while the attacker can align and average observed waveforms,
there is no guarantee that the resulting signal, even if reproduced perfectly,
would be aligned with LR in such a way as to produce a distance measure of
(th+ + th−) /2.

4.3 Experimental Validation of PLI Approach

To ensure that the devices we intended to forge were identifiable using the
matched filter PLI system we collected data from 27 different Ethernet cards;
using the matched filter PLI approach outlined above, we were able to identify
the cards with ≈ 94% accuracy (false-reject rate of 0.2%).

Our experimental setup consisted of two PCs: one to act as the Test PC
(TPC), which housed the Ethernet card to be fingerprinted, while the other,
the Data Acquisition PC (DAQPC), made use of a passively tapped internal
Ethernet card to capture Ethernet frames sent to it over a crossover cable by
the TPC. A Tektronix 4032 digital phosphor oscilloscope (DPO), interfaced via
USB and controlled by MATLAB, was used as the PLI system sampler. As per
our threat model, both the attacker and the PLI system used the data collected
by the DAQPC.

In order to generate traffic for the DAQPC to capture, the TPC was instructed
to ping the DAQPC. During a typical data acquisition period the TPC would
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ping the DAQPC 10,000 times over the course of approximately three hours.
To ensure that only traffic from the TPC was captured and that the measure-
ment equipment did not affect the load characteristics of the DAQPC, as seen
by the TPC, only the receiving pins of the DAQPC’s Ethernet card on the sec-
ondary side of the transformer were connected to the oscilloscope. In this way
the DAQPC could respond to the TPC’s pings and ensure that the data acqui-
sition process didn’t cause packet loss or affect the transmitting circuitry of the
TPC. Upon detection of an Ethernet frame (a simple slope-based threshold was
used) the oscilloscope began to sample the signal at a rate of 2.5 Gigasamples/s;
the signal was sampled 1,000,000 times, for a total of 400 micro-seconds. The
oscilloscope had 8-bits of resolution.

Finally, the data collected during sampling was sent to the DAQPC via USB
interface, where a MATLAB routine monitoring the interface accepted the data
and stored the values in a vector called a record, which was subsequently written
to disc. Each captured frame was stored in its own record; all of the records
collected for a device during a session are said to encompass its dataset.

We note that a 10Mb Ethernet frame is transmitted using a differential signal
to lessen the effects of environmental noise. The frame is reconstructed at the
receiver by taking the difference of the received signals. In what follows, we apply
the framework to the reconstructed 10Mb Ethernet waveform, which we found
by taking the difference of the signals captured at the receive pins on secondary
side of the DAQPC’s transformer. This results in a loosening of the constraints
placed on an attacker, as in actuality an attacker would be required to forge two
signals when attempting to defeat the system. We make this simplification as
the PLI approach of Gerdes et al. uses the reconstructed signal for identification.

In addition, as each channel of the oscilloscope used to acquire device signals
had 8 bits of resolution, and we take the difference between the channels to
reconstruct the Ethernet Frame, the device signals should actually be considered
9-bit: the maximum of the absolute value of any of the binary sample points
that make up the waveforms was greater than 127 but less than 255; 8 bits, plus
another bit for the sign, are required to represent this data then. The y-scale, or
voltage, increment used in the capturing routine was 0.02 volts, which leads to
an effective full-scale voltage of -5.12 to +5.10 V (binary values for the sample
points range from -256 to 255).

4.4 Cost Function Estimate

To estimate the cost of acquiring an arbitrarily specified AWG, we assumed a lin-
ear relationship between cost and each performance parameter; i.e. we assumed
that DAC performance scales linearly with cost, so that, for example, all other
parameters being equal, a DAC with an SNR of 65 dB would cost more than
one with an SNR of 50 dB.

Pricing information for 37 different DACs from Analog Devices was obtained
using their online tool ADIsimDAC, which suggests DACs that meet certain
user specifications, along with their cost [39]. Since we wished to obtain pricing
data on as many DACs as possible, we only specified the dynamic range (-4
to 4 V) and minimum sampling resolution of 100 MS/s. We note that even
though the PLI system sampler has a dynamic range of ≈±5.12 V, only ≈±4
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V is necessary to forge the reconstructed Ethernet frame, as the signal does
not exceed ±3.5 V. Furthermore, while an attacker could utilise a DAC with a
different dynamic range, by scaling and applying an offset to the DAC output
using an amplifier, this would introduce additional distortion and noise that
would need to be included in the AWG model [40].

Having found DACs meeting these two specifications, we then extracted sam-
ple rate, resolution, noise, and distortion parameters from their datasheets. Of
the 37 DACs meeting our requirements, 17 reported inter-modulation distor-
tion (IMD) and noise-spectral density (NSD) instead of THD/SNR. While these
measures could be used with our framework, by using different test signals with
the distortion model and performing different noise measurements, they are
nonetheless incompatible with—i.e. cannot be converted to—THD/SNR mea-
sures; as such, they were discarded. Seven DACs reported THD/SINAD instead
of THD/SNR; because of the relationship between THD, SINAD, and SNR noted
in Section 2.3 we were able to convert the SINAD measure to SNR. If multiple
test signals or bandwidths were used to give a range of values for a particular pa-
rameter, we selected the signal with the highest frequency, at the highest output
current, with measurements made over the largest bandwidth.

Using these data we performed a multiple linear regression (R2 of 0.8185) to
obtain the following cost function

fc(P,Q, n, snr, thd) = 0.0693 × P/Q× 2500 + 1.6201 × n− 0.1518 × thd

+ 0.0164 × snr − 26.4959 (8)

Where the sampling rate is defined, in units of Megasamples/s, as a fraction of
the PLI system sampling rate fp = 2500, resolution (n) in bits, THD (thd) in
dBc, and SNR (snr) in dB.

When examining the datasheets, we noticed that in general DACs with higher
resolution and sample rate tended to have higher THD. This implies that is
very costly to achieve small amounts of distortion at higher resolutions and
sampling rates. However, when linear regression was performed using THD values
from the datasheets, a positive coefficient was reported. As THD is negative,
increasing the absolute value of the THD (i.e. decreasing the distortion) within
the framework would actually lead to a lowering of the cost. Thus, a solver
employing a cost function with a positive coefficient for THD would tend to
drive it to −∞ (zero distortion). To counter this we transformed the THD values
by adding a positive scalar greater than any of the THD values and taking the
negative of the result.

4.5 PLI System Evaluation Setup and Results

To evaluate the security of the PLI system, we first incorporated (4) into the
cost-minimisation formulation given in (3), which lead to

min
f,n,snr,thd

fc(f, n, snr, thd) subject to d(LR, f(sa, trga)) ≤ th+

th− ≤ d(LR, f(sa, trga))
(9)
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where d(·) = max (
∑n

i=1 LR[i] × LT [i + Δ]), n is number of elements in LR,
sa = AWG(sd, f, n, snr, thd), and trga is the sample point in the attacker’s
record, sa, at which the PLI system sampler triggered.

Equation 9 is then used, along with the cost function defined by (8), to find the
lowest-cost AWG necessary to successfully carry out a type one replay attack
and a type two attack against each of the devices used for the experimental
validation of the PLI. A randomly selected record was used in the type one
attack, while the type two attack used a synthesised record based on the average
of 25 records.

A lower bound for each of the AWG parameters was established by decreasing
or increasing their value (the former in the case of sampling rate and resolution
and the latter for SNR and THD), while the other parameters were set to their
ideal values, until either of the constraints of (9) were violated by the resulting
record. The lower bounds were found to be fa = 2/100 × 2500 = 50, n = 5,
thd = −25, and snr = 20; should any one of the parameters fall below these
values, the resulting record would be automatically rejected. Upper bounds were
fa = 2500, n = 9, thd = −90, and snr = 100.

Record Selection. To select the record(s) to be forged, we first chose 44 se-
quential records (the first record was chosen randomly, though it had to number
1000 or greater to ensure that the device was operating outside the warming-up
period); the first 25 records were used to establish thresholds for the remaining
19. For the type one attack, one of the 19 records was chosen, at random, to
be reproduced using the AWG model; for the type two attack a combination
of 25 records were chosen from the training records and the remaining 19, with
at most 24 records selected from the training set (again, these were selected se-
quentially). To create the averaged record, each of the 25 selected records was
aligned with the first and the average computed. The reference features were
extracted from the first record of each device’s dataset.

In [12], 25 records are used to establish thresholds for the next 20 records.
We limited our selection of records usable for forgery to only the next 19 (and
stipulated that the attacker could only use at most 24 of 25 training records
for averaging) because if record 20 should be selected randomly (or the attacker
begins averaging with the first record), the attacker would be forging a record
used as training data to determine the thresholds for the forgery. This case
should be examined separately to see how much, if any, advantage is gained by
the attacker. We also checked to be sure that the single record used in the type
one attack would have been accepted by the PLI system—an attacker would not
be able to guarantee this, which is another reason for them to use an average of
several records.

Results. A summary of the AWG characteristics for each of the attacks, found
using the genetic algorithm solver included in the Global Optimisation toolbox
for MATLAB, are given in Tables 1a and 1b. As can be seen from examining
the best-case scenario (when the attacker is required to utilise the most expen-
sive AWG), the sampling rate and resolution of an AWG necessary to defeat a
matched-filter based PLI system would need to be substantially less than those
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Table 1. Characteristics of highest, mean (rounded), and lowest cost AWGs required
to carry out the (a) type one attack using randomly selected signal and (b) type two
attack

Parameter Highest Mean Lowest
Resolution (bits) 5 5 5
Sample rate (MS/s) 53 50 50
THD (dBc) -35 -30 -26
SNR (dB) 21 22 20

(a)

Parameter Highest Mean Lowest
Resolution (bits) 5 5 5
Sample rate (MS/s) 53 51 50
THD (dBc) -37 -32 -25
SNR (dB) 22 22 20

(b)

of the sampler used in our implementation (for the PLI system sampler, n = 9
and fp = 2500 MS/s). In the worst-case scenario (lowest cost to attacker), the
sampling rate, resolution, SNR, and THD are at the lower bounds (or nearly so),
while for the mean case only the SNR and THD are appreciably distant from
the lower bounds. In any case, the sampling rate, resolutions SNR, and THD
of each of the DACs used for the cost function estimation of Section 4.4 are in
excess of those reported in the tables.

Both the average and maximum costs for the type two attack are (slightly)
higher than those of the type one, contrary to the results of Section 4.2. This is
in spite of the fact that when the AWG attacker’s averaged record was tested
directly (i.e. it did not pass through the AWG model) with the reference feature
set the resulting distance measure was almost exactly (th+ + th−)/2. It seems
possible that the averaged sample point values, when they are discretised, are
biased slightly towards one of the higher or lower level, instead of being equally
distributed among the two (as assumed in our proof).

It should also be mentioned that because of the randomness of the noise an at-
tacker record will sometimes be rejected at the reported minimum SNRs. Having
repeatedly checked for constraint violations using the same SNR, it appears that
the more the noise changes the trigger point of the attacker record relative to the
record used for the reference feature set (i.e. as |trgp− trga| grows larger) the more
likely it is that the record will be identified as a forgery. To ensure acceptance, the
attacker should employ an AWG with a slightly higher SNR (≈2 dB).

5 Conclusion

We have proposed, and illustrated the use of, a framework to determine whether
an attacker could defeat a given PLI system by replaying a record using an AWG
of a specified sample rate, resolution, THD, and SNR. The framework is flexible
enough to be used in evaluating arbitrary PLI system implementations, using
different threat models and AWG models. We also showed how the framework
can be used with a cost-minimisation problem to find the lowest performing
AWG necessary to defeat a PLI system. Given a particular pricing model for the
sample rate, resolution, THD, and SNR, the cost-minimisation formulation can
also be used to determine the most cost-effective AWG.

For the reasons given in Section 2.2, this version of the framework did not in-
corporate channel effects and assumed ideal/identical samplers for the attacker
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and PLI system. In order to better evaluate the security of PLI systems, we
will extend our work by integrating both channel models and models for non-
ideal/differing samplers into the framework. To widen the application of the
framework, we will use it to evaluate and compare PLI approaches for the wire-
less domain and investigate the feature replay attack mentioned in Section 2.1.
Finally, the immediate focus of our future work will be to experimentally confirm
the predictions of the framework for the PLI system of Gerdes et al.
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