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Abstract. P-homomorphic signature is a general framework for comput-
ing on authenticated data, which is recently proposed by Ahn et al. With
P-homomorphic signature, any third party can derive a signature on the
object messagem′ from a signature ofm, ifm′ andm satisfy P (m,m′) = 1
for some predicate P which denotes the authenticatable relationship be-
tween m′ and m. Ahn et al. proposed a RSA P-homomorphic signature
scheme by using a RSA accumulator, which is very efficient in space. How-
ever, the computational cost of verification and derivation is very heavy.
We present an improved P-homomorphic signature scheme based on fac-
toring problem. In our construction, the time efficiency of both verification
and derivation are much better than Ahn’s scheme.

Keywords: P-homomorphic signature, signature derive, factoring prob-
lem, cloud computing.

1 Introduction

With the development of cloud computing, many secure problems have been
proposed. One of the most important problem is that it’s too much of a secu-
rity risk to give a public cloud provider such as Amazon or Google access to
unencrypted data. While data can be sent to and from a cloud provider’s data
center in encrypted form, the servers that power a cloud can’t do any work on
it that way. In 2009, Gentry proposed a fully homomorphic encryption scheme
to make it possible to analyze data without decrypting it [1]. Up to now, some
homomorphic encryption schemes have been proposed[1–3], while only a few
homomorphic signature schemes have been presented.

In the past few years, there are about three research classes which have touch
on this area: quoting/redacting signature, arithmetic signature, transi-
tive signature. Quoting/redacting signature [4–8] is that given Alice’s signature
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on some messagem, any one can derive Alice’s signature on a subset of m. Quot-
ing/redacting signature is specially applied to signed text message and signed
images. Arithmetic signature [9–13] is motivated by the application of secure
network coding, which is that given Alice’s signature on vectors v1, · · · , vk ∈ F

n
p ,

any one can derive Alice’s signature on a vector in linear span of v1, · · · , vk. In
transitive signature[14–18], given Alice’s signature on edges in a graph G, any
one can derive Alice’s signature on a pair of vertices u, v, if there exists a path
from u to v in G.

Recently, Ahn et al. put forth a general framework of computing on signed
data[19], which can cover all the three classes research above. Their definition
is instantiated with any predicates, and allows to repeat derivation on the sig-
natures. They call this general framework slightly homomorphic signature or
P-homomorphic signature. In [19], they provide two general constructions for
computing signatures on any univariate, closed predicates, namely predicates
P (M,m′) where M only contains a single message and if P (a, b) = P (b, c) = 1
then P (a, c) = 1. The first construction is a brute force construction from any
signature. Soundness of this construction follows from the underlying signature
scheme. However, the signatures in this construction may become very large,
which effects both the signing time and signature size. The second construction
is a RSA accumulator-based construction, which can produce a short signature,
but the computational cost of both verification and derivation is even worse than
the first construction. The prime search component of hash function is the dom-
inant factor. Ahn et al. [19] also proposed the third efficient construction, which
is only suitable for quoting substrings and not a generic solution. Furthermore,
the signature derivation procedure in this construction is very complex.

In this paper, we propose an improved generic construction of P-homomorphic
signature from Ahn’s RSA accumulator based construction. Our scheme is effi-
cient in both in space and computational costs. The rest of this paper is organized
as follows: In the next section, we review some preliminaries related to our con-
struction. Then, we review Ahn et al.’s construction in Section 3. In Section 4,
we propose our improved scheme. The security properties will be analyzed in
Section 5. We conclude in Section 6.

2 Preliminaries

2.1 Some Concepts in Number Theory

Let N = p × q be a composite modulus, where p and q are two large prime
numbers. Let QN denote the subgroup of squares in Z

∗
N . Then, it is well known

that QN is a cyclic group with order φ(N)/4 = (p− 1)(q − 1)/4 [20].

Factoring Problem. given a k-bit composite N, which is a multiple of two
large primes p and q, to output p or q. Factoring problem is usually considered
as a hard problem.

Theorem 2.1. Let a ∈ QN , N = p × q, where p, q are large primes and p =
2p′ + 1, q = 2q′ + 1. p′ and q′ are also large primes. Then a2d ≡ a (mod N),
where d = (N − p− q + 5)/8.



Improvement on Ahn et al.’s RSA P-Homomorphic Signature Scheme 21

Proof. Since d = (N−p−q+5)
8 = (p−1)(q−1)+4

8 = 4p′q′+4
8 , then a2d = ap

′q′+1 = a
(mod N).(We note that φ(N)/4 = (p− 1)(q − 1)/4 = p′q′.)

Indeed, Theorem 2.1 provides a way to compute one square root of a quadratic
residue a ∈ QN .

To further understand the algorithm of computing a 2lth root of a quadratic
residue, let us introduce the following theorem.

Theorem 2.2. Let N = p × q, where p, q are large primes and p = 2p′ + 1,
q = 2q′ + 1. p′ and q′ are also large primes. If a = x2 ∈ QN , then ad ∈ QN .

Proof. Since p′ and q′ are also large primes, then p′ = 2k + 1 and q′ = 2k′ + 1

for some integer k and k′. Then,d = (N−p−q+5)
8 = 4p′q′+4

8 = 2kk′ + k + k′ + 1 is
an integer. So we have ad = x2d = (xd)2 (mod N). Thus, ad ∈ QN .

From Theorem 2.1 and Theorem 2.2, we can know that a square root of
a ∈ QN computed by ad (mod N), still stays in QN . Therefore, a 2lth root of

a can be computed as ad
l

(mod N),where dl is computed over Zp′q′ .
Let N be a multiple of two large primes p,q and a ∈ QN . If s1 and s2 are

two square roots satisfying s1 �= ±s2 (mod N), then N could be factored by
computing GCD(s1+s2, N) or GCD(s1−s2, N) as the non-trivial divisor of N .
However, if s1 = ±s2 (mod N), it will be no useful to the factorization of N .
Thus, if given two random square roots, the probability of factoring N is 1/2.

2.2 Definition of P-Homomorphic Signature

Definition of Predicate P . LetM be a message space. A predicate P is defined
as P : 2M ×M → {0, 1} which maps a set of messages and a message to a bit
[19]. For the quoting application, the predicate P is defined as P (M,m′) = 1
where M ⊂M iff m′ is a quote from the set of message M . The predicate P for
arithmetic computation is defined as P ((v1, · · · , vk), v) = 1 whenever v is in the
span of v1, · · · , vk.

A P-homomorphic signature scheme Π for message spaceM and predicate P
consists of four algorithms: KeyGen, Sign, SignDerive, Verify. Here, Sign
is simply a special case of SignDerive. We describe them as follows:

KeyGen(1λ): This algorithm outputs a key pair (pk, sk). We can treat the
secret key sk as a signature on the empty message ε.

Sign(sk,m ∈M): Given the secret key sk and a message m, the algorithm
outputs a signature σ.

SignDerive(pk, ({σm}m∈M,M),m′, ω): This algorithm takes as input the pub-
lic key, a set of messages M and corresponding signatures {σm}m∈M , a de-
rived message m′, and possibly some auxiliary information ω. It generates
a new signature σ′ onm′. For complex predicate, ω can be served as a witness
for P (M,m′) = 1. For simplicity, Sign(sk,m) = SignDerive(pk, (sk, ε),m, ·)
denotes that if given sk, any messages can be derived. Here sk can be con-
sidered as a signature on the empty message ε.

Verify(pk,m, σ): If this algorithm is provided with the public key, message,
and the corresponding signature σ, it returns 1 when the signature is valid,
otherwise, it returns 0.
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We must confirm that if P (M,m′) = 1 then

SignDerive(pk, (Sign(sk,M),M)m′) �=⊥,

and for all signature tuples {σm}m∈M satisfying

σ′ ← SignDerive(pk, (Sign(sk,M),M)m′) �=⊥,

V erify(pk,m′, σ′) = 1 holds. These two rules make the signature derivation be
iterative if allowed by P .

3 Review of Ahn et al.’s RSA Accumulator-Based
Scheme

In Ahn et al.’s construction[19], they only focus on univariate, closed predicates
P (M,m′), namely M contains a single component and if P (a, b) = P (b, c) = 1
then P (a, c) = 1. We now describe their RSA accumulator-based scheme as
follows:

KeyGen(1λ): This algorithm selects three parameters: a 20λ-bit RSA modulus
N , a ∈ ZN and a hash function Hp which maps arbitrary strings to 2λ-bit
prime numbers. The public key pk = (N,Hp, a), and the secret key sk is the
factorization of N .

Sign(sk,m ∈M): Let U = P ({m}) = {m′|m′ ∈ MandP (m,m′) = 1}. Com-
pute the signature as

σ = a1/(
∏

ui∈U Hp(ui)) (mod N).

SignDerive(pk, σ,m,m′): In this algorithm, first check that P (m,m′) = 1, if
not then outputs ⊥. Otherwise, let U ′ = P ({m′}), compute the signature as

σ′ = σ
∏

ui∈U−U′ Hp(ui) (mod N).

The signature is essentially of the form a1/(
∏

ui∈U′ Hp(ui)) (mod N).

Verify(pk,m, σ): Let U = P ({m}), if a = σ
∏

ui∈U Hp(ui) (mod N) the outputs
1, otherwise, returns 0.

This scheme can be proved secure under RSA, and the most important advan-
tage is that signatures only require one element in Z

∗
N . However, the compu-

tational cost is very heavy. If computing an l-symbol quote from an n-symbol
message requires O(n(n − l)) evaluation of Hp() and O(n(n − l)) modular ex-
ponentiations. Verification requires O(l2) evaluation of Hp() and O(l2) mod-
ular exponentiations. The computational cost of prime search in Hp()
is the dominating factor, since the outputs of Hp() must be a prime
number.
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4 Our Improved Scheme

For overcoming the above shortcoming, we propose an improved scheme which
can be described as follows (We also focus on univariate, closed predicate.):

KeyGen(1λ): This algorithm selects a composite number N which is a multiple
of two safe large prime numbers p = 2p′+1, q = 2q′ +1. p and q satisfy that
(p−1)(q−1) ≥ 2l and pq < 2l+1 (l is another secure parameter derived from
λ). Then, computes d = (N − p− q + 5)/8, and chooses h ∈ QN and a hash
function H() : {0, 1}∗ → {0, 1}l. The public key pk = (N,H, h), while the
secret key sk = d.

Sign(sk,m ∈M): Let U = P ({m}) = {m′|m′ ∈ M and P (m,m′) = 1}.
Compute the signature as

σ = h
∏

ui∈U dH(ui)

(mod N).

SignDerive(pk, σ,m,m′): In this algorithm, first check that P (m,m′) = 1, if
not then outputs ⊥. Otherwise, let U ′ = P ({m′}), compute the signature as

σ′ = σ
∏

ui∈U−U′ 2H(ui)

(mod N).

The signature is essentially of the form h
∏

ui∈U′ dH(ui)

(mod N).

Verify(pk,m, σ): Let U = P ({m}), if h = σ
∏

ui∈U 2H(ui)

(mod N) the outputs
1, otherwise, returns 0.

In the above scheme, signatures still requires only one element in Z
∗
N . However,

the computational burden is much better than Ahn’s construction. Firstly, H()
is a common hash function, which does not require the output must be a prime
number. Thus, there exists no prime search component in H(), which saves
a large computational cost compared with Ahn’s construction. Secondly, the
modular exponentiations in SignDerive and Verify algorithm can be computed

very fast, since σ
∏

ui∈U−U′ 2H(ui)

and σ
∏

ui∈U 2H(ui)

can be done only through
adding and shifting.

5 Security Analysis

In this section, we first describe the security properties of P-homomorphic signa-
ture. Then, we prove that our improved scheme achieves the security properties.

5.1 Security Definition

The security definition of P-homomorphic signature should capture two proper-
ties: context hiding and unforgeability[19].

Context hiding means that a signature should reveal nothing more than the
message being signed. If a signature on m′ was derived from a signature on m,
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an attacker should not learn anything about m other than what can be deduced
by m′. This should be true even the original signature on m is revealed. For
example, in the case of quoting application, a signed quote should not reveal the
length of original message, the position of the quote etc. Ahn et al. proposed a
powerful statistic definition of context hiding called Strong Context Hiding.

Strong Context Hiding. Let M ⊂ M and m′ ∈ M such that P (M,m′) = 1.
Let (pk, sk) be the key pair. A P-homomorphic signature Π is strong context
hiding if and only if the following distribution are statically close:

(sk, {σm}m∈M ← Sign(sk,M), Sign(sk,m′))sk,M,m′

(sk, {σm}m∈M ← Sign(sk,M), SignDerive(pk, ({σm}m∈M ,M),m′))sk,M,m′

The distributions are taken over the coins of Sign and SignDerive. Here, for a set
of message M = {m1,m2, · · · ,mk}, it is convenient to let Sign(sk,M) denote
independently signing each of the k messages, which can be depicted as follows:

Sign(sk,M) = (Sign(sk,m1), · · · , Sign(sk,mk)).

The above definition implies that a derived signature on m′ is indistinguishable
from a signature generated independently of M . Therefore, the derived signa-
ture cannot reveal any information about M other than what is revealed by
m′. This definition uses statical indistinguishability meaning that even a un-
bounded attacker cannot distinguish the derived signatures from the fresh ones.
Thus, it is called strong context hiding. Furthermore, Ahn et al. also proposed
another definition called context hiding by using computational indistinguisha-
bility, which is very complex, since the attacker needs to be given a signing
oracle. The relation of context hiding and strong context hiding can be proved
that if a P-homomorphic signature scheme is context hiding then it is strong
context hiding.

Unforgeability of P-homomorphic signature is that an attacker can adaptively
choose messages and acquire the corresponding derived signatures, however,
he/she cannot output a signature on a message that is not derivable from the set
of signed messages at his hand. Ahn et al. presented the definition of unforgeabil-
ity by extending the basic notion of adaptively chosen existential unforgebaility.
Ahn’s definition can be defined by a game between a challenger C and an adver-
sary A with respect to scheme Π over message spaceM.

Setup: The challenger C runs KeyGen(1λ) to obtain a key pair (pk, sk) and
sends pk to A, while keeps sk for itself. Furthermore, C keeps a set T that
is initially empty.

Queries: A adaptively issues the following queries to C
1. Sign(m ∈ M): The challenger C runs Sign(sk,m) to get σ, and places

(m,σ) into a table T . Then C returns σ to A
2. SignDerive(m′ ∈ M): This challenger C retrieves all the tuples (σi,mi)

in T for i = 1, · · · , k. If T is empty, then C returns ⊥. Otherwise, let M =
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{m1, · · · ,mk}. If P (M,m′) = 1, then C runs
SignDerive(pk, ({σm}m∈M ,M),m′) to obtain σ′. C keeps (σ′,m′) into
T , and returns σ′ to A.

Output: Finally,A outputs a pair (σ′,m′). If A wins the game, the following
two conditions should be satisfied.
1. Verify(pk,m′, σ′) = 1;
2. Let M be the set of messages in T . P (M,m′) = 0 must hold.
Let ADVA denote the probability of A winning.

Unforgeability. If ADVA is negligible in λ, then A P-homomorphic signature
scheme Π is adaptively chosen-message attacks unforgeable.

Ahn et al. also proposed a weaker notion of unforgeability[19], which is also
defined by a game between challenger C and adversary A. Ahn et al. call it
NHU game, in which the adversary only makes calls to Sign oracle. The only
difference between NHU game and the standard unforgeability game for a P-
homomorphic signature scheme is that in this game, the adversary only wins if
his forged signature on m∗ such that for all m ∈ T , P (m,m∗) = 0, while in the
standard unforgeability game, the adversary wins if his forged signature on any
message that is not in T .

Ahn et al. proved that if a P-homomorphic signature scheme is NHU unforge-
able and strong context hiding, then it is standard-unforgeable.[19] This implies
that strong context hiding property can help simplify the security argument of
standard unforgeability.

5.2 Security Proof

In this section, we will provide the security proof to our improved scheme.

Theorem 5.1. If the factoring problem is hard, then our improved P-homomorphic
signature scheme is unforgeable and context hiding in the random oracle.

We proved Theorem 5.1 by showing that our scheme is strong context hiding
and NHU-unforgeable.

Lemma 5.1. The improved P-homomorphic signature scheme is strong context
hiding.

Proof. Let pk = (N,H, h), and challenge be any m,m′ where P (m,m′) = 1. Let
U = P (m) and U ′ = P (m′). We can deduce that

Sign(sk,m) = σ = hd
∏

u∈U H(u)

(mod N)

Sign(sk,m′) = σ′ = hd
∏

u∈U′ H(u)

(mod N)

SignDerive(pk, (σ,m),m′) = σ2
∏

u∈U−U′ H(u)

(mod N)

= (hd
∏

u∈U H(u)

)2
∏

u∈U−U′ H(u)

(mod N)

= hd
∏

u∈U′ H(u)

(mod N)

= σ′.
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Since Sign(sk,m′) equals SignDerive(pk, (σ,m),m′), the probability that an
adversary can distinguish between them is exactly 1/2. Thus, our improved P-
homomorphic signature scheme is strong context hiding.

Lemma 5.1The improved P-homomorphic signature scheme is NHU-uforgeable
if factoring problem is hard.

Proof. We will prove this lemma through the NHU game discussed above. In
the NHU game, the adversary A is only allowed to make Sign oracle queries.
We suppose adversary A queries the random oracle on at most s unique inputs.
If adversary A can outputs a successful forgery in NHU game, then we can
construct a challenger C that solves the factoring problem with a non-negligible
probability. Given a challenge N , C’s goal is to output the factorization of N .

Setup: Challenger C chooses s − 1 lbits distinct integer numbers e1, · · · , es−1

at random, but all ei �= 2, ei > 0. Let E denote {e1, · · · , es−1}. Then, C
guesses a random number i∗ ∈ {1, · · · , s}, and keeps it. Next, C randomly

selects y ∈ Z
∗
N , and computes h = y

∏
ei∈E 2ei (mod N). Obviously, h ∈ QN .

Finally, C sends N, h to A, and will ask its queries on random oracle H
interactively.

Queries: C answers A’s adaptively Hash and Sign queries.
– Hash queries: When A makes the jth query to the random oracle, if

j = i∗, then C answers 2. Otherwise, if j < i∗, C answers with ej, and
ej−1 otherwise. Since we assume A’s queries are different every time, let
x∗ as the input when H(x∗) = 2.

– Sign queries: When A makes a sign queries on message m, C computes
U = P (m), and if x∗ ∈ U , then C aborts. Otherwise, C calls H on all
elements of U not previously queried to H . Let E(U) denote the set of
integer numbers derived by calling H on every element in U . C computes

σ = y
∏

i∈[E−E(U)] 2
ei

(mod N),

and returns σ,m as the answer to A.
Outputs: Eventually,A outputs a valid forged signature σ on messagem, where

m cannot be derived from any element returned by Sign. If m is still not
queried to H , or m �= x∗, then C aborts. Otherwise, let U = P ({x∗})−{x∗},
and E(U) denotes the set of integer numbers derived by calling H on every
element in U . From the verification equation, the following equation holds.

h
∏

ei∈E(U) d
ei

= y
∏

ei∈[E−E(U)] 2
ei

= σ2 (mod N).

We computes b =
∑

i∈[E−E(U)] ei, then y2
b

= σ2 (mod N). If σ �= ±y2b−1

(mod N), C can factoring N by computing GCD(σ+y2
b−1

, N) or GCD(σ−
y2

b−1

, N). Since y is randomly chosen in Z
∗
N , the probability that σ and

±y2b−1

are distinct is 1/2.

Probability Analysis: We assume that the attacker A can win the above game
with the probability of ε. A’s final forgery is based on the i∗th hash queries
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(1 < i∗ < s), and i∗ is randomly chosen from {1, · · · , s}. So we can deduce
that challenger C can solve the factoring problem through A’s forgery with the
probability of ε

2s .
This completes our proof.

Note: Our improved scheme is proved secure under the hardness of the factor-
ing problem, while Ahn et al.’s construction is proved secure under the RSA
assumption. However, the hardness of RSA problem is not identical to the hard-
ness of the factoring problem . It is generally believed that RSA assumption is
stronger than factoring assumption[21].

6 Conclude

P-homomorphic signature is a general framework for computing on authenticated
data, which can make any third party derive a signature on the object message
m′ from a signature ofm, ifm′ andm satisfy P (m,m′) = 1 for some predicate P .
Similar with homomorphic encryption, P-homomorphic signature can also make
cloud computing providers provide good services to customers. Cloud providers
can directly compute on the existing signature files without secret keys. In this
paper, we propose an improved P-homomorphic signature scheme, which is more
efficient in computational cost than Ahn’s scheme. Furthermore, our scheme can
be proved under the hardness of the factoring problem.
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Schröder, D., Volk, F.: Security of Sanitizable Signatures Revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009)

8. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of Sanitizable
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