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Abstract. Back-propagation is an effective method for neural network
learning. To improve the accuracy of the learning result, in practice
multiple parties may want to collaborate by jointly executing the back-
propagation algorithm on the union of their respective data sets. During
this process no party wants to disclose her/his private data to others for
privacy concerns. Existing schemes supporting this kind of collaborative
learning just partially solve the problem by limiting the way of data par-
tition or considering only two parties. There still lacks a solution for more
general and practical settings wherein two or more parties, each with an
arbitrarily partitioned data set, collaboratively conduct learning.

In this paper, by utilizing the power of cloud computing, we solve this
open problem with our proposed privacy preserving back-propagation
algorithm, which is tailored for the setting of multiparty and arbitrarily
partitioned data. In our proposed scheme, each party encrypts his/her
private data locally and uploads the ciphertexts into the cloud. The
cloud then executes most of the operations pertaining to the learning al-
gorithms with ciphertexts but learns nothing about the original private
data. By securely offloading the expensive operations to the cloud, we
keep the local computation and communication costs on each party min-
imal and independent to the number of participants. To support flexible
operations over ciphertexts, we adopt and tailor the BGN ‘doubly ho-
momorphic’ encryption algorithm for the multiparty setting. Thorough
analysis shows that our proposed scheme is secure, efficient and scalable.

Keywords: privacy reserving, learning, neural network, back-
propagation, cloud computing, computation outsource.

1 Introduction

Back-propagation[17] is an effective method for learning neural networks and has
been widely used in various applications. The accuracy of the learning result, de-
spite other facts, is highly affected by the volume of high quality data used for
learning. As compared to learning with only local data set, collaborative learning
improves the learning accuracy by incorporating more data sets into the learning
process[19,11]: the participating parties carry out learning not only on their own
data sets, but also on others’ data sets. With the recent remarkable growth of new
computing infrastructures such as Cloud Computing, it has been more convenient
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than ever for users across the Internet, who may not even know each other, to con-
duct joint/collaborative learning through the shared infrastructure[12,13].

Despite the potential benefits, one crucial issue pertaining to the Internet-wide
collaborative learning is the protection of data privacy for each participant. In
particular, the participants from different trust domains may not want to disclose
their private data sets, which may contain privacy or proprietary information, to
anybody else. In applications such as healthcare, disclosure of sensitive data, e.g.,
protected health information (PHI)[2], is not only a privacy issue but of legal
concerns according to the privacy rules such as Health Insurance Probability and
Accountability Act(HIPAA)[1]. In order to embrace the Internet-wide collabora-
tive learning, it is imperative to provide a solution that allows the participants,
who lack mutual trust, to conduct learning on neural networks jointly without
disclosing their respective private data sets. Preferably, the solution shall be ef-
ficient and scalable enough to support an arbitrary number of participants, each
possessing arbitrarily partitioned data sets.

Related Work. Theoretically, secure multiparty computation (SMC)[20] can
be used to solve problems of this kind. But the extremely high computation and
communication complexity of SMC, due to the circuit size, usually makes it far
from practical even in the two-party case. In order to provide practical solu-
tions for privacy preserving back-propagation network (BPN) learning, several
schemes have been proposed recently. Schlitter[18] introduces a privacy preserv-
ing BPN learning scheme that enables two or more parties to jointly perform
BPN learning without disclosing their respective private data sets. But the so-
lution is proposed only for horizontal partitioned data. Moreover, this scheme
cannot protect the intermediate results, which may also contain sensitive data,
during the learning process. Chen et. al.[6] proposes a privacy preserving BPN
learning algorithm for two-party scenarios. This scheme provides strong pro-
tection for data sets including intermediate results. However, it just supports
vertically partitioned data. To overcome this limitation, Bansal et. al.[4] en-
hanced this scheme and proposed a solution for arbitrarily partitioned data.
Nevertheless, this enhanced scheme, just like [6], was proposed for the two-party
scenario. Directly extending them to the multi-party setting will introduce a
computation/communication complexity quadratic in n, the number of partici-
pants. In practical implementation, such a complexity represents a tremendous
cost on each party considering the already expensive operations on the underly-
ing groups such as Elliptic Curves. To our best knowledge, there is no efficient
and scalable solution that supports collaborative BPN learning with privacy
preservation in the multiparty setting over arbitrarily partitioned data.

Our Scheme. In this work, we address this open problem by incorporating the
computing power of the cloud. The main idea of our scheme can be summarized
as follows: each participant first encrypts her/his private data with the system
public key and then uploads the ciphertexts to the cloud; cloud servers then
execute most of the operations pertaining to the learning process over the ci-
phertexts and return the encrypted results to the participants; the participants
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jointly decrypt the results with which they update their respective weights for
the BPN. During this process, cloud servers learn no privacy data of a partici-
pant even if they collude with all the rest participants. Through off-loading the
computation tasks to the resource-abundant cloud, our scheme makes the com-
putation and communication complexity on each participant independent to the
number of participants and is thus highly scalable. For privacy preservation, we
decompose most of the sub-algorithms of BPN into simple operations such as
addition, multiplication, and scalar product. To support these operations over
ciphertexts, we adopt the BGN ‘doubly homomorphic’ encryption algorithm [5]
and tailor it to split the decryption capability among multiple participants for
collusion-resistance decryption. As decryption of [5] is limited to small numbers,
we introduce a novel design in our scheme such that arbitrarily large numbers
can be efficiently decrypted. To protect the intermediate data during the learning
process, we introduce a novel random sharing algorithm to randomly split the
data without decrypting the actual value. Thorough security analysis shows that
our proposed scheme is secure. Performance evaluation shows that our scheme
is efficient and highly scalable.

Contribution. Our contribution can be summarized as follows:

– To our best knowledge, this paper is the first that provides privacy preserva-
tion for multiparty (more than two parties) collaborative back-propagation
network learning over arbitrarily partitioned data;

– Thorough analysis shows that our proposed scheme is secure and efficient;
– We tailor [5] to support multiparty secure scalar product and introduc de-

signs that allows decryption of arbitrary large messages. These improvements
can be used as independent general solutions for other related applications.

The rest of this paper is organized as follows. Section 2 presents the models and
assumptions. In section 3 we introduce technique preliminaries which is followed
by detailed description of our proposed scheme in section 4. Section 5 evaluates
our proposed scheme. We conclude our work in section 6.

2 Models and Assumptions

2.1 System Model

We consider a system composed of three major parties: a trusted authority (TA),
the participating parties and the cloud servers (or cloud). TA is the party only
responsible for generating and issuing encryption/decryption keys for all the
other parties. It will not participate in any computation other than key gen-
eration and issuing. Each participating party s, denoted as Ps, owns a private
data set and wants to perform collaborative BPN learning with all other par-
ticipating parties. That is, they will collaboratively conduct learning over the
arbitrarily partitioned data set, which is private and cannot be disclosed dur-
ing the whole learning process. We assume that each participating party stays
online with broadband access to the cloud and is equipped with one or several
contemporary computers, which can work in parallel if there are more than one.
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2.2 Security Model

Our scheme assumes the existence of a trusted authority who is trusted by all
the parties, TA has the knowledge of system secret key and will not participate
in any computation besides the key generation and issuing. TA is allowed to
learn about each party’s private data whenever necessary. We claim that the
existence of TA is useful when investigation is needed in case some malicious
party intentionally interrupts the system, say using bogus data sets. In real life,
parties such as the government agents or organization alliances can be the TA.
Although the existence of TA is helpful, we leave the completely distributed
solution as a future work.

The participating parties do not fully trust each other. Therefore, they do not
want to disclose their respective private data(except for the final weights learned
by the network) to any other parties than TA. The cloud is not fully trusted by
the participating parties either, i.e., the cloud is not allowed to learn about the
sensitive information, such as original data sets and intermediate data. In this
paper, we follows the curious-but-honest model[8]. That is, all the parties (i.e.,
all the participating parties and the cloud) will honestly follow our protocol but
try to discover others’ private data as much as possible. A number malicious of
participating parties may collude among themselves and/or with the cloud.

2.3 Design Goals

– The multiple (two or more) participating parties can jointly perform a BPN
learning over arbitrarily partitioned data. Specifically, the parties shall be able
to jointly execute all the learning steps as defined by the BPN algorithm [17],
which mainly includes a feed forward stage and a back-propagation stage.

– Confidentiality of private data shall be protected during the joint learning
process. Specifically, we want to protect confidentiality of each party’s private
data set as well as all the intermediate results during the learning process,
which means each party learns nothing but the final learned neural network.

– The system shall be efficient and scalable. In particular, the cost introduced
on each party shall not grow with the number of participating parties. The
computation tasks can be securely offloaded to the cloud without compro-
mising data privacy. But the processing time on the cloud shall be less than
or comparable to that on each participant. The overall execution time of the
learning algorithm shall be practically acceptable.

3 Technique Preliminaries

3.1 Arbitrarily Partitioned Data

In this paper, we consider arbitrarily partitioned data as Bansal et al. did in[4]
among multi-parties, say Z parties(Z > 2). For arbitrarily partitioned data,
each party Ps, 1 ≤ s ≤ Z, holds parts of the data set without any specific
order. Specifically, consider a data set D with N rows {DB1, DB2, · · · , DBN},
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and each row DBv, 1 ≤ v ≤ N has m attributes{xv
1 , x

v
2 · · · , xv

m}. DBv
s is the

subset of data set owned by Ps, we have DBv = DBv
1

⋃
DBv

2 · · ·
⋃
DBv

Z and
DBv

1

⋂
DBv

2 · · ·
⋂
DBv

Z = ∅. For each DBv, Ps has tvs attributes(i.e. |DBv
s | =

tvs), where
∑Z

s=1 t
v
s = m, and each tvs , 1 ≤ v ≤ N does not have to be equal.

When t1s = t2s = · · · = tNs and the attributes owned by a party in each row are
at the same position, the arbitrary partitioning becomes vertical partitioning.
Similarly, it is horizontal partitioning if each Ps completely holds some DBv.

3.2 Back-Propagation Network Learning

Back-Propagation Network[17] is one of the most widely used model in neural
network learning. The multi-layer BPN can approximate any nonlinear function.

BPN learning algorithm is mainly composed of two stages: feed forward and
error signal back− propagation. As shown in Figure.1, there is a configuration
for a three layer(a-b-c) BP network: vector{x1, x2, · · · , xa} contains the values
of input nodes, vector{h1, h2, · · · , hb} represents values of hidden nodes and the
values of output nodes are {o1, o2, · · · , oc}. wh

jk denotes the weight connecting
the input layer node k and the hidden layer node j. wo

ij denotes the weight
connecting j and the output layer node i, where 1 ≤ k ≤ a, 1 ≤ j ≤ b, 1 ≤ i ≤ c.

... ... ...

Input Layer Output LayerHidden Layer

Fig. 1. Configuration of BP Network

During the BPN learning process, the goal is to model a given function by
modifying internal weights of input signals to generate an expected output signal.
As described in Algorithm 1, all the weights are initialized as small random
numbers[10,7,14]. In the FeedForwardStage, values at each layer are calculated
using the weights, the sigmoid function, and the values at the previous layer. In
the signalBack − Propagationstage, the algorithm checks whether the error
between output values and target values is within the threshold. If not, all the
weights will be modified according to Eq.(1),(2) and the learning procedure
is repeated. The learning will not be terminated until the error is within the
threshold or the max number of iterations is exceeded. After the learning, the
final weights on each link are the used to generate the learned network. Ref.[17]
describes details of the BPN algorithm.

Δwo
ij = −(ti − oi)hj (1)

Δwh
jk = −hj(1− hj)xk

∑c
i=1[(ti − oi) ∗ wo

ij)] (2)
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Algorithm 1. Back-Propagation Learning Algorithm
Input: N input sample vectors Vi, 1 ≤ i ≤ N , with a dimensions, iterationmax ,learning rate

η,target value ti,sigmoid function f(x) = 1

1+e−x

Output: Network with final weights: wh
jk, w

o
ij , 1 ≤ k ≤ a, 1 ≤ j ≤ b, 1 ≤ i ≤ c

begin

Randomly Initialize all wh
jk, w

o
ij .

for iteration = 1, 2 · · · , iterationmax do
for sample = 1, 2 · · · , N do

//Feed Forward Stage:
for j = 1, 2 · · · , b do

hj = f(
∑a

k=1 xk ∗ wh
jk)

for i = 1, 2 · · · , c do
oi = f(

∑a
j=1 hj ∗ wo

ij)

//Back-Propagation Stage:

if Error = 1
2

∑c
i=1(ti− oi)2 > threshold then

Δwo
ij = −(ti − oi) ∗ hj

Δwh
jk = −hj1− hjxk

∑c
i=1[(ti − oi) ∗ wo

ij)]

wij = wij − ηΔwij

wh
jk = wh

jk − ηΔwh
jk

else
//Learning Finish
break

3.3 BGN Homomorphic Encryption

Homomorphic encryption is a form of encryption that enables operations on
plaintexts to be performed on correspondingly ciphertexts without disclosing the
plaintexts. Most existing homomorphic encryption schemes only support single
operation - either addition or multiplication. In [5], Boneh et al. introduced a
public-key ‘doubly homomorphic’ encryption scheme which simultaneously sup-
ports one multiplication and unlimited number of addition operations. Therefore,
given ciphertexts C(m1), C(m2), · · · , C(mi) and C(m̂1), C(m̂2), · · · , C(m̂i), one
can compute C(m1m̂1 + m2m̂2 + · · · + mim̂i) without knowing the plaintext,
where C() is the ciphertext encrypted by the system’s public key. Specifically,
this scheme can be described as follows.

– KeyGen: Generate two cyclic groups G and G1 of order n = q1q2 as well as
a bilinear map e : G×G→ G1, where q1 and q2 are large primes. Randomly
pick two generators g, u ← G and set h = uq2 . The public key is published
as PK = (n,G,G1, e, g, h) and the private key is SK = q1.

– Encrypt: Pick a random number r ← Zn and encrypt the message M as:
C = gMhr, where C is the ciphertext.

– Decrypt: Obtain q1. Compute Cq1 = gMq1hrq1 . As hrq1 = 1 and gq1 can be
easily computed, the message M can be decrypted using Pollard’s lambda
method[15] as long as the message is not large.

Apparently, this scheme is homomorphic under the addition operation. It is easy
to verify that one multiplication operation over the message can still be applied
using bilinear map, after which unlimited number of addition operations can be
applied. Details of this scheme is described in [5].
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We shall point out that this scheme is designed for two parties. Moreover, due
to message decryption involves solving discrete logarithm of the ciphertext using
Pollard’s lambda method, this algorithm just works with small numbers. While
it is easy to extend the work to decrypt long messages (in which the message is
treated as a bit string) using a mode of operation, it remains open to efficiently
decrypt large numbers (wherein the final message is interpreted by its value and
unknown to the encryptor after homomorphic operations).

4 Our Proposed Scheme

4.1 Problem Statement

In this paper, we aim at enabling multiple parties to jointly conduct back-
propagation network learning without revealing their private data. The input
data sets owned by the parties can be arbitrarily partitioned. The computa-
tional and communicational costs on each party shall be practically efficient and
the system shall be scalable.

Specifically, we consider a 3-layer(a-b-c configuration) neural network for
simplicity but it can be easily extended to multi-layer neural networks. The
learning data set for the neural network, which has N samples(denoted as
vector{xm

1 , xm
2 , . . . , xm

a }, 1 ≤ m ≤ N), is arbitrary partitioned into Z(Z ≥ 2)
subsets. Each party Ps holds xm

1s, x
m
2s, · · · , xm

as and have:

xm
11 + xm

12 + · · ·+ xm
1Z = xm

1 (3)

· · · · · ·
xm
a1 + xm

a2 + · · ·+ xm
aZ = xm

a (4)

Each attribute in sample {xm
1 , xm

2 , . . . , xm
a }, 1 ≤ m ≤ N , is possessed by only

one party - if Ps possesses xm
k , 1 ≤ k ≤ a, then xm

ks = xm
k ; otherwise xm

ks =
0. In this paper, we use wh

jk to denote the weight used to connect the input
layer node k and the hidden layer node j; wo

ij to denote the weight used to
connect the hidden layer node j and the output layer node i, where 1 ≤ k ≤
a, 1 ≤ j ≤ b, 1 ≤ i ≤ c and a, b, c are the number of nodes of each layer as we
describe in Figure.1. For collaborative learning, the main task for all the parties
is to jointly execute the operations defined in the Feed Forward stage and the
signal back-propagation stage as shown in Algorithm 1. During each learning
stage, except for the final learned network, neither the input data of each party
nor the intermediate results(weights, value of hidden layer node, value of output
layer node, etc) generated can be revealed to anybody else other than TA.

4.2 Privacy Preserving Multi-party Neural Network Learning

In this section, we introduce our cloud based privacy preserving multi-party BPN
learning algorithm over arbitrarily partitioned data. As we described in Algo-
rithm 2, all the parties generate and assign random weights wh

jks and wo
ijs to each



Privacy Preserving Back-Propagation Learning Made Practical 299

Algorithm 2. Privacy Preserving Multi-Party BPN Learning Algorithm
begin

Input: each Ps ’s data set for N data samples,xv
1s, x

v
2s, · · · , xv

as, 1 ≤ v ≤ N , whv
jks and wov

ijs
for N samples, iterationmax , η, target value ti

Output: Network with final weights: wh
jk, w

o
ij , 1 ≤ k ≤ a, 1 ≤ j ≤ b, 1 ≤ i ≤ c

for iteration = 1, 2, · · · , iterationmax do
for v = 1, 2, · · · , N do

//Feed Forward Stage: for j = 1, 2, · · · , b do
Using Algorithm 3 and Algorithm 4, each Ps obtain random shares ϕvs for∑a

k=1(x
v
k1 + xv

k2 + · · ·+ xv
kZ) ∗ (whv

jk1 + whv
jk2 + · · · + whv

jkZ )
Using Algorithm 5, all the parties compute the sigmoid function and obtain the
random shares hvjs ,

∑Z
s=1 hvjs = hvj and hvj = f(

∑Z
s=1 ϕvs), where f() is

the approximation for the sigmoid function as described in section4.6.

for i = 1, 2, · · · , c do
Using Algorithm 3,Algorithm 4 and Algorithm 5, each Ps obtain random shares
ovis for f(

∑b
j=1(hvj1 + hvj2 + · · ·+ hvjZ ) ∗ (wov

ij1 + wov
ij2 + · · · + wov

ijZ ))

//Back-Propagation Stage: Using Algorithm 3, all the parties and cloud calculate
Error = 1

2

∑c
i=1(ti − oi)

2

if Error > threshold then
for i = 1, 2, · · · , c do

//(step 1)
Using Algorithm 4 and Algorithm 3, each Ps obtains random share Δwov

ijs for

Δwov
ij = (−(tvi −

∑Z
s=1 ovis) ∗ (

∑Z
s=1 hvjs)

for j = 1, 2, · · · , b do
//(step 2)
Using Algorithm 4 and Algorithm 3, each Ps obtains random share μv

s for
∑c

i=1[(
∑Z

s=1 ovis − tvi) ∗ (
∑Z

s=1 wov
ijs)]

//(step 3)
Using Algorithm 4 and Algorithm 3, each ps obtains random share κv

s for
∑Z

s=1 xv
ks ∗

∑Z
s=1 μv

s
//(step 4)
Using Algorithm 4 and Algorithm 3, each Ps obtains random share ϑv

s for
∑Z

s=1 hvjs ∗ (1−
∑Z

s=1 hvjs)
//(step 5)

Using Algorithm 4 and Algorithm 3, each Ps obtains random share Δwhv
jks for

Δwhv
jk =

∑Z
s=1 κv

s ∗
∑Z

s=1 ϑv
s

Each Ps updates wov
ijs = wov

ijs − η ∗Δwov
ijs and whv

jks = whv
jks − η ∗Δwhv

jks

else
Learning Finished;

Ps and make agreement on the max number of learning iteration iterationmax,
the learning rate η, error threshold and target value ti of each output layer node
at the beginning of learning. In the Feed Forward Stage, all the parties agree
on the terms of approximation for the sigmoid function according to their accu-
racy requirement(details given in section 4.5) and obtain random shares hjs for
value of hidden layer node and ois for value of output layer node. After the Feed
Forward Stage, all the parties work together to check whether the network has
reached the error threshold. If not, they go into the Back-Propagation Stage,
which aims at modifying the weights so as to achieve correct weights in the
neural network. For the weights of each output layer node wo

ij , each Ps obtains
random shares of the changes in weights, denoted as Δwo

ijs, for Δwo
ij from Eq.

(1) by using the cloud based Algorithm 3 and Algorithm 4. For the weights of
each hidden layer node wh

jk, instead of directly computing the changes in weights
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according to Eq. (2), our proposed scheme divided it into four step computation:∑c
i=1[(ti − oi) ∗ wo

ij)], xk

∑c
i=1[(ti − oi) ∗ wo

ij)],−hj(1 − hj) and Δwh
jk, and let

each Ps obtains the random shares(μs,κs,ϑs,Δwh
jks) for each computation step

respectively by using Algorithm 3 and Algorithm 4. Finally, each Ps updates its
own weights with their shares and learning rate η.

4.3 Secure Scalar Product and Addition with Cloud

In this subsection, we tailor Ref.[5] and propose an algorithm that allows multiple
parties to perform secure scalar product and homomorphic addition operations
on ciphertexts using cloud computing. Specifically, each party encrypts his data
with the system public key and uploads the ciphertexts to the cloud. The cloud
servers compute the sum of original messages based on their ciphertexts. If the
original messages are vectors, the cloud computes the scalar product of the vec-
tors. During this process, the cloud does not need to decrypt nor learn about
the original messages. The final result of the sum or scalar product is returned
to all the parties in ciphertext. Decrypting the results needs the participation
of all the parties. Due to efficiency limitation of the Pollard’s lambda method,
the algorithm in [5] can only work well with relative small numbers. We over-
come such a limitation and make it suitable for large numbers. Our algorithm is
presented in Algorithm 3.
Decryption of Large Numbers: Message decryption in the BGN algorithm in-
volves solving the discrete log using Pollard’s lambda method[15]. On a single
contemporary computer, for example, the Pollard’s lambda method is able to
decrypt numbers of up to 30-40 bits within a reasonable time slot (e.g., in min-
utes or hours). Decryption of larger numbers is usually believed less practical in
terms of the time complexity. In practice, however, it is hard to guarantee that
the final results (numbers) are always small enough for the Pollard’s lambda
method to efficiently decrypt. This is either because the numbers contained in
the vectors are too large, or the vectors are too long (of high dimension). To
overcome this limitation, we propose to let the data holders divide the numbers,
if they are large, into several numbers, and the cloud then decrypt the smaller
”chunks” with which the final result can be recovered. The decryption process
can be parallelized for efficiency. Assuming that the cloud is able to efficiently
decrypt the result if each input number is less than d bits, our solution for sup-
porting large numbers can be described as follows. W.l.o.g., we just consider the
scalar product operation over input numbers of 3d bits.

Let VA = (A1, A2, · · · , Ak) and VB = (B1, B2, · · · , Bk) be two vectors, where
Ai and Bi are 3d-bit numbers for 1 ≤ i ≤ k. Each vector can be represented as:

Ai = Ai2 ∗ 22d +Ai1 ∗ 2d +Ai0

Bi = Bi2 ∗ 22d +Bi1 ∗ 2d +Bi0

We can compute the product of Ai ∗Bi as follows:

Ai ∗Bi = 24d(Ai2 ∗Bi2) + 23d(Ai2 ∗Bi1 +Ai1 ∗Bi2) + 22d(Ai2 ∗Bi0 +Ai0 ∗
Bi2 +Ai1 ∗Bi1) + 2d(Ai1 ∗Bi0 +Ai0 ∗Bi1) +Ai0 ∗Bi0
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Algorithm 3. Secure Scalar Product and Addition
– Key Generation:

TA generates two cyclic groups G and G1 of order n = q1q2, where q1 and q2 are large primes, and a
bilinear map e : G × G → G1. Then it picks two random generators g, u ∈ G and computes h = uq2 .
TA splits q1 as q1 = (q11 + q12 + · · · + q1Z ) mod n, where q1s is randomly chosen from Zn for
1 ≤ s ≤ Z. For 1 ≤ s ≤ Z, TA sends q1s to party Ps as her/his secret key. The public key is published as
PK = (n,G,G1, e, g, h), and the system master key is SK = q1 which is only known to TA.

– Encryption: Given a message M , encrypt it as: C = gMhr ∈ G, r
R← Zn.

– Secure Scalar Product: Given the ciphertexts of vector (M11,M12, · · · ,M1v) and (M21,M22, · · · ,M2v),
the cloud computes their scalar product as:

C(prod) = hr
1 ∗

∏v
i=1 e(C1i, C2i),

where h1 = e(g, h),C1i and C2i are the ciphertexts of message M1i and M2i respectively.
– Secure Addition: Given the ciphertexts of message M1,M2, · · · ,Mv , the cloud computes their sum as:

C(sum) =
∏v

i=1 Ci

– Decryption: W.l.o.g., we just demonstrate the decryption of C(sum) as follows. The cloud broadcasts
C(sum) to each party. On receiving the ciphertext, each party Ps computes C(sum)q1s and returns the
result to the cloud.
With the results from all the parties, the cloud computes:

∏Z
j=1 C(sum)q1s = C(sum)q1 .

Since C(sum) =
∏v

i=1 Ci =
∏v

i=1 gMihri , we have:

C(sum)q1 = (g
∑v

i=1 Mi
∏v

i=1 hri )q1 = (gq1 )
∑t

i=1 Mi

Note that hq1 = 1.
∑v

i=1 Mi can be efficiently solved using Pollard’s lambda method[15] given gq1 . The
encrypted scalar product can be decrypted jointly in the similar way.

The scalar product of VA and VB can be calculated as follows:
k∑

i=1

(Ai ∗Bi) (5)

= 24d
k∑

i=1

(Ai2 ∗Bi2) + 23d(

k∑

i=1

(Ai2 ∗Bi1) +

k∑

i=1

(Ai1 ∗Bi2))

+22d(

k∑

i=1

(Ai2 ∗Bi0) +

k∑

i=1

(Ai0 ∗Bi2) +

k∑

i=1

(Ai1 ∗Bi1))

+2d(

k∑

i=1

(Ai1 ∗Bi0) +

k∑

i=1

(Ai0 ∗Bi1)) +

k∑

i=1

(Ai0 ∗Bi0)

Therefore, instead of directly calculating
∑k

i=1(Ai ∗ Bi), the participants can

first compute
∑k

i=1(Ai0∗Bi0), · · · ,
∑k

i=1(Ai2∗Bi2) separately and finally recover
∑k

i=1(Ai ∗ Bi) using Eq. (5). For this purpose, the data holders need to split
Ai and Bi and encrypt Ai0, Ai1, Ai2 and Bi0, Bi1, Bi2, which are d-bit numbers.
By doing this, the encryption cost on each data holder increases by x times,
where x is the number of smaller numbers that each large number is broken
into. In the above example x = 3. The cloud needs to perform x2 more time
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operations on ciphertexts than for a single scalar product. x2 more decryptions
will be performed by participants and the cloud. If x is fixed, the expansion
of computation/communication cost is of constant time. Usually, x will not be
large. For example, if 30-bit numbers can be efficiently decrypted, our technique
can efficiently decrypt 90-bit numbers with x = 3.

4.4 Secure Sharing of Scalar Product and Sum

As the intermediate results generated during the BPN learning process may be
used to derive some privacy information, the actual intermediate results can-
not be known to each party as well as the cloud server. However, the ‘BGN’
algorithm[5] only supports one step multiplication over ciphertext and need to
decrypt the intermediate results first, which will disclose some privacy data,
for further privacy-preserving learning operations. To protect these intermediate
results(scalar products or sum), we introduce a secure sharing algorithm in Al-
gorithm 4, which enables each participating party to get a random share of the
intermediate result without knowing its actual value. As described in Algorithm
3, Z parties can efficiently perform secure scalar product and addition compu-
tation with the help of cloud. To securely share the result, say ε, each party first
generates a random number Ls←(0, u), where u is the upper bound of ε, and

encrypts it as: C(Ls) = gLs
1 hrsq2

1 ,where g1 = e(g, g), h1 = e(g, h), rs
R← Zp. Then

all the parties uploads the ciphertexts of Ls to the cloud and the cloud securely
calculates the ciphertext of sumL =

∑Z
s=1 Ls as:

C(sumL) =
∏Z

s=1 C(Ls) = gL1+L2+···+LZ
1 hq2r̂s

1

where r̂s
R← Zp. All the parties work together to decrypt the difference between

ε and sumL as L̂ = |ε− sumL| and send it to P1. Note that 0 <
∑Z

s=1 Ls <

Z ∗ u, 0 < ε < u, we have −u <
∑Z

s=1 Ls − ε < Z ∗ u. As the cloud is able to

efficiently decrypt numbers as large as u, it can decrypt
∑Z

s=1 Ls − ε efficiently
as long as Z is not very large. Finally, all each Ps get its secure share εs of ε.
For P1, ε1 = L1 + L̂ and for other parties, εs = Ls.

To ensure the efficiency for computing L̂, we consider about the following two
possible cases: Case1: ε >

∑Z
s=1 Ls and Case2: ε <

∑Z
s=1 Ls. In multi-party

scenarios(Z ≥ 2), as Ls
R← (0, U), there is a high possibility that ε <

∑Z
s=1 Ls.

At the same time,
∑Z

s=1 Ls will not be much larger than ε(in 10 party scenarios,
∑Z

s=1 Ls is at most 4bits larger than ε). Therefore, the cloud and all the parties

can start decryption from Case2. If the successfully decryption of L̂ cannot be
achieved in empirical time using Pollard’s lambda method, we can change to
decrypt L̂ process in Case1.

4.5 Approximation of Activation Function

In this subsection, we introduce the approximation of activation function us-
ing Maclaurin series expansion[3] and its secure sharing based on Algorithm
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Algorithm 4. Secure Share of Scalar Product and Sum
Input: Ciphertext of ε
Output: Shares of ε: εs for Ps, 1 ≤ s ≤ Z
begin

for s = 1, 2 · · · , Z do

Choose Ls
R← (0, u)

C(Ls) = gLs
1 h

rsq2
1

//where u is the upper bound of ε

//Cloud Calculates:

C(sumL) =
∏Z

s=1 C(Ls)

case 1.ε >
∑Z

s=1 Ls

C(L̂) = C(ε) ∗ C(sumL)−1

case 2.ε <
∑Z

s=1 Ls

C(L̂) = C(sumL) ∗ C(ε)−1

Decrypt C(L̂) with Algorithm 3 and send L̂ to P1

//Output Shares:

ε1 = L1 + L̂
for i = 2, 3 · · · , Z do

εs = Ls

end

3 and Algorithm 4. Since the ‘BGN’ encryption does not support exponentia-
tion operations over ciphertext(i.e. calculating C(ex) given C(x)) and cannot
directly support the secure computation of sigmoid function 1

1+e−x , we utilize
Maclaurin series expansion to approximate the sigmoid function and make it
suitable for our proposed Algorithm 3 and Algorithm 4. Since the sigmoid func-
tion 1

1+e−x ∈ (0, 1), we can guarantee the converge of its Maclaurin series and
approximate it as:

1
1+e−x = 1

2 + x
4 − x3

48 + x5

480 +O(x6) (6)

Due to the property of Maclaurin series, the terms in the expansion can be
decided depends on the accuracy requirement. As shown in the approximation
of sigmoid function in Eq. (6), the major challenge of secure computation for
the equation becomes how to compute xk, 2 ≤ k ≤ n and share it without
disclosing any privacy data. Based on the aforementioned Algorithm 3 and 4, Z
parties are allowed to securely calculate and share x. With these properties, we
proposed Algorithm 5 to securely share xk. Using x2 for instance, Z parties first
work together to get the secure shares of x using Algorithm 3 and 4, denoted
as xs for each Ps. With the ciphertext of x and xs, each Ps then calculates
Ĉs(x) = C(x)

xs and uploads it to the cloud. Cloud computes C(x2) using secure
addition in Algorithm 3 and finally all the parties securely get the shares of x2

with Algorithm 4. The scenarios of xk, k > 2 can be easily extended as x2. Due
to spcae limitation, we provide the correctness of this algorithm in Appendix.

4.6 Security Analysis

In this section, we sketch the prove that our scheme is semantically secure un-
der the subgroup decision assumption. As stated in section 4.1, our scheme is
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Algorithm 5. Secure Share of Activation Function
Input: xs,ciphertext of x: C(x)

Output: Shares of xk, xk
s for Ps, 1 ≤ s ≤ Z

begin
for j = 2, 3 · · · , k do

//each Ps calculate:

Ĉs(x
j−1) = C(xj−1)

xs

Cloud Calculate C(xj) using Algorithm 3.

C(xj) =
∏Z

s=1 Ĉs(x
j−1)

Call Algorithm 4, generate secure shares of xj
s

composed of four sub-algorithm and we first analyze the security of Algorithm
4, since the other three algorithm are based on it:

Theorem 1. Algorithm 3 is semantically secure assuming the group G satisfies
the subgroup decision assumption.

Proof. First, in our scheme, the secret key q1 is randomly split into Z parts,
and each part is distributed to a data holder. Therefore, unless all the data
holders work together, they cannot recover the secret key q1 with their own
parts. Suppose a polynomial time adversary B, which is also a involved data
holder in the collaborative computation and can collude with less than other
Z − 2 data holders and the cloud server, is able to break the semantic security
of the scheme with non-negligible advantage. We can construct an algorithm A
that breaks the subgroup decision assumption with the same advantage. The
construction of the algorithm A is the same as that in [5].

Security of Algorithm 4: To share one number, each party Ps independently
chooses a random number Ls and encrypts it locally before he uploads to the
cloud. Since Algorithm 3 is secure according to the above theorem, the random
number chosen by each party is well protected. The decrypted data, i.e., the
difference between ε and the sum of all the local random numbers, is indistin-
guishable from a random number as long as at least one of the local random
numbers is not disclosed. This means that the data confidentiality of ε, which
can be an intermediate value, can be well protected under the random oracle
model as long as there is at least one non-malicious party.

Security of Algorithm 5: To share the result of approximation of activation
function, we utilize the Algorithm 3 and Algorithm 4. Since we do not intro-
duce any other steps to Algorithm 5 beside Algorithm 3 and Algorithm 4, we
can achieve the same data confidentiality in Algorithm 5 as Algorithm 3 and
Algorithm 4 did.

Security of Algorithm 2: In Algorithm 2, all the data exchange for parties are
during the the secure computation of step1, 2, 3, 4, 5. All these steps are based
on Algorithm 3, Algorithm 4 and Algorithm 5, which has been proved secure
in terms of data confidentiality. Thus, we can prove that the same security for
Algorithm 5 as Algorithm 3, Algorithm 4 and Algorithm 5 according to the
composable security model.
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5 Performance Analysis

5.1 Complexity Analysis

In this section, we numerically evaluate the performance of our proposed scheme
in terms of computation cost and communication cost and compare it with the
existing techniques. Since our scheme is composed of four sub-algorithms, we
first give the analysis of each sub-algorithm and then provide the complexity of
whole scheme. For expression simplicity, in the following part of this section, we
denote time complexity of one multiplication operation on Group G as MUL1

and that of one exponentiations operation on Group G as EXP.
Complexity of Algorithm 3: In multi-party scenarios, when all the parties need

to jointly perform a secure scalar product or addition computation, each party
Ps first needs to encrypt all his data attributes once, which costs 2ns EXP and
ns MUL, where ns is the number of data attributes owned by Ps. Then cloud
would calculate the ciphertext of scalar product or sum based on encrypted
data uploaded by each party and send back the ciphertext of result to each
party. After receiving the ciphertext of result, each Ps just needs to perform
one EXP and upload it into cloud for generate the final result. Therefore, the
total computation cost for each party Ps for the secure computation for scalar
product or sum is 2ns EXP and (ns + 1) MUL. Note, 2ns EXP and ns MUL
in our scheme is one time cost, it does not need to be performed in each secure
computation round. For communication cost, each Ps needs to exchange (ns+2)
messages with cloud, where |G| bits for each of ns messages and |G1| bits for the
other two. Note, ns messages are also one time cost.

Complexity of Algorithm 4: To securely get the random share of the result of
scalar product or addition, each Ps first needs to perform 2 EXP and one MUL
to encrypt its chosen random number. After the cloud calculates the ciphertext
of difference between the result the sum of all the local random number based
on the uploaded ciphertexts, another EXP is needed for each Ps to decrypt the
difference. Therefore, the total cost for each Ps during the secure sharing process
is 3 EXP and one MUL. For communication cost, only 3 messages exchange are
needed for each party Ps and cause 3|G1| bits cost.

Complexity of Algorithm 5: To jointly perform the approximation of activation
function(here we choose 5 terms for our approximation to achieve acceptable
accuracy as in [21]), each party Ps needs to perform 8 EXP and 2 MUL besides
the cost in Algorithm 3 and 4. For communication cost, 9 more messages, which
have 9|G1| bits are needed for each party besides cost in Algorithm 3 and 4.

Complexity of the Whole Scheme: In this part, we analyze the computation
cost and communication cost of our whole privacy preserving multi-party neural
network learning scheme. Considering the neural network configuration(a-b-c)
as described in section 3.2, each party Ps first needs to encrypt all its privacy
data once using Algorithm 3 with 2(ns+b+c) EXP and (ns+b+c) MUL, where
ns is the number of data attributes holed by Ps, a,b and c represent the number

1 When the operation is on the elliptic curve, EXP means scalar multiplication oper-
ation and MUL means one point addition operation.
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Table 1. Computation/Communication Cost of Privacy-Preserving BPN Learning
Schemes. ns: number of data attributes owned by party Ps; Z: number of participating
party; G and G1: size of messages

Our Scheme Bansal’s scheme Chen’s Scheme

Comp. (31b + 18c + 2ns)EXP Z2 ∗ (4ns(a + 4b + c + bc)) Z2 ∗ (5ab + 2bc
+(8b + 6c + ns)MUL ∗(EXP+MUL) +abc)(EXP+MUL)

+Z2 ∗ (12bEXP+8bMUL) +Z2 ∗ (4ns(2bc + 4ab
+b))(EXP+MUL)

Comm.(bit) ns ∗ a ∗ |G|+ (24b + 5c) ∗ |G1| Z2 ∗ (ab + 3bc + 4b + 2)|G| Z2 ∗ (b + 2bc + 4ab + 2)|G|
+2ns|G| +2ns|G|

of input layer nodes, hidden layer nodes and output layer nodes respectively.
Note: this is the one time cost and do not need to be performed again during
the whole learning process. In the Feed Forward Stage, by using Algorithm 4
and Algorithm 5, each Ps performs 11(b+ c) EXP and 3(b+ c) MUL to get the
random shares of every hidden layer node value and output layer node value.
In the Back-Propagation Stage, to get the random share of changes for each
output layer nodes, step1, 3 cost each Ps 5c EXP+2c MUL and 5b EXP+2b
MUL respectively; step1, 3 both need 3b EXP and b MUL and step5 needs 7b
EXP and 3b MUL. Thus Ps needs to perform (18b + 5c) EXP+(4b + 2c) MUL
using Algorithm 3 and Algorithm 4.
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0

Party Number
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n 

C
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Chen et. al.’s Scheme
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Fig. 2. Cost Influence of Party Number

Combining the cost for the two stages, the computation complexity for each
party Ps of one round privacy preserving back-propagation neural network learn-
ing in multi-party scenarios is 31b+ 18c+ 2ns EXP and 8b+ 6c+ ns MUL. For
cloud side, it needs to perform 4 + a + b + c pairing operations on Group G,
Z ∗ (8b+14c) MUL and 11 decryption, where the complexity of each decryption
is O(

√
K) andK is the size of message for decryption. Although the computation

cost on cloud side will linearly increase with the party number, cloud can handle
it in parallel efficiently. For communication cost, each party Ps needs to exchange
ns ∗a+24b+5cmessages with (ns ∗a∗ |G|+(24b+5c)∗ |G1|) bits during the one
round privacy preserving BPN learning process. By securely outsource most com-
putation tasks to the cloud server, our scheme makes the cost of each party inde-
pendent to the number of participating parties, which is a significant difference
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with the excising scheme[4,6] as we shown in Figure.2. To compare our scheme
with existing ones[4,6], we summarize the cost of our scheme and Ref.[4,6] in Ta-
ble.1. Considering the same neural network configuration(a-b-c), when extend-
ing scheme in Ref.[4] to Z parties scenarios, which utilized ElGamal[9] for secure
computation, Z2 ∗ (4ns(a+4b+ c+ bc))∗(EXP+MUL)+Z2∗ (12bEXP+8bMUL)
are needed for each party Ps for computation. When compared with scheme in
Ref.[6], which can support two party privacy preserving back-propagation neural
network learning over vertical partitioned data, Z parties scenario will introduce
Z2 ∗ (5ab+2bc+ abc+4ns(2bc+4ab+ b))(EXP+MUL) computation cost to the
each party. For communication cost, schemes in Ref.[4,6] will cause Z2 ∗ (ab +
3bc+4b+2)∗ |G1|+2ns ∗ |G1| bits and Z2 ∗ (b+2bc+4ab+2)∗ |G1|+2ns ∗ |G1|
bits respectively for Z parties scenarios. Different form our scheme, both [4] and
[6] will introduce a computation/communication complexity quadratic in Z for
Z parties scenario and make their scheme unpractical. As a result, by offloading
most computation cost to the cloud, our proposed scheme significantly outper-
forms the existing works in multi-party scenarios without any limitation on the
type of data partition.

5.2 Accuracy Analysis

In our proposed scheme, the only place that introduces accuracy loss is the ap-
proximation for the activation function. As described in section 4.5, we achieve
the approximation by using Maclaurin series expansion, whose accuracy can be
adjusted by modifying the number of series terms according to the system re-
quirement. Due to the property of Maclaurin series, our scheme can achieve any
higher accuracy by adding more series terms in approximation. Similar method
of approximation with Maclaurin series expansion is used in [21], but it just sup-
ports two party setting. Moreover, the cost brought by the increasing accuracy
requirement in our scheme is lightweight. Taking the a-b-c configuration BPN
for an example, it will cause 8(b + c) EXP 2(b + c) MUL for each party if we
extend 5 series terms to 9 series terms for more accuracy. Compared with the
existing schemes in [4,6], which use the piecewise linear approximation[16] for
the activation function and introduce about only 3%− 6% more error rate than
none privacy-preserving scheme, our approximation can achieve at least the same
accuracy as these works. Furthermore, due to limitation of finite fields for secure
computation, both schemes in [4] and [6] need to map the real numbers in sigmod
function to fixed-point representations in every step of Feed Forward Stage and
Back-Propagation Stage, which will lead to further loss in accuracy. However,
our proposed scheme can omit this limitation and be efficiency performed on
the sigmod function without any accuracy loss during the secure computation
process by utilizing the cloud server.

6 Conclusion

In this work, we proposed the first secure and practical multi-party BPN learn-
ing scheme over arbitrary partitioned data. In our proposed approach, the parties
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encrypt their arbitrarily partitioned data and upload the ciphertexts to the cloud.
The cloud can execute most operations pertaining to the BPN learning algorithm
without knowing any private information. The cost of each party in our scheme is
independent to the number of parties. This work tailors the BGN homomorphic
encryption algorithm to support the multi-party scenario, which can be used as
an independent solution for other related applications. Complexity and security
analysis shows that our proposed scheme is scalable, efficient and secure. As a fu-
ture work, we will study the feasibility of performing secure multiparty learning
without the help of any trusted authority.
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Appendix

Correctness of Algorithm 5

This section proves the correctness of Algorithm 5 and shows how to compute
any xk, k ∈ ZR for the approximation of activation function.

Proof. 1. When k = 1, xk = x, as aforementioned in Section 4.3, it can be
securely calculated without disclosing any privacy information.
2. If when k = n, multi-party can securely compute xn without revealing any pri-
vacy information. For k = n+1, we have: C(xn) = gx

n

1 hrn
1 , Ĉ(xn)s = C(xn)xs =

gx
n∗xs

1 hrn∗xs
1 , where C(xn) is the ciphertext of xn based on Algorithm 3 and xsis

the random share of x(
∑Z

s=1 = x) for party Ps by using Algorithm 4. After each

Ps uploading his Ĉ(xn)s to cloud, cloud can calculates as:

Z∏

s=1

Ĉ(xn)s (7)

= g
∑Z

s=1 xn∗xs

1 h
∑Z

s=1 rn∗xs

1 = g
xn∗∑Z

s=1 xs

1 h
∑Z

s=1 rn∗xs

1

= gx
n∗x

1 h
x∗∑Z

s=1 rn
1 = gx

n+1

1 h
x∗rn+1

1 = C(xn+1)

With the ciphertext of xn+1, all the parties can utilize Algorithm 3 and Algo-
rithm 4 to securely get the random share of xn + 1.
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