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Abstract. In this paper we present an algorithm that is able to pro-
gressively discover nodes cooperating in a P2P network. Starting from
a single known node, we can easily identify other nodes in the peer-to-
peer network, through the analysis of widely available and standardized
IPFIX (NetFlow) data. Instead of relying on the analysis of content char-
acteristics or packet properties, we monitor connections of known nodes
in the network and then progressively discover other nodes through the
analysis of their mutual contacts. We show that our method is able to dis-
cover all cooperating nodes in many P2P networks. The use of standard-
ized input data allows for easy deployment onto real networks. Moreover,
because this approach requires only short processing times, it scales very
well in larger and higher speed networks.

1 Introduction

Peer-to-peer networks generate a significant amount of traffic in today’s Inter-
net. Peer-to-peer protocols are popular with file sharing applications, are imple-
mented for a VoIP application (Skype) and have also been adopted by malware
as a Command & Control (C&C) channel. The ability to observe peer-to-peer
networks is useful — it can be used to manage networks more effectively thus
providing better quality of service, to detect and mitigate botnets employing
P2P for their C&C architecture, etc. Furthermore, peer-to-peer traffic can de-
grade the performance of anomaly detection techniques. The detection rate can
decrease by up to 30% and false positive rate can increase by up to 45% [9].

In this paper we propose a method that tries to exploit the inherent properties
of the peer-to-peer networks to find cooperating hosts in the network. We consider
two hosts to be cooperating if they are part of the same overlay network. We find
cooperating hosts by observing their mutual peers. It shows that if two hosts are
in the same overlay network their sets of peers overlap. Some theoretical ground
for this observation in connection with random graphs can be found in [4].

While graphs and graph algorithms are used to detect peer-to-peer networks
in [4,10] our approach differs in both the graph representation and the employed
graph algorithm. In [4] the graph is created based on all network traffic and
only afterwards the likely members of a peer-to-peer botnet are identified by a
graph algorithm. In [10] the graph is created based on flows grouped together by
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clustering and afterwards its properties are evaluated. Based on the properties
the algorithm decides whether the flows were induced by peer-to-peer network
or not. Unlike the two, we employ a graph construction algorithm and the graph
constructed by this algorithm represents a single peer-to-peer network.

In our evaluation we show that the algorithm is able to link hosts cooperat-
ing in the usual peer-to-peer networks, such as KAD, Gnutella, BitTorrent and
Skype P2P network; and also to link hosts infected by the same malware using
peer-to-peer as its C&C channel. Knowing which hosts are engaged in the same
overlay with the infected host might help to mitigate the botnet in the network.
We believe that this method can be used as a pre-processing layer for packet
inspection based detection, where we would first find clusters of hosts in the
network and then perform the detection only for few of them and extend the
results on the remaining hosts in the cluster.

2 Related Work

There is a plethora of research in the field of peer-to-peer networks. One can find
studies of BitTorrent in [17,12,18], BitTorrent’s DHT [5], KAD (which is based
on Kademlia) in [19,14] and Gnutella in [13,1,15]. There are also many works
proposing various improvements to peer-to-peer protocols, but those are not of
primary interest here.

Peer-to-peer architecture is now often used by botnets for their C&C. An
overview of peer-to-peer botnets and an analysis of one of them can be found
in [7]. A peer-to-peer based C&C is, on an example of Kademlia, analyzed theo-
retically in [8], where the authors show that P2P based C&C is harder to monitor
compared to the centralized C&C architecture. Besides that, they also propose
several mitigation techniques.

Detection of peer-to-peer networks is another topic often dealt with. There
are three main groups of detection methods — packet payload based, flow based
methods and graph methods. Within all three groups the detection can be based
on the observation of either the specific peer-to-peer network behavior or inherent
peer-to-peer networks properties. We do not dive into packet payload based
methods in this overview and also skip the methods based on specific peer-to-
peer protocol features.

A flow-based method to detect peers using inherent properties of peer-to-peer
networks is introduced in [2]. The method itself does not use any protocol-specific
features and thus, in theory, might be used for any peer-to-peer network. The
authors validate the method on BitTorrent and Gnutella networks.

As an example of graph methods, we can mention one introduced in [3]. The
method is agnostic of any specific peer-to-peer protocol features. It creates a
connection graph of the peers communicating on a given port and based on the
network diameter and number of hosts that function as both client and server
determines whether they constitute a peer-to-peer network.

Graphs were used to even greater extent in [10], where they are used to deter-
mine whether certain group of flows was generated by the peers in a peer-to-peer
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Fig. 1. Schema of the detector. As an input it takes flows from the network which are
processed by the Persistence Module (denoted by the PM). The set of seed endpoints is
then transferred to the Graph module which processes the flows induced by persistent
endpoints and merges and deletes graphs as needed. The output of the detector are
sets of endpoints that appear to be cooperating in peer-to-peer networks.

network. The groups of flows are identified based on packet payload inspection,
which might limit the potential use of this method. Traffic Dispersion Graphs
are also used in [11] to analyze the network traffic and identify unwanted appli-
cations.

Peer-to-peer architecture of the botnet C&C is used against the botnet itself
to detect its members knowing one starting bot [4]. Their proposed method is
similar to ours; it also starts with one known node of a given P2P network and
is based on monitoring of mutual contacts. However, they use a rather different
graph representation and determine the detected node’s confidence after the
graph is constructed.

In this work we also use ideas from paper aimed at detecting botnet C&C [6].
The authors focus on observing long term connections that are possible used for
botnet C&C. They use whitelists and any long-lasting connection not whitelisted
is considered a C&C channel.

3 Detection Method

We propose a detector that takes network traffic as input and finds hosts co-
operating in peer-to-peer networks. The detector is composed of two separate
modules. At the core of the detector there is the Graph Module which constructs
graphs around starter nodes, further called seed nodes. Nodes are a representa-
tion of hosts participating in peer-to-peer networks and each graph represents a
single peer-to-peer network. Seed nodes are selected by the Persistence Module.
The schema of the two is depicted in Fig. 1 and both are further explained in
detail in Sections 3.1 and 3.2.

The network traffic processed by the detector is represented by set of flows,
where flow is a tuple

(src ip, src port, dst ip, dst port, protocol).

Flows can be constructed either from NetFlow data or packet capture.
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Fig. 2. The histogram shows that majority of endpoints are active only one or two time
intervals. Then we can see only a marginal number of endpoints being active between
three and nine time steps. All services that run steadily and are regularly used are
active all 10 time windows.

The goal of the detection method is to find cooperating hosts in the network.
We consider two hosts in the network to be cooperating if they are participating
in the same peer-to-peer network. Any host that is participating in an arbitrary
peer-to-peer network needs to listen for incoming connections from other peers
within the same network — thus it has to keep an open port. Therefore, each
peer in a peer-to-peer network can be represented as a tuple (ip address, port)
which we call endpoint.

In reality, the host can participate in more peer-to-peer networks. For each
peer-to-peer network it uses, the host needs to keep a listening port open. For
each such host, different peer-to-peer networks are represented by independent
endpoints, enabling us to separate peer-to-peer networks effectively.

Note that the aforementioned nodes used in the Graph Module and selected
by the Persistence Module are in fact endpoints.

Our choice of node representation is different to the one used in [4] because
we argue that one host may be taking part in several peer-to-peer networks, e.g.
downloading music on BitTorrent, using Skype and at the same time be infected
by a P2P botnet. If the authors in [4] chose such a host as a starter node in
their graph algorithm, we believe they would suffer a hight false positive rate.
We show in the evaluation that using endpoint as the node representation can
overcome this issue. In our approach, such a host would simply appear as three
distinct endpoints that belong to different graphs.

We would like to note that, while the algorithm could process flows continu-
ously, we process flows in 5-minute batches, i.e. we collect flows for five minutes,
which are then processed at once. It follows that observation window size, tryout
and ignore periods and memory limit can only be a multiple of 5 minutes.

3.1 Persistence Module

The graph algorithm used in the Graph Module needs a seed node around which
it constructs the connection graph. The sole purpose of this module is to find
such nodes. We already established that nodes representing peers have the form
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of endpoints. There are two criteria for choosing the seed endpoints — the per-
sistence criterion and peers count criterion.

The persistence criterion means that we choose endpoints that are persistent,
i.e. are sending or receiving data for longer periods of time. During normal
network operation, a single host uses many ports to communicate with other
hosts. Most of these ports are used only for a short period of time. However,
there are some ports that are kept open — these are usually used for listening
for incoming connections. We performed a small experiment on the University
network, in which we monitored network traffic in ten 5-minute intervals. In
the first time interval we recorded all observed endpoints in our network. In the
following 9 time intervals we recorded whether the given endpoints were reused.
This way, we were able to create a histogram showing the number of endpoints
used in either one, two or up to ten time intervals. The histogram can be found
in Fig. 2. We can see that most endpoints were used only in one time interval
during the experiment. Then the trend is declining with exception of endpoints
that were used during all time intervals. We believe that these are the endpoints
that represent services (such as web servers or IMAP servers) or active peers of
peer-to-peer networks.

To define persistence of endpoints formally, we use simplified method of mea-
suring persistence introduced in [6]. The original method was focused on re-
vealing hidden C&C channels. We, on the other hand, are interested only in
persistence of endpoints, no matter where they connect to. We are not trying to
detect exact periodicity of connections but an ongoing character of a connection.
For this purpose, the regularity of an endpoint activity is observed by a sliding
window W , which is split into n bins. This window is called observation window
and bins are called measurement windows. We can write W = [b1, b2, b3, ..., bn].
We then formally define persistence of an endpoint as:

p(e,W ) =
1

n

n∑

i=1

1e,bi

where e is the endpoint for which the persistence is calculated, W is the obser-
vation window and function 1e,bi is equal to 1 if at least one connection to or
from the endpoint e occurred during the measurement window bi, otherwise it
is equal to 0.

The persistence calculation itself is based on three parameters—measurement
window size, which states how long the connections are recorded into one bin
before proceeding to another, observation window size, which determines how
many bins there are in the observation window and the threshold persistence p∗.
This parameter determines how many seed endpoints are passed to the Graph
Module.

When moving to the next observation window, we calculate persistence for all
endpoints. We select those with the persistence exceeding the threshold p∗ and
apply the second criterion, which is the number of contacted peers during the last
observation window. We assume that any peer communicates with more than one
other peer in the peer-to-peer network. Therefore, from the persistent endpoints
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Fig. 3. Algorithm illustration. First we have a seed node A with 3 recorded contacts.
In the second time interval, another node, B, is observed, sharing two mutual contacts
with A. If we consider K = 2, then in the third step, node B is already moved to the Vc.
Moreover, the algorithm detected yet another node, which has only one mutual contact
with a node from Vc. Note that the weights of the edges in the graph are determined
by the time step in which they occurred most recently.

we select those that had at least two peers in the last observation window. This
effectively removes long lasting connection between only two peers. These could
be clients downloading large files from the Internet or users connecting to other
computers via Remote Desktop or SSH.

In the end, only endpoints that exceed the persistence threshold and have at
least two peers in the last observation window are passed to the Graph Module
as the seed endpoints.

3.2 The Graph Module

The graph module is responsible for

– constructing graphs around the seed endpoints received from the persistence
module,

– merging similar graphs,
– removing graphs that failed to find any cooperating host for the given seed

endpoint.

Before describing the Graph Module in detail, where we work with the term
graph extensively, we first introduce its formal definition. Graphs can be used
to represent a P2P network, where vertices represent nodes participating in the
P2P network and edges represent connections between two nodes participating
in the P2P network. To detect the nodes of a P2P overlay network within our
network we use a 3-partite weighted graph

G = (V,E,w)

where
V = Vc ∪ Vs ∪ Vr.
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Vc is a set of nodes from our network we believe are participating in the P2P net-
work, Vs is a set of nodes from our network that we suspect are participating in
the P2P network and Vr is a set of nodes from outside of our network communi-
cating with nodes from Vc∪Vs. E is a set of edges. Function w assigns each edge
a weight — a value equal to the time when the edge was added to the graph. We
ignore all intra-network communication and cannot see communication between
the nodes that are outside of our network. Therefore the graph we define is in-
deed a 3-partite weighted graph. This also implies that G = ((Vc ∪ Vs) ∪ Vr, E)
can be considered a bipartite graph.

The algorithm for constructing graph around a seed node is explained later
in this section. Graph Module, just like the Persistence Module processes flows
collected in the network. Here, however, we process only flows that originate from
or are directed towards a persistent endpoint. We do that because we assume,
just like in the Persistence Module, that all endpoints representing peers in an
arbitrary peer-to-peer network are persistent. Then removing flows assigned to
non-persistent endpoints does not compromise the ability of the module to find
cooperating peers.

However, before the module can construct any graph, it first needs to receive
seed endpoints from the Persistence module. The persistence module feeds seed
endpoints to the graph module periodically. When the module receives the first
set of seed endpoints it creates a graph for each of them. For every subsequent
set of received seed endpoints it checks whether given seed endpoints are already
recorded in any of the graphs. For those that are not, it creates new graphs. This
way we prevent the creation of duplicate unnecessary graphs.

Since we expect this method to find cooperating endpoints (which are be-
lieved to be persistent) we should, after some time, construct graphs that are
very similar and describe the same peer-to-peer network despite starting from
different seed endpoint. There is no point in keeping such graphs separate so the
module joins them together. It rises a question though, how to define “similarity”
of two graphs. Two graphs that represent the same P2P network should have
similar sets Vc by some measure. However, since both graphs were iteratively
constructed from different seed nodes, they do not necessarily contain similar
sets of edges or set Vr. Therefore we define similarity of two graphs G1 and G2

as

s(G1, G2) =
| V G1

c ∩ V G2
c |

min(| V G1
c |, | V G2

c |)
where V G1

c resp. V G2
c represents Vc of graph G1 resp. G2. This definition ensures

that similarity of two graphs G1, G2 is high (in fact equal to 1) even in the
case when V G1

c ⊂ V G2
c and | V G1

c |�| V G2
c |. This is a case of two graphs that

represent the same P2P network but one of them is much smaller (either because
it was created later or because the seed was not as “active” as the seed of the
other graph). We merge two graphs if their similarity is greater than the merge
overlap threshold, which is another algorithm parameter.

There is, of course, a possibility that the graph algorithm will not be able to
find any cooperating hosts for certain seed. This might happen when the seed
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is the only peer of the respective peer-to-peer overlay in the network, or when
the seed node around which we tried to construct a graph was a service, e.g.
an email server. If any graph fails to find at least one cooperating endpoint in
the network for certain period of time called the tryout period it is removed
from the module. Even thought we remove the graph, it might be recreated
next time the seed nodes are received from the persistence module, because the
endpoint might be active despite the fact it has no cooperating nodes. Therefore
we define another time parameter, the ignore period, that determines how long
after removing a graph with a specific seed node, this seed node may not be used
to construct another graph. We do not want to ignore the given seed endpoint
forever, because service using the port may change or a cooperating peer might
appear later.

The Graph Algorithm. As we already mentioned, P2P networks can be rep-
resented by a graph. We try to exploit this graph structure to find other partici-
pating P2P nodes using one starter node. To achieve this, we traverse the edges
of the graph which is constructed on the basis of observed network communica-
tion. Since P2P overlay networks are dynamically changing, so should the graph
that represents a P2P overlay network.

The detection algorithm monitors network traffic and constructs (modifies)
the graph defined in the beginning of the section based on the observed network
activity in the following way:

– the graph starts with only the seed node n ∈ Vc,
– when a network connection occurs between any node n ∈ Vc and some node

m outside of our network then there are two options:
– m ∈ Vr already; in this case we just update w({m,n}) = current time(),
– m /∈ Vr yet; in this case we add m to Vr and {m,n} to E and set
w({m,n}) = current time().

– when a network connection occurs between any local node not yet in the
graph and some node m ∈ Vr, we add n to Vs, add {m,n} to E and set
w({m,n}) = current time(),

– any edge e ∈ E for which tnow − w(e) > tL is removed from the graph,
– any node n ∈ V is removed from the graph when it does not have any

incident edge (it has a zero degree),
– if (∃m ∈ Vs)(∃n ∈ Vc)(| Adj(m)∩Adj(n) |> K) then we move m from Vs to

Vc, where Adj(n) is a set of vertices adjacent to n.

The output of the algorithm is the set Vc which at any given moment contains
a list of active P2P nodes in the local network. There are two parameters used
in this algorithm:

– a memory limit, tL, which specifies how long a recorded connection (an edge
in the graph) is kept in memory,

– a mutual contacts overlap threshold, K, which specifies how many mutual
adjacent vertices a node from Vs needs to have with any node from Vc to be
moved to Vc, i.e. to consider it a P2P node.

First three steps of such an algorithm can be found in Fig. 3.
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Table 1. List of peer-to-peer networks with their respective clients installed on the
client hosts in the control set. Last column specifies how many hosts is running given
client application.

network client application hosts

Skype official client 18
BitTorrent µTorrent 26
KAD eMule 15
Gnutella Phex 18

4 Evaluation

4.1 Experiment Setup

To evaluate the detector we deployed it in the University network consisting of
approximately 1000 hosts. Since we did not have access to all the computers and
could not establish the ground truth concerning the network activity, i.e. what
service did every endpoint in the local network belong to, we chose 155 hosts
from two subnets for a small control set.

The first subnet contains 36 hosts of which 18 are running Windows XP,
15 are running Windows 7 and 3 are running Linux. We refer to these hosts
as client hosts. The client hosts were engaged in casual Internet activity, such
as browsing the web, working with email, listening to music, watching videos,
sharing files, etc. On these we also installed client applications for several P2P
networks, where one host can participate in several peer-to-peer networks. The
list of installed client applications can be found in Table 1.

To examine whether the algorithm is capable of linking hosts participating in
a botnet, we infected three computers with Trojan.Sirefef-6 malware, which uses
peer-to-peer for its C&C [16]. To ease up the determination of the ground truth
for the client hosts we set all client applications belonging to the same peer-to-
peer network to use the same port. This has no effect on detection capabilities
of our algorithm.

The second subnet contains servers - we refer to this hosts as server hosts.
None of the them is running any of the aforementioned applications. They run
many services, such as web servers, IMAP/POP services and other.

We were collecting network traffic for 20 hours during a working day. The
traffic was collected in form of NetFlow data by a network probe. Flows were
always collected for five minutes and then sent in a batch to our algorithm.
Number of flows within one 5 minute interval ranges from 37000 at night to
240000 during peak hours. To establish the ground truth for the client hosts in
the control set, we collected netstat information on each client host every five
minutes. This was necessary since many applications tend to open more ports
than the main port. This way we were able to determine what application did
every endpoint of the client hosts belong to. Ground truth for the server hosts
was determined in cooperation with their administrators.
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Table 2. Parameters and their values used in the experiment

parameter values

persistence threshold 0.5, 0.8
mutual contacts overlap threshold 3, 4, 5, 6
memory limit 60, 90, 120 minutes
merge overlap threshold 0.3, 0.5, 0.7

Some of the parameters mentioned in the previous sections do not have any
impact on detection performance. They are used to tune the memory and pro-
cessing power requirements of the detector. These are tryout period, ignore pe-
riod, and measurement and observation window sizes. In our experiments we
fixed value of tryout period to 1 hour. Ignore period was set to 1 hour as well,
however, every consecutive time the graph around a certain seed node is removed
because it failed to find cooperating peers, the ignore period for the given seed
increases by 1 hour. Observation window size is 5 minutes, which is also the
smallest value we can set (because we process flows in 5-minute batches). Re-
sorting to higher values would extend the time an endpoint needs to become
persistent. Measurement window size was chosen in accordance with [4].

The remaining parameters and their values used in the experiment are summed
up in Table 2.

4.2 Evaluation Methodology

Since the algorithm runs continually and modifies the graphs according to the
changes in the network (hosts joining/leaving peer-to-peer networks) we need
to choose a point in time when we evaluate the detection performance. In our
control set we started the client application and let them run for several hours.
Therefore we decided to choose the point when the numbers of detected nodes
of the peer-to-peer networks in their respective main graphs stabilize, i.e. the
numbers are same for at least three consecutive time intervals.

It is possible that endpoints participating in the same peer-to-peer network
will be spread in several graphs. Therefore we need to choose the main graph
- the graph that managed to link most of the cooperating hosts from the given
peer-to-peer network. We use this graph for the performance evaluation.

Please note that the algorithm does not detect any endpoint until it receives
first data from the Persistence Module.

Once we choose the point in time and graphs representing the peer-to-peer
networks, we determine the detection rate and number of false positives.

Client applicationsused for variouspeer-to-peer networksdiffer inusage ofports.
Some applications use more than 1 listening port, a typical example being Skype.
Another difference is in the number of used ephemeral ports.While clients for peer-
to-peer networks based on UDP use only one or small number of ports, clients for
TCPbased peer-to-peer networks are very eager in using ephemeral ports, e.g. Bit-
Torrent. For each peer-to-peer network and its client application we are interested
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Table 3. Detection rate for various memory limit and mutual contacts threshold val-
ues. Memory limit values are intentionally chosen very lower so that the relationship
between the two is obvious. Higher mutual contacts threshold may require longer mem-
ory limit in order to attain “comparable” detection rate. Memory limit is in first row
in minutes, mutual contacts threshold in the first column.

(a) Skype

5 10 15 25 45

2 94.4 94.4 94.4 94.4 94.4
3 94.4 94.4 94.4 94.4 94.4
4 94.4 94.4 94.4 94.4 94.4
5 94.4 94.4 94.4 94.4 94.4
6 72.2 83.3 94.4 94.4 94.4
7 16.7 22.2 22.2 27.8 83.3
8 16.7 16.7 22.2 22.2 38.9

(b) BitTorrent’s DHT

5 10 15 25 45

2 96.2 100 100 100 100
3 53.8 76.9 92.3 100 100
4 34.6 57.7 69.2 88.5 100
5 34.6 42.3 61.5 73.1 92.3
6 34.6 42.3 57.7 65.4 84.6
7 34.6 42.3 42.3 65.4 76.9
8 34.6 42.3 42.3 61.5 65.4

in the main listening port. In some graphs we may observe several endpoints asso-
ciated with a single host, especially if they represent a peer-to-peer network using
TCP as transport protocol. In a rigorous understanding, these endpoints are true
positives because they are used for the communication in the peer-to-peer overlay.
To keep the things simple, we ignore all endpoints that are in fact true positives
but are not associated with the main listening port. If we did not ignore such end-
points we would have issues with the detection rate calculation as we do not know
the exact number of ephemeral ports used by a client.

Identification of false positives differs among the peer-to-peer networks. For
KAD, Gnutella, BitTorrent and Trojan.Sirefef-6 we consider every detected end-
point not associated with the host from the control set and the respective lis-
tening port of the client application to be a false positive. We can do so since
these peer-to-peer networks are used only rarely at the University. Using this
approach we determine the upper bound of the false positives detected by our
algorithm. We cannot do the same with Skype as it is very popular at the Uni-
versity. Therefore we evaluate false and true positives only on the control set.

4.3 Evaluation Results

We evaluated the algorithm performance for all combination of parameters,
summed up in Table 2. Before we move on to the actual results of the detection
we describe the effect of the particular parameters on the detection performance
of the algorithm.

Increasing the persistence threshold in general lowers the number of graphs
in the Graph Module. This is important for the performance consideration, es-
pecially on huge networks. Having too many graphs in the model can result in
exhaustion of the system resources. To focus on detection performance, rising
the persistence threshold lowers the number of endpoints induced by the client
application but not associated with the main port. It does not seem to have any
significant impact on false positives rate.
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Table 4. Parameters used for the evaluation of the algorithm. These provide the best
results, however they are not the only choice of parameters that attains the same
detection performance.

parameter value

persistence threshold 0.8
mutual contacts overlap threshold 5
memory limit 90 minutes
merge overlap threshold 0.3

Choice of memory limit has a minor impact on false positives rate — the rise
of the memory limit is accompanied by the rise of the false positive rate. On
the other hand, it can have severe impact on the detection rate (explanation of
the connection to mutual contacts overlap threshold, will be introduced shortly).
This parameter also impacts memory requirements, high memory limit result in
increased memory requirements of the algorithm.

Mutual contacts overlap threshold is the parameter that we believe has the
greatest impact on the false positive rate. Increase in its value is accompanied by
the drop of the detection rate. There is some boundary (determined by the peer-
to-peer protocol) exceeding which the detection rate would drop considerably.
This can be easily seen in Table 3a. When using memory limit of 5 minutes, the
change from mutual contacts overlap threshold from 6 to 7 causes a significant
drop in the detection rate. However, under this limit value, we can attain the
same detection rate for various values of mutual contacts overlap threshold just
by adjusting the memory limit.

There is a connection between the memory limit and mutual contacts over-
lap threshold parameters. Rising the mutual contacts threshold while fixing the
memory limit lowers the detection rate. On the other hand, raising the memory
limit while keeping the mutual contacts threshold fixed improves the detection
rate. This is best seen in Table 3.

We did not notice any impact of the merge overlap threshold value on the
detection results.

We do not present results for all combinations of parameters, since there are
too many of them and many bring the same results. We rather present only the
results for one combination of parameters that brings the best results. For the
parameters please refer to Table 4.

Detection Rate. The algorithm was able to find all cooperating hosts in Skype,
BitTorrent, Kademlia and Trojan.Sirefef-6 peer-to-peer networks. On the other
hand, detection rate for Gnutella was considerably lower — 44%.

While Gnutella uses TCP protocol for its communication, Skype, Kademlia
and Trojan.Sirefef-6 all use UDP for their peer-to-peer overlay. Finally, newest
BitTorrent protocol implementations use both UDP and TCP. In BitTorrent,
TCP is used for communication in swarms, i.e. the communities created to share
files listed in a single torrent file and UDP is used in BitTorrent’s DHT imple-
mentation, which is utilized for distributed tracker functionality.
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As was mentioned before, the algorithm attained 100% detection rate for Bit-
Torrent clients. However, these were detected based on BitTorrent’s DHT imple-
mentation which is used for distributed tracker functionality and not based on
the BitTorrent protocol. The question is whether the algorithm would be able to
detect BitTorrent clients that do not use DHT. To verify the detection perfor-
mance on clients using only BitTorrent protocol without any DHT we ran the
algorithm again with the same parameters, while ignoring all UDP connections
from or to the µTorrent listening port (effectively removing the DHT traffic).

Here we need to realize the difference between the BitTorrent protocol and
the other peer-to-peer protocols in this evaluation. While other peer-to-peer
networks maintain an overlay network at all times, the BitTorrent client is not
part of any overlay (if it is not using DHT) unless it wants to download a file and
joins a swarm. Therefore, when we talk about detecting cooperating hosts for
BitTorrent using only the BitTorrent protocol, we mean hosts that are members
of the same swarm.

With such setting, we were able to detect all peers cooperating in the same
BitTorrent swarm. This shows that even without DHT we were able to find
cooperating hosts and that the algorithm is not restricted only to the UDP-
based peer-to-peer networks and can be effective for TCP-based peer-to-peer
networks as well.

Detecting Gnutella peers seems to be much harder. The algorithm found only
8 peers which constitutes around 44% of all peers. Gnutella uses TCP for com-
munication. Unlike protocols that use UDP and the listening port is used for
both incoming and outgoing connections, Gnutella uses the listening port only
for incoming connections. Outgoing connections are sent through an ephemeral
ports that are assigned and changed at the discretion of the operating system.
That makes the detection much harder. Gnutella has two types of peers, leaf
nodes and ultrapeers. Leaf nodes only connect to the ultrapeers and ultrapeers
connect to both ultrapeers and leaf nodes. Ultrapeers have higher frequency of
connections with other peers and are thus more likely to be linked together. Most
of the cooperating hosts found for the Gnutella network were in fact ultrapeers.

The important thing to note here is that linking cooperating hosts (with the
exception of BitTorrent peers detection without DHT) did not require any user
activity besides connecting (and logging in) to the network.

False Positive Rate. For four of the peer-to-peer networks we experimented
on we encountered no false positives. These were Skype, KAD, Gnutella and
Trojan.Sirefef-6. Only one false positive was found when linking cooperating
hosts in the BitTorrent’s DHT network. Due to the low number of false positives
we refrain from calculating the false positive rate, since it would only have a
negligible value.

5 Conclusion

In this paper we presented a novel method that links cooperating hosts in the
same peer-to-peer network by exploiting the inherent properties of peer-to-peer
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networks. It tries to reconstruct the peer-to-peer overlay based on the observed
connection in the network.

The method managed to detect all cooperating peers in most of the networks
and attained almost zero false positive rate.

Since the method does not use neither packet payloads nor flow statistics, it is
a viable option for deployment on the backbone network where computationally
expensive models are not an option.

We believe that this method presents a viable approach to detecting peers in
overlay networks, both well known file sharing networks and specialized peer-to-
peer networks used by botnets as a C&C channel.
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