
Data Leak Detection as a Service

Xiaokui Shu and Danfeng (Daphne) Yao

Department of Computer Science
Virginia Tech

Blacksburg, VA, USA
{subx,danfeng}@cs.vt.edu

Abstract. We describe a network-based data-leak detection (DLD)
technique, the main feature of which is that the detection does not re-
veal the content of the sensitive data. Instead, only a small amount of
specialized digests are needed. Our technique – referred to as the fuzzy
fingerprint detection – can be used to detect accidental data leaks due to
human errors or application flaws. The privacy-preserving feature of our
algorithms minimizes the exposure of sensitive data and enables the data
owner to safely delegate the detection to others (e.g., network or cloud
providers). We describe how cloud providers can offer their customers
data-leak detection as an add-on service with strong privacy guarantees.
We perform extensive experimental evaluation on our techniques with
large datasets. Our evaluation results under various data-leak scenarios
and setups show that our method can support accurate detection with
very small number of false alarms, even when the presentation of the
data has been transformed.

Keywords: privacy, data leak, network security, protocol.

1 Introduction

Typical approaches to preventing data leak are under two categories – host-based
solutions and network-based solutions. Host-based approaches may include i)
encrypting data when not used [4], ii) detecting stealthy malware with anti-
virus scanning or monitoring the host [29,31,18], and iii) enforcing policies to
restrict the transfer of sensitive data. These approaches are complementary and
can be deployed simultaneously.

We present a network-based data-leak detection (DLD) solution that comple-
ments host-based methods. Network-based data-leak detection focuses on ana-
lyzing unencrypted outbound network traffic through i) deep packet inspection
or ii) information theoretic analysis (e.g., through entropy analysis [13]). For the
deep packet inspection approach, a straightforward solution requires inspecting
every packet for the occurrence of any of the sensitive data defined in the sensi-
tive database. Such solutions generate alerts if the sensitive data is found in the
outgoing traffic. However, this simple solution requires storing sensitive data in
plaintext in the detection system.

A.D. Keromytis and R. Di Pietro (Eds.): SecureComm 2012, LNICST 106, pp. 222–240, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

Data Leak Detection 223

The reason that this plaintext-based comparison mechanism is undesirable is
two-fold: i) the machine performing the comparison may be compromised, which
reveals sensitive data1, and ii) it does not support the outsource of data-leak
detection operations, as the provider performing the DLD service may learn
or accidentally expose the sensitive data. In addition to provide the regular
networking, computing, or storage services, network or cloud providers may in-
troduce additional security protection for their customers. For their customers,
these add-on security services – such as data-leak detection – are attractive,
as they may have a lower cost compared to building in-house security manage-
ment of their own. Thus, one may outsource the data-leak detection to a DLD
provider. However, the data owner may not allow the DLD provider to access the
sensitive data. The technical challenge is that the detection algorithm needs to
provide guarantees on the secrecy of customers’ sensitive data while still enabling
the provider to identify signs of data leak in the traffic.

This problem of the lack of support for privacy-enhancing data-leak detection
has not been systematically addressed in the security literature. In this paper we
design, implement, and experimentally evaluate an efficient technique that en-
hances the data privacy during the data-leak detection operations. Our method is
based on a fast and practical one-way computation and does not require any ex-
pensive cryptographic operations. We provide extensive experimental evidences
and theoretical analysis to demonstrate the feasibility and effectiveness of our
approach.

We model the DLD provider as an honest-but-curious (aka semi-honest) ad-
versary. The DLD provider is trusted to perform inspection on network traffic,
but may attempt to learn the information about the sensitive database provided
by the data owner, or to discover the leaked data easily from the network traffic.
Existing work on cryptography-based multi-party computation is not efficient
enough for practical data leak inspection in this setting. We design, implement,
and evaluate a new privacy-enhancing data-leak detection system that enables
the data owner to securely delegate the traffic-inspection task to DLD providers
without exposing the sensitive data. It is hard for a DLD provider to learn the
exact value of sensitive data during the detection process.

In our model, the data owner computes a special set of digests or fingerprints
from the sensitive data, and then discloses only a small amount of digest in-
formation to the DLD provider. These fingerprints have important properties,
which prevent the provider from gaining knowledge of the sensitive data, while
they enable accurate comparison and detection. The DLD provider performs
deep packet inspection to identify whether these fingerprint patterns exist in
the outbound traffic of data owner’s organization or not. We perform extensive
experiments with real-world datasets in various data-leak scenarios to confirm
the accuracy and efficiency of our proposed solutions. Our contributions are
summarized as follows.

1 Sensitive data may be in encrypted storage, but is plaintext when in memory for
comparison.

224 X. Shu and D. (Daphne) Yao

1. We describe a privacy-preserving data-leak detection (DLD) model for pre-
venting inadvertent data leak in network traffic. Such a model yields a pow-
erful and delegatable data-leak detection framework. For example, in the
cloud computing environment the cloud provider can perform data-leak de-
tection as an add-on service to its clients. We describe a quantitative privacy
model needed for data-leak detection as a service.

We design, implement, and evaluate a new and efficient technique, fuzzy
fingerprint, for realizing privacy-preserving data-leak detection. Fuzzy finger-
prints are special digests of the sensitive data that the data owner releases
to the DLD provider. We describe the operations in our protocol that is run
between the data owner and the DLD provider.

2. We implement our detection system and perform extensive experimental
evaluation on 2.6 GB Enron dataset, Internet surfing traffic of 20 users, and
also 5 simulated real-world data-leak scenarios to measure the privacy guar-
antee, detection rate and efficiency of our technique. Our results indicate high
accuracy performed by our underlying scheme with very low false positive
rate. It also shows that the detection accuracy does not degrade when only
partial (sampled) sensitive-data digests are used. In addition, these partial
fingerprints represent the full set of data without any bias.

The rest of the paper is organized as follows. Our models and design require-
ments for a privacy-preserving data-leak detection system are presented next.
Details of our system including digest computation, data-inspection strategies
are described in Section 3. We analyze the privacy in Section 4, and also point
out the limitations of our method. Our implementation and evaluation are de-
scribed in Section 5. Related work is given in Section 6. Conclusions and future
work are given in Section 7.

2 Model and Overview

There is a privacy goal and threat model beside the normal security goal and
threat model for any solution to outsource data-leak detection. The former is
for preventing the service provider from gaining knowledge about the sensitive
data during the detection, whereas the latter relates to preventing unauthorized
transmission of sensitive data. There are two types of players in our model: the
organization (i.e., data owner) and the data-leak detection (DLD) provider.

– Organization owns the sensitive data and authorizes the DLD provider to
inspect the network traffic from the organizational networks for anomalies,
namely inadvertent data leak. However, the organization does not want to
directly reveal the sensitive data to the provider.

– DLD provider inspects the network traffic for potential data leaks. The in-
spection can be performed offline without causing any real-time delay in
routing the packets. However, the DLD provider may attempt to gain knowl-
edge about the sensitive data.

We describe the security and privacy goals in Section 2.1 and Section 2.2.

Data Leak Detection 225

2.1 Security Goal and Threat Model

We categorize three causes for sensitive data to appear on the outbound traffic
of an organization, including the legitimate data use by the employees.

– Case I Inadvertent data leak: The sensitive data is accidentally leaked in the
outbound traffic by a legitimate user. This paper focuses on detecting this
type of accidental data leaks over the network. Inadvertent data leak may
be due to human errors such as forgetting to use encryption, carelessly for-
warding an internal email and attachments to outsiders without encryption,
or due to application flaws (such as described in [19]).

– Case II Malicious data leak: A rogue insider or malicious and stealthy soft-
ware may steal sensitive personal or organizational data from a host. Because
the malicious adversary can use strong encryption or steganography to dis-
able content-based traffic inspection, thus this type of leaks (including covert
channels) are out of the scope of our network-based solution. Host-based de-
fenses (such as detecting the infection onset [33]) need to be deployed instead.

– Case III Legitimate and intended data transfer: The sensitive data is sent by
a legitimate user intended for legitimate purposes. In this paper, we assume
that legitimate data transfers use data encryption such as SSL, which allows
one to distinguish it from the inadvertent data leak. Therefore, in what
follows we assume that plaintext sensitive data appearing in network traffic
is only due to inadvertent data leaks.

The security goal in this paper is to detect the inadvertent data leak in Case I. In
this scenario, the traffic is usually not encrypted and thus deep packet inspection
is feasible. Network-based security approaches are not effective against data leak
caused by malware or rogue insiders as in Case II, because the intruder may use
strong encryption when transmitting the data.

2.2 Privacy Goal and Threat Model

To prevent the DLD provider from gaining knowledge of the sensitive data during
the detection process, we need to set up a privacy goal that is complementary to
the security goal above. We model the DLD provider as a semi-honest adversary,
who follows our protocol to carry out the operations, but may attempt to gain
knowledge about the sensitive data of the data owner. Our privacy goal is defined
as follows. The DLD provider is given digests of sensitive data from the data
owner and the content of network traffic to be examined. The DLD provider
should not find out the exact value of a piece of sensitive data with more than
1
K probability, where K is an integer representing the number of all possible
sensitive-data candidates that can be inferred by the DLD provider.

We present a novel privacy-preserving DLDmodel with a new fuzzy fingerprint
mechanism to improve the data protection against semi-honest DLD provider.
We generate digests of sensitive data through a one-way function, and then
hide the sensitive values among other non-sensitive values via fuzzification, The

226 X. Shu and D. (Daphne) Yao

privacy guarantee is much higher than 1
K when there is no leak in traffic, because

the adversary’s inference can only be done through brute-force guesses.
The traffic content is accessible by the DLD provider in plaintext. Therefore,

in the event of true data leak, the DLD provider may learn about the leaked
information, which is inevitable for all deep-packet inspection approaches. Our
unique solution confines the amount of maximally information learned during
the detection and provides quantitative guarantee for the data privacy.

2.3 Overview of Privacy-Enhancing DLD

Our privacy-preserving data-leak detection method supports practical data-leak
detection as a service and minimizes the knowledge that a DLD provider may
gain during the process. Figure 1 illustrates the six operations between the data
owner and the DLD provider in our protocol, which include Preprocess run
by the data owner to prepare the digests of sensitive data, Release for the data
owner to send the digests to the DLD provider, Monitor and Detect for the
DLD provider to collect outgoing traffic of the organization, compute digests of
traffic content, and identify potential leaks, Report for the DLD provider to
return data leak alerts to the data owner where there may be false positives (i.e.,
false alarms), and Postprocess for the data owner to pinpoint true data leak
instances. We explain the operations in details in the next section.

1. Preprocess and prepare
fuzzy fingerprints2. Release fingerprints

3. Monitor outbound network traffic

4. Detect

5. Report all data leak alerts
6. Postprocess and identify

true leak instances

DLD Provider Data Owner

Fig. 1. Privacy-preserving DLD Model

The protocol is based on strategically computing data similarity, specifically
the quantitative similarity between the sensitive information and the observed
network traffic. High similarity indicates potential data leak. For data-leak de-
tection, the ability to tolerate certain degree of data transformation in traffic is
important. We refer to this property as noise tolerance. Our key idea for fast and
noise-tolerant comparison is the design and use of a set of local features that are
representative of local data patterns. Local features preserve data patterns even
when modifications (insertion, deletion, and substitution) are made to parts of
the data. To achieve the privacy requirement, the data owner generates a special

Data Leak Detection 227

type of digests, which we call fuzzy fingerprints. Intuitively, the purpose of fuzzy
fingerprints is to hide the true sensitive data in the crowd so that the DLD provider
is unable to learn its exact value. We describe the technical details next.

3 Fuzzy Fingerprint Method and Protocol

We describe technical details of our fuzzy fingerprint mechanism in this section.

3.1 Fingerprints

The DLD provider obtains digests of sensitive data from the data owner. The
data owner uses Rabin fingerprint algorithm [24] and a sliding window to gener-
ate short and hard-to-reverse (i.e., oneway) digests through the fast polynomial
modulus operation. Rabin fingerprints are computed as polynomial modulus
operations, and can be implemented with fast XOR, shift, and table look-up
operations. It has a unique min-wise independence property [7], which allows
randomly sampling of the digests without creating any bias.

The shingle-and-fingerprint process is defined as follows. For a binary string,
we first generate q-grams (shingles) using a sliding window, and then compute
Rabin fingerprint of each k-bit shingle using irreducible polynomial p(x):

f1 = c1x
k−1 + c2x

k−2 + . . .+ ck−1x+ ck mod p(x)

From the detection respective, a straightforward method is for the DLD provider
to raise an alert if any sensitive fingerprint matches the fingerprints generated
from the traffic. However, this approach has a privacy issue. In case of a data
leak detected, there is a match between two fingerprints from sensitive data and
network traffic. Then, the DLD provider learns the corresponding shingle, as it
knows the content of the packet. Therefore, the central challenge is to prevent
the DLD provider from learning the sensitive values even in data-leak scenarios,
while allowing the provider to carry out the traffic inspection.

We propose a novel and efficient technique to address this problem. The main
idea is to relax the comparison criteria by strategically introducing matching
instances on the DLD provider’s side without increasing false alarms for the data
owner. Specifically, i) the data owner perturbs the sensitive-data fingerprints
before disclosing them to the DLD provider, and ii) the DLD provider detects
leaking by a range-based comparison instead of the exact match. The range
used in the comparison is pre-defined by the data owner and correlates to the
perturbation procedure. We first define the fuzzy length and fuzzy set next and
then describe how they are used in our detailed protocol in Section 3.2.

Definition 1. Given a fingerprint f , fuzzy length pd (pd < pf) is the number
of the least significant bits in f that may be perturbed by the data owner.

Definition 2. Given a fuzzy length pd, and a collection of fingerprints, the fuzzy
set Sf,pd

of a fingerprint f is the set of fingerprints in the collection whose values
differ from f by at most 2pd − 1.

228 X. Shu and D. (Daphne) Yao

In Definition 1 for fuzzy length, pf denotes the total length of a fingerprint.
In Definition 2, the size of the fuzzy set |Sf,pd

| is upper bounded by 2pd , but the
actual size may be smaller due to the sparsity of the fingerprint space.

3.2 Operations in Our Protocol

1. Preprocess:
This operation is run by the data owner on some sensitive dataset. The data
owner chooses the public parameters (k, p(x), pd), where k is the length of
shingles, p(x) is an irreducible polynomial for computing Rabin fingerprint,
and pd is the fuzzy length. The length of a fingerprint is denoted by pf

2.
The data owner first computes the set S of Rabin fingerprints of the sensi-

tive data. Then the data owner transforms each fingerprint f ∈ S into a fuzzy
fingerprint f∗ as follows. Given the fingerprint f of some shingle v and a fuzzy
length pd, the data owner flips an unbiased coin pd times to generate the new
least significant pd bits in f . The rest of the bits in f are unchanged. The trans-
formation generates a fuzzy fingerprint f∗ of f . We denote the resulting set of
fuzzy fingerprints by S

∗, which is the output of this operation.
2. Release:

This operation is run by the data owner. The fuzzy fingerprint set S
∗ ob-

tained from the Preprocess operation above is released to the DLD provider
for use in the detection, along with the public parameters (k, p(x), pd). The
real fingerprint f and the corresponding sensitive shingle v are kept at the
data owner and not released to the DLD provider.

3. Monitor: This operation is run by the DLD provider. The DLD provider
monitors the network traffic T from the data owner’s organization. The
header of the packet in T is removed and the payload is collected. The
processed traffic T̃ is the output.

4. Detect:
This operation is run by the DLD provider on T̃ as follows.
(a) The DLD provider first computes the Rabin fingerprints of traffic content

T̃ based on the public parameters.
(b) For each fuzzy fingerprint f∗ ∈ S

∗ of some sensitive data, and each
fingerprint f ′ ∈ T̃ from the traffic, and the public parameters, the DLD
provider outputs 1 (indicating possible data leak) if values of f∗ and f ′

differ by at most 2pd − 1, and 0 otherwise.
(c) For all the data-leak matching instances detected during this range-based

detection, the DLD provider records the set of {(x1, f1), . . . , (xi, fi), . . .)}
pairs, where xi is the shingle appearing in the traffic, and fi is its Rabin
fingerprint. The DLD provider and the data owner may agree upon cer-
tain aggregation methods and a threshold for logging alerts, which we
discuss more in the evaluation section 5.

Because the fuzzy set of f∗ includes the original fingerprint f , thus the true
data leak can be detected (i.e., true positive). Yet, due to the increased
detection range, multiple values in the fuzzy set may trigger alerts. Because

2 The degree of polynomial p(x) is pf + 1.

Data Leak Detection 229

the fuzzy set is large for the given network flow, the DLD provider has a
low probability of pinpointing the sensitive data, which can be bounded as
shown in Section 4.

5. Report:
The DLD provider reports the set of detected candidate leak instances
{(x1, f1), . . . , (xi, fi), . . .)} tuples to the data owner.

6. Postprocess:
This operation is run by the data owner. Given the data-leak instance can-
didates in the reported set of tuples {(x1, f1), (x2, f2), . . .}, the data owner
searches to see if any sensitive fingerprint f ∈ S exists in the report. If there
exist fi = f and xi = v, i.e., the shingle xi and fingerprint f in the traf-
fic match those (v, f) of the sensitive data, then there is a true data leak,
otherwise the submitted candidates can be safely ignored by the data owner.

The Detect operation can be performed between T̃ and S
∗ via set intersection

test (e.g. Formula 2 in Section 5 as one realization). The advantage of our method
is that the additional matching instances introduced by fuzzy fingerprints protect
the sensitive data from the DLD provider; yet they do not cause additional
false alarms for the data owner, as the data owner can quickly distinguish true
and false leak instances. Given the digest f of a piece of sensitive data, a large
collection T of traffic fingerprints, and a positive integerK � |T |, the data owner
can choose a fuzzy length pd such that there are at least K − 1 other distinct
digests in the fuzzy set of f , assuming that the shingles corresponding to these
K digests are equally likely to be candidates for sensitive data and to appear
in network traffic. A tight fuzzy length (i.e., the smallest pd value satisfying the
privacy requirement) is important for efficient Postprocess operation. Due to
the dynamic nature of network traffic, pd needs to be estimated accordingly. We
provide quantitative analysis on fuzzy fingerprint including empirical results on
different sizes of fuzzy set.

3.3 Extensions

Fingerprint Filter. We develop this extension to use Bloom filter in the Detect
operation for efficient set intersection test. Bloom filter is a well-known space-
saving data structure for performing set-membership test, and the range-based
comparison in the Detect operation can be generalized to the membership test
with it. Bloom filter in combination with Rabin fingerprint is referred to by us
as the fingerprint filter. We have implemented, evaluated, and compared this
technique in our experiments in Section 5.

Bit Mask. We can generalize the Preprocess operation with a bit mask, which
specifies any arbitrarily chosen bits or any mapped bit pattern for comparison.
Details of how bit mask works are discussed in our technical report [28].

Sampling.Using the min-wise independent property of Rabin fingerprint, the data
ownermay sample the fingerprints and only reveals a subset of sensitive-data’s fin-
gerprints to the DLD provider. That is, the data owner may release a subset of S∗

230 X. Shu and D. (Daphne) Yao

to the DLD provider in Release operation. The purpose of sampling is two-fold:
to increase the scalability of the comparison in the Detect operation, and to re-
duce the exposure of data to the DLD provider for privacy. The subset is selected
by choosing the subset of smallest fingerprints when Rabin fingerprint is equipped.
More description can be found in our technical report [28].

4 Analysis and Discussion

We analyze the security and privacy guarantees provided by our data-leak de-
tection system, as well as discuss the sources of possible false negatives – data
leak cases being overlooked and false positives – legitimate traffic misclassified
as data leak in the detection.

Privacy Analysis. Our privacy goal is to prevent the DLD provider from infer-
ring the exact knowledge of all sensitive data, both the outsourced sensitive data
and the matched digests in network traffic. We quantify the probability for the
DLD provider to infer the sensitive shingles. Suppose there are matches between
sensitive fingerprints and traffic fingerprints. Given a fuzzy length, there are mul-
tiple (e.g., K) fingerprints (including the sensitive data’s fingerprint) that may
trigger alerts at the DLD provider; thus, the DLD provider is unable to pinpoint
which alerts are true data leaks. Therefore, even if sensitive data appeared on
the traffic due to inadvertent data leak, the DLD provider has no more than 1

K
probability of inferring the sensitive data, assuming that the shingles associated
with the fuzzy set are equally likely to be sensitive data and appear in the net-
work traffic. The size of fuzzy set K is upper bounded by 2pd . For a large shingle
set of size 2pf−pd ≤ n ≤ 2pf , the expected value of K = n

2pf
×2pd , assuming that

the fingerprints of shingles are uniformly distributed. It is a reasonable assump-
tion, especially when binary sensitive data is included, which expands the small
distinguishable text space to the vast more well-distributed whole binary space.
This privacy guarantee protects the sensitive data in the worst-case scenario.

If there is no match between sensitive and traffic fingerprints, then the ad-
versarial DLD provider needs to brute force to reverse the Rabin fingerprinting
computation to obtain the input shingle. The time needed depends on the size of
shingle space. This brute-force attack is difficult for a polynomial-time adversary
and thus the success probability is not included in Theorem 1. We summarize
the above privacy analysis in the following theorem.

Theorem 1. A polynomial-time adversary has no greater than 2pf−pd

n probabil-
ity of correctly inferring a sensitive shingle, where pf is the length of a fingerprint
in bits, pd is the fuzzy length, and n ∈ [2pf−pd , 2pf] is the size of the set of traffic
fingerprints, assuming that the fingerprints of shingles are uniformly distributed
and are equally likely to be sensitive and appear in the traffic.

Alert Rate.We qualify the rate of alerts expected in the traffic for a sensitive data
entry (the fuzzified fingerprints set of a piece of sensitive data) given the follow-
ing values: the total number of fuzzified sensitive fingerprints M , the expected

Data Leak Detection 231

traffic fingerprints set size n, fingerprint length pf , fuzzy length pd, sampling
rate ps ∈ (0, 1], and the expected rate α of the leak in terms of the percentage of
fingerprints in the sensitive data entry that appear in the network traffic. Based
on Theorem 1, the expected alert rate R can be expressed in Equation 1. It is
used to derive threshold in the detection; the detection threshold should be lower
than the expected rate of alerts.

R =
αpsKM

n
=

αpsM

2pf−pd
(1)

Collisions. Collisions may be due to where the legitimate traffic happens to
contain the partial sensitive-data fingerprints by coincidence. The collision may
increase with shorter shingles, or smaller numbers of partial fingerprints, and
may decrease if additional features such as the order of fingerprints are used for
detection. A previous large-scale information-retrieval study empirically demon-
strated the low rate of this type of collisions in Rabin fingerprint [6], which is
a desirable property suggesting low unwanted false alarms in our DLD setting.
Collisions due to two distinct shingles generating the same fingerprint are proved
to be low [5] and are negligible.

Dynamic data. For protecting dynamically changing data such as source code or
documents under constant development or keystroke data, the digests need to be
continuously updated for detection, which may not be efficient or practical. We
raise the issue of how to efficiently detect dynamic data with a network-based
approach as an open problem to investigate by the community.

Space of sensitive data. The space of all text-based sensitive data may be smaller
than the space of all possible shingles. Yet, when including non-ASCII sensitive
data (text in UTF-8 or binaries), the space of sensitive data can be significantly
expanded. Thus, the assumption in Theorem 1 is practical.

Data modification. False negatives (i.e., failure to detect data leak) may also oc-
cur due to the data being modified by the leaking application (such as insertion,
deletion, and substitution). The new shingles/fingerprints may not resemble the
original ones, and cannot be detected. As a result, a packet may evade the de-
tection. In our experiments, we evaluate the impact of several types of data
transformation in real world scenarios.

5 Experimental Evaluation

We implement our fuzzy fingerprint framework in Python (version 2.7), includ-
ing packet collection, shingling, Rabin fingerprinting and fingerprint filter. Our
implementation of Rabin fingerprint is based on cyclic redundancy code (CRC).
We use the padding scheme mentioned in [23] to handle small inputs, and map
our shingle into a sparse fingerprint space. In all experiments, the shingles are in
8-byte, and the fingerprints are in 32-bit (33-bit irreducible polynomials in Rabin

232 X. Shu and D. (Daphne) Yao

fingerprint). We set up a virtual network environment in Oracle VirtualBox, sim-
ulating a scenario where the sensitive data is leaked from a local network to the
Internet. Valid users’ hosts (Windows 7) are put into the local network, which
connects to the Internet via a gateway (Linux). The gateway dumps the network
traffic and sends it to a DLD server/provider (Linux). Using the sensitive-data
fingerprints defined by the users in the local network, the DLD server performs
off-line data leak detection. We also set up some servers (FTP, HTTP, etc.) and
a hacker’s host on the Internet side to which a valid user can connect to.

The DLD server detects the sensitive data within each packet on basis of a
stateless filtering system. We define the sensitivity of a packet in Formula 2.

Spacket =

|�
pd

S̈
∗ ∩�

pd

T̃|
min(|S∗|, |T̃|) ×

|S∗|
|S̈∗| (2)

T̃ is the set of all fingerprints extracted in a packet. S∗ is the set of all sensitive
fuzzy fingerprints. For each piece of sensitive data, data owner computes S∗ and
reveals a sample set S̈∗ (S̈∗ ⊆ S

∗) to the DLD server. The operator �
pd

indicates

right shifting every fingerprint in a set by pd bits. The DLD server computes
Spacket (Spacket ∈ [0, 1]) and compares it to a threshold Sthres ∈ (0, 1). Packets
with Spacket ≥ Sthres are marked sensitive.

Without the fuzzification phase, Formula 2 can be simplified to Formula 3. S
is the set of all sensitive fingerprints, and S̈ is the revealed fingerprints set.

Spacket =
|S̈ ∩ T̃|

min(|S|, |T̃|) ×
|S|
|S̈| (3)

Our current evaluation results reported are based on the simplified leak detection
without the fuzzification phase. Additional experiments assessing the impact of
fuzzification on privacy can be found in [28].

The goal of our evaluation is to answer the following questions:

1. Can our solution accurately detect sensitive data-leak in the traffic with low
false positives (false alarms) and high true positives (real leaks)?

2. Does using partial sensitive-data fingerprints reduce the detection accuracy
in our system?

3. What is the performance advantage of our fingerprint filter over traditional
Bloom filter equipped with SHA-1?

4. How to choose a proper fuzzy length and make a balance between the privacy
need and the number of alerts?

5. Can we experimentally validate the min-wise independence property of Ra-
bin fingerprint?

The questions are experimentally addressed and answered in our following sec-
tions with the last two answered in our technical report [28].

Data Leak Detection 233

5.1 Accuracy Evaluation

We generate 20,000 personal financial records as the sensitive data and store
them in a text file. The data contains (fictitious) person name, social security
number, credit card number, credit card expiration date, and credit card CVV.

To evaluate the accuracy of our strategy, we perform three separate experi-
ments using the same sensitive dataset:

Exp.1 A user leaks the entire set of sensitive data via FTP by uploading it to
a FTP server on the Internet.

Exp.2 (Base Line) The outbound HTTP traffic of Internet-surfing by 20 users
are captured (30 minutes per user), and given to the DLD server to analyze,
as a base line. No sensitive data (i.e., zero true positive) should be confirmed.

Exp.3 (Base Line) The Enron dataset (2.6 GB data, 150 users’ 517,424 emails)
as a virtual network traffic is given to the DLD server to analyze. Each virtual
network packet created is based on an email in the dataset. No sensitive data
(i.e., zero true positive) should be confirmed by the data onwer.

All sensitive fingerprints (FD
sens = F

A
sens) are used in the detection, and the

results are shown in Table 1. The first experiment is designed to infer the true
positive rate. We manually check each packet and find out that the DLD server
detects all 651 real sensitive packets (all of them have sensitivity values greater
than 0.9). The sensitivity value is less than one, because the layered headers (IP,
TCP, HTTP, etc.) in a packet are not sensitive. The next two experiments are
designed to estimate the false positive rate. We found that none of the packets
has a sensitivity value greater than 0.05, and the average sensitivity is very low.
The results indicate that the algorithm performs as expected on plaintext.

Table 1. Mean and standard deviations of the sensitivity per packet in three separate
experiments. For Exp.1, the higher sensitivity, the better; for the other two (negative
control), the lower sensitivity, the better.

Dataset Exp.1 Exp.2 Exp.3

Spacket Mean 0.952564 0.000005 0.001849
Spacket STD 0.004011 0.000133 0.002178

The data owner may reveal a subset of sensitive data’s fingerprints to the DLD
server for detection, as opposed to the entire set. We are particularly interested
in measuring the percentage of revealed fingerprints that can be detected in
the traffic, assuming that fingerprints are equally likely to be leaked (Given the
subset independence property, sensitive-data’s fingerprints are equally likely to
be selected for detection). We reproduce several real-world scenarios where data
leaks are caused by human users or software applications.

– In the web-leak scenarios, a user posts sensitive data on wiki (MediaWiki)
and blog(WordPress) pages.

234 X. Shu and D. (Daphne) Yao

(a) (b)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Av
er

ag
ed

 se
ns

iti
vi

ty

(o
f a

ll
se

ns
iti

ve
 p

ac
ke

ts
)

Percentage of sensitive data fingerprints
compared

0

5

10

15

20

25

30

35

40

45

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
um

be
r o

f s
en

si
tiv

e
pa

ck
et

s
de

te
ct

ed

Percentage of sensitive-data fingerprints
compared

Fig. 2. Performance comparison in terms of (a) the averaged sensitivity and (b)

the number of detected sensitive packets. X-axis,
|FDsens|
|FAsens|

, indicates the percentage of

sensitive-data fingerprints revealed to the DLD server and used in the detection. [out]
indicates outbound traffic only, while [all] means both outbound and inbound traffic
captured and analyzed.

– In the backdoor scenario, a program (Glacier) on the user’s machine (Win-
dows 7) leaks sensitive data.

– In the email-leak scenario, a malicious Firefox extension FFsniFF records
the information in sensitive web forms, and emails the data to the attacker.

– In the keylogging scenario, a keylogger EZRecKb exports intercepted
keystroke values on a user’s host. The keylogger records every key stroke, re-
placing the function keys with labels, such as “[left shift]” in its log. EZRecKb
connects to a pre-defined SMTP server on the Internet and sends its log pe-
riodically. In this experiment, the user manually type the text, simulating
typos and corrections, which bring in modifications of the original sensitive
data.

In these experiments, the source file of TCP/IP page on wikipedia (24KB in
text) is used as the sensitive data. Partial fingerprints are revealed for detection,
the sensitivity threshold is set Sthres = 0.05, and plain set intersection test is
used in Detect operation.

Figure 2 shows the comparison of performance across various size of finger-
prints used in the detection, in terms of the averaged sensitivity per packet in
(a) and the number of detected sensitive packets in (b). These accuracy val-
ues reflect results computed by the data owner after running the Postprocess
operation. The results show that the use of partial sensitive-data fingerprints
does not much degrade the detection rate compared to the use of full sets of
sensitive-data fingerprints.

In Figure 2 (a), the sensitivities of experiments vary due to different lev-
els of modification by the leaking programs, which makes it difficult to detect.

Data Leak Detection 235

WordPress converts space into “+” when sending the HTTP POST request.
Keylogger inserts function-key as labels into the original text as well as typing
typos and corrections. In Figure 2 (b), [all] results contain both outbound and
inbound traffic and double the real number of sensitive packets in Blog and Wiki
scenarios due to HTML fetching of the submitted data.

5.2 Runtime Comparison

Our fingerprint filter implementation is based on the Bloom filter library in
Python (Pybloom). We compare the runtime of Bloom filter with SHA-1 and
that of fingerprint filter with Rabin fingerprint. For Bloom filters and fingerprint
filters, we test their performance with 2, 6, and 10 hash functions. We inspect 100
packets with random content against 10 pieces sensitive data of various length
for each point drawn in Figure 3 – there are a total of 1,625,600 fingerprints
generated from the traffic and 76,160 pieces of fingerprints from the sensitive
data. We show the detection time per packet in Figure 3. The time used to
create the filters during the sensitive data initialization is similar to the detection
phase. Therefore it is not shown in the paper due to limited space.

The result indicates that fingerprint filters run faster than Bloom filters, which
is expected as Rabin fingerprint is easier to compute than SHA-1. The gap is
not significant due to the fact that Python uses a virtualization architecture. We
have the core hash computations implemented in Python C/C++ extension, but
the remaining control flow and function call statements are in pure Python. The
performance difference between Rabin fingerprint and SHA-1 is large masked by
the runtime overhead spent on non-hash related operations.

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000 1100

Ti
m
e
(m

ill
is
ec
on

d)

Length of sensitive data (bytes)

FF[2] FF[6] FF[10] BF[2] BF[6] BF[10]

Fig. 3. The overhead of using the filters to detect data-leak, the runtime is per packet
(averaged from 100 packets) against all 10 pieces of sensitive data, and the X-axis
indicates the amount of sensitive information in a packet

Using fewer hash functions in Bloom filters or fewer polynomials in the fin-
gerprint filters produces more false positives at the DLD provider. The data

Pybloom

236 X. Shu and D. (Daphne) Yao

owner can quickly identify real data leaks from reported leaked instances. This
increased collision improves the data privacy. For example, Bloom filter with 10
hashes has a collision (false positive) probability of 0.10%, 6 hashes 1.56%, and
2 hashes 25%. We expect fingerprint filter to provide similar detection accuracy
to the plain set intersection realization as reported in Section 5.1. Our fuzzy
fingerprint should not be confused with fuzzy Bloom filter [22].

Summary. Our detection rates in terms of the number of sensitive packets found
do not decrease much with the decreasing size of fingerprint sets in Figure 2,
even when only 10% of the sensitive-data fingerprints are used for detection.
It is desirable for both privacy and efficiency considerations to have the data
owner reveal as few fingerprints as possible. Our experiments evaluate several
noisy conditions such as data insertion – for MediaWiki-based leak scenario,
traffic contains extra HTML tags in addition to sensitive data, data deletion
– traffic contains truncated sensitive data (not shown due to space limit), and
data substitution – for the keylogger and WordPress-based leak scenarios, certain
original data elements are replaced in the traffic. Our results indicate that the
shingle-and-fingerprint method indeed can tolerate these three types of noises in
the traffic to some degree. Our algorithm works well especially in the case where
consecutive data blocks are preserved (i.e., local data features are preserved) as in
the MediaWiki-based leak scenario. When the noises spread across the data and
destroy the local features (e.g., replacing every space with another character), the
detection rate decreases as expected. The use of shorter shingles mitigates the
problem, but may increase false positives. How to improve the noise tolerance
property in those conditions remains an open problem. Our fuzzy fingerprint
mechanism supports the detection of data-leak at various sizes and granularities.
Our evaluation reported is run at the packet level. More fine-grained segment
inspection may be needed for detecting smaller pieces of sensitive data leaked.

6 Related Work

Our fuzzy fingerprint method and its privacy-preserving feature enable its
adopter to provide the data-leak detection as a service. Therefore, our technique
distinguishes itself from existing commercial products (e.g., Global Velocity).

There have been several advances in developing privacy-aware collaborative
solutions from both system [9,21,27] and theory perspectives [20,34]. Specifically,
Rabin fingerprint [24] based on shingles was used previously for identifying sim-
ilar spam messages in a collaborative setting [21], as well as collaborative worm
containment [9], virus scan [14], and fragment detection [25].

Our work fundamentally differs from the above shingle-based studies [9,14]
in particular. We consider the new problem of data-leak detection in a unique
outsourced setting where the DLD provider is not fully trusted. Such privacy
requirement does not exist in the virus-scan paradigm [14], for the virus signa-
tures are non-sensitive. In comparison, data-leak detection is more challenging
because of the additional privacy requirement, which limits the amount of data
that can be used during the detection and the amount of sensitive information

Data Leak Detection 237

gained by the DLD provider. In the meantime, the provider’s detection accu-
racy cannot be compromised with partial digests based on the sensitive data.
Our fuzzy fingerprint method is new, and our work describes the first systematic
solution to privacy-preserving data-leak detection with convincing results.

Information leak through outbound web traffic was studied by Borders and
Prakash [3]. Both theirs and our work detect suspicious data flow on unencrypted
network traffic. Their approach is based on the key observation that network
traffic has high regularities and that information (e.g., header data) may be
repeated. They proposed an elegant solution that detects any substantial increase
in the amount of new information in the traffic. Their anomaly-detection method
detects deviations from normal data-flow scenarios, which are captured in rules.
In comparison, our work inspects traffic for signatures of sensitive-data and
does not require any assumption on the patterns of normal header fields or
payload. Furthermore, our solution provides privacy protection of the sensitive
data against semi-honest DLD providers. We also give performance evidences
indicating the efficiency of our solution in practice.

A black-box approach for data leak detection was proposed in [11], which
expands local data tracking to a network-wide environment. It mainly focuses on
data confinement and detecting unauthorized sensitive data flow among forked
processes. The specific goal makes it different from our approach to detect general
data leaks over a network.

In the grid computing environment, the verification of outsourced execution
was studied by Du and Goodrich in [12]. The method inserts chaff into input
before outsourcing a job and verifies whether the chaff is processed or not af-
ter harvest. The threat models and security goals in our outsourced data-leak
detection work and in [12] are fundamentally different.

The method of deep packet inspection is also widely used in network intrusion
detection system (NIDS), such as SNORT [26] and Bro. They focus on designing
and implementing efficient string matching algorithms [1] to handle short and
flexible patterns in network traffic. However, NIDS is not designed for various
kinds of sensitive data (e.g. long non-duplicated data), it may cause problems
(e.g. large amount of states in an automaton) in data leak detection scenarios.
On the contrary, our solution is not limited to very special types of sensitive data,
and we provide an unique privacy-preserving feature for service outsourcing.

Encrypted traffic, which cannot be directly inspected [30], requires host-based
DLD solutions to complement our network-based method. One approach is to
instrument the kernel so that the inspection can be performed in the operating
system of a host before data is encrypted. Existing approaches involving data
flow and taint analysis [37] can be integrated.

An alternative to our approach for privacy-preserving computation is to use
cryptographic mechanisms. Secure multi-party computation (SMC) is a research
direction pioneered by Yao [35], where participants only learn the outcomes of
computation, not the private inputs. Existing SMC solutions can support a wide
range of fundamental arithmetic, set, and string operations as well as complex
functions such as knapsack computation [36], automated trouble-shooting [15],

238 X. Shu and D. (Daphne) Yao

network event statistics [8], private information retrieval [32], genomic compu-
tation [17], private join operations [10], and distributed data mining [16]. The
provable privacy guarantees offered by SMC come at a cost in terms of compu-
tational complexity and implementation complexity as well. The advantage of
our shingle/fingerprint based approach is much more efficient and simpler.

7 Conclusions and Future Work

We proposed a novel privacy-preserving data-leak detection model and its fuzzy
fingerprint realization. Using special digests, the exposure of the sensitive data
is kept to a minimum during the detection. We have conducted extensive ex-
periments to validate the accuracy, privacy, and efficiency of our solutions. For
future work, we plan to focus on designing a host-assisted mechanism for the
complete data-leak detection for large-scale organizations.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM (1975)

2. Bohman, T., Cooper, C., Frieze, A.M.: Min-wise independent linear permutations.
Electr. J. Comb. 7 (2000)

3. Borders, K., Prakash, A.: Quantifying information leaks in outbound web traffic.
In: Proceedings of the IEEE Symposium on Security and Privacy (May 2009)

4. Borders, K., Vander Weele, E., Lau, B., Prakash, A.: Protecting confidential data
on personal computers with storage capsules. In: USENIX Security Symposium,
pp. 367–382. USENIX Association (2009)

5. Broder, A.Z.: Some applications of Rabins fingerprinting method. In: Sequences II:
Methods in Communications, Security, and Computer Science, pp. 143–152 (1993)

6. Broder, A.Z.: Identifying and Filtering Near-Duplicate Documents. In: Giancarlo,
R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 1–10. Springer, Heidelberg
(2000)

7. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. Journal of Computer and System Sciences 60, 630–659 (2000)

8. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: Privacy-
preserving aggregation of multi-domain network events and statistics. In: Proceed-
ings of USENIX Security (2010)

9. Cai, M., Hwang, K., Kwok, Y.-K., Song, S., Chen, Y.: Collaborative Internet worm
containment. IEEE Security and Privacy 3(3), 25–33 (2005)

10. Carbunar, B., Sion, R.: Joining Privately on Outsourced Data. In: Jonker, W.,
Petković, M. (eds.) SDM 2010. LNCS, vol. 6358, pp. 70–86. Springer, Heidelberg
(2010)

11. Croft, J., Caesar, M.: Towards practical avoidance of information leakage in enter-
prise networks. In: USENIX HotSec (August 2011)

12. Du, W., Goodrich, M.T.: Searching for High-Value Rare Events with Uncheatable
Grid Computing. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 122–137. Springer, Heidelberg (2005)

Data Leak Detection 239

13. Fawcett, T.W.: ExFILD: A tool for the detection of data exfiltration using entropy
and encryption characteristics of network traffic. Thesis submitted to Delaware
University

14. Hao, F., Kodialam, M., Lakshman, T.V., Zhang, H.: Fast payload-based flow esti-
mation for traffic monitoring and network security. In: ANCS 2005: Proceedings of
the 2005 ACM Symposium on Architecture for Networking and Communications
Systems, pp. 211–220. ACM, New York (2005)

15. Huang, Q., Jao, D., Wang, H.J.: Applications of secure electronic voting to auto-
mated privacy-preserving troubleshooting. In: Proceedings of the 12th ACM Con-
ference on Computer and Communications Security, CCS (2005)

16. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering
over arbitrarily partitioned data. In: Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining (2005)

17. Jha, S., Kruger, L., Shmatikov, V.: Towards practical privacy for genomic computa-
tion. In: IEEE Symposium on Security and Privacy, pp. 216–230. IEEE Computer
Society (2008)

18. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection and monitoring through
VMM-based “out-of-the-box” semantic view reconstruction. ACM Trans. Inf. Syst.
Secur. 13(2) (2010)

19. Jung, J., Sheth, A., Greenstein, B., Wetherall, D., Maganis, G., Kohno, T.: Privacy
Oracle: a system for finding application leaks with black box differential testing.
In: Proceedings of Computer and Communications Security, CCS (2008)

20. Kleinberg, J., Papadimitriou, C.H., Raghavan, P.: On the value of private informa-
tion. In: TARK 2001: Proceedings of the 8th Conference on Theoretical Aspects of
Rationality and Knowledge, pp. 249–257. Morgan Kaufmann Publishers Inc., San
Francisco (2001)

21. Li, K., Zhong, Z., Ramaswamy, L.: Privacy-aware collaborative spam filtering.
IEEE Transactions on Parallel and Distributed systems 20(5) (May 2009)

22. Mayer, C.P.: Bloom filters and overlays for routing in pocket switched networks.
In: Proceedings of ACM International Conference on emerging Networking EXper-
iments and Technologies (CoNEXT) Student Workshop (2009)

23. Rabin, M.O.: Digitalized signatures as intractable as factorization. Tech. Rep.
MIT/LCS/TR-212. MIT Laboratory for Computer Science (January 1979)

24. Rabin, M.O.: Fingerprinting by random polynomials. Tech. rep., Center for Re-
search in Computing Technology, Harvard University, TR-15-81 (1981)

25. Ramaswamy, L., Iyengar, A., Liu, L., Douglis, F.: Automatic detection of fragments
in dynamically generated web pages. In: Proceedings of the 13th International
World Wide Web Conference (WWW) (May 2004)

26. Roesch, M.: Snort-lightweight intrusion detection for networks. In: Proceedings of
the 13th Conference on Systems Administration, LISA 1999 (1999)

27. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference
on World Wide Web (2001)

28. Shu, X., Yao, D.: Data leak detection as a service: challenges and solutions. Tech-
nical Report TR-12-10, Computer Science, Virginia Tech. (2012)

29. Stefan, D., Wu, C., Yao, D., and Xu, G.: Cryptographic provenance verification for
the integrity of keystrokes and outbound network traffic. In Proceedings of the 8th
International Conference on Applied Cryptography and Network Security (ACNS)
(2010).

30. Varadharajan, V.: Internet filtering issues and challenges. Journal of IEEE Security
& Privacy, 62–65 (2010)

240 X. Shu and D. (Daphne) Yao

31. Wang, Y.-M., Beck, D., Jiang, X., Roussev, R., Verbowski, C., Chen, S., King, S.:
Automated web patrol with Strider HoneyMonkeys: Finding web sites that exploit
browser vulnerabilities. In: Proceedings of the Annual Symposium on Network and
Distributed System Security, NDSS (2006)

32. Yoshida, R., Cui, Y., Sekino, T., Shigetomi, R., Otsuka, A., Imai, H.: Practical
searching over encrypted data by private information retrieval. In: Proceedings of
the Global Communications Conference, GLOBECOM (2010)

33. Xu, K., Yao, D., Ma, Q., Crowell, A.: Detecting infection onset with behavior-
based policies. In: Proceedings of the Fifth International Conference on Network
and System Security (NSS) (September 2011)

34. Xu, S.: Collaborative Attack vs. Collaborative Defense. In: Bertino, E., Joshi,
J.B.D. (eds.) CollaborateCom 2008. LNICST, vol. 10, pp. 217–228. Springer, Hei-
delberg (2009)

35. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the 27th IEEE
Symposium on Foundations of Computer Science, pp. 162–167. IEEE Computer
Society Press (1986)

36. Yao, D., Frikken, K.B., Atallah, M.J., Tamassia, R.: Private information: to reveal
or not to reveal. ACM Trans. Inf. Syst. Secur. 12(1) (2008)

37. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: Capturing system-
wide information flow for malware detection and analysis. In: Proceedings of the
14th ACM Conferences on Computer and Communication Security, CCS (2007)

	Data Leak Detection as a Service
	Introduction
	Model and Overview
	Security Goal and Threat Model
	Privacy Goal and Threat Model
	Overview of Privacy-Enhancing DLD

	Fuzzy Fingerprint Method and Protocol
	 Fingerprints
	Operations in Our Protocol
	Extensions

	Analysis and Discussion
	Experimental Evaluation
	Accuracy Evaluation
	Runtime Comparison

	Related Work
	 Conclusions and Future Work
	References

