
Improving the Resilience of an IDS against

Performance Throttling Attacks

Govind Sreekar Shenoy1, Jordi Tubella1, and Antonio González1,2

1 Department of Computer Architecture,
Universitat Politècnica de Catalunya, Barcelona, Spain
2 Intel Barcelona Research Center, Barcelona, Spain

{govind,jordit}@ac.upc.edu, antonio.gonzalez@intel.com

Abstract. Intrusion Detection Systems (IDS) have emerged as one of
the most promising ways to secure systems in the network. To be ef-
fective against evasion attempts, the IDS must provide tight bounds on
performance. Otherwise an adversary can bypass the IDS by carefully
crafting and sending packets that throttle it. This can render the IDS
ineffective, thus resulting in the network becoming vulnerable.

We present a performance throttling attack mounted against the com-
putationally intensive string matching algorithm. This algorithm per-
forms string matching by traversing a finite-state-machine (FSM). We
observe that there are some input bytes that sequentially traverse a chain
of 30 pointers. This chain of traversal drastically degrades performance,
and we observe a 22X performance drop in comparison to the average
case performance. We investigate hardware and software mechanisms to
counter this performance degradation. The software mechanism is tar-
geted for commodity general purpose CPUs. While the hardware-based
mechanism uses a parallel traversal suitable for network processor archi-
tectures. Our results show that our proposed mechanisms significantly
improves (by over 3X magnitude) string matching algorithm’s worst per-
forming cases.

1 Introduction

Intrusion Detection Systems (IDS) are emerging as one of the most promising
ways of providing protection to systems on the network. By monitoring the
traffic in real time, an IDS can detect and also take preventive actions against
suspicious activities. To be effective, an IDS must be able to inspect packets at
wire speeds. The consequences of not doing so can result either in undetected
malicious packets or expensive packet drops. An adversary can also bring the IDS
to this state of not being able to process packets at wire speeds. Such attempts
are commonly referred to as evasion[6, 9, 18], and stem from weaknesses in some
part of IDS processing.

Evasion can come in various flavors. An example of evasion is clever packet
fragmentation at “malicious content” boundaries, thus tricking the IDS from
inspecting malicious content. Other examples include deliberate packet header

A.D. Keromytis and R. Di Pietro (Eds.): SecureComm 2012, LNICST 106, pp. 167–184, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



168 G.S. Shenoy, J. Tubella, and A. González

corruption and stream re-assembly. The nature and ease of evasion makes it
very appealing for malicious hosts to bypass the IDS. Evasion can also occur
by throttling the performance of the IDS. Since the system is unable to keep
up with the wire speed, it can lead to the IDS being disabled and attack flood
gates opened. For this to occur, an adversary exploits the wide performance gap
between the average case and worst-case processing time[6, 15, 21]. This can
also be viewed as a class of Denial-of-service (DoS) attack that targets system
resource utilization[13]. Earlier works in this direction investigate attack and
defense mechanisms for hash tables[6] used by an IDS. Additionally, other works
explore weaknesses due to synctatics of signature specifications[21] in the Snort
IDS.

In this work we present a performance throttling attack mounted against
the string matching algorithm used by an IDS. An IDS like Snort[19] operates
by scanning packets for malicious content using a database of >40,000 known
attack strings. So Snort uses the Aho-Corasick algorithm[1] to perform a multi-
string matching against the packet payload. Since the packet payload needs to
be scanned and compared with a database of >40,000 strings, so it is compu-
tationally very intensive. Hence, the string matching algorithm can be suscep-
tible to performance throttling attacks. A closer look at the processing time
per payload byte of the string matching algorithm reveals a wide performance
variation. We observe that there are payload bytes that need 22X processing
times in comparison to the average case. Further, the cause of this variance
in performance is due to the sequential traversal of a chain of pointers. Our
counter-measure focuses on improving the worst-case performance by accelerat-
ing this sequential chain traversal. We propose two mechanisms - hardware-based
and software-based mechanisms - to counter this performance degradation. The
hardware-based mechanism is targeted for a highly parallel architecture like the
network processor ([5, 11]). The software-based mechanism is for commodity
general purpose CPUs. Our results indicate that our proposed mechanisms sig-
nificantly improves the worst-case performance.

The rest of the paper is organized as follows. Section 2 provides a brief back-
ground on the Aho-Corasick algorithm. Section 3 presents the motivation of this
work. Section 4 details our proposed counter-measure and our architecture. The
simulation methodology is discussed in Section 5, and Section 6 presents the
performance results. Section 7 discusses the related work in this area. Section 8
provides future directions.

2 Background

An IDS like Snort operates by inspecting packets for prior reported attacks.
This database of attack strings are byte patterns that have commonly occurred
and detected in attacks. The vast variety of attacks and their constant evolution
bloats the attack string database. We observe that there are 42, 670 attack strings



Improving the Resilience of an IDS against Performance Throttling Attacks 169

in the Snort April-2010 ruleset1 release. So Snort commonly uses a multi-string
matching algorithm like the Aho-Corasick algorithm[1] for attack detection. This
algorithm works by constructing a FSM using the set of attack strings. Once the
FSM is constructed, incoming bytes from packets are used to traverse this FSM.
We provide a brief overview of the Aho-Corasick algorithm with an example.

Consider the set of strings: attacker, tacked, acken, ckeh, ket. Figure
1 shows the corresponding Aho-Corasick FSM constructed from these strings.
The FSM is built in two stages. In the first stage, characters from the strings
are added to the FSM. This is done in a way that strings that share a common
prefix also share the same set of parents in the FSM. The edges corresponding
to this stage are shown as thick lines. The nodes 9, 15, 20, 24, 27 indicate a
match for attacker, tacked, acken, ckeh, ket respectively. These nodes also
store a pointer to the list of matched strings. For example, node 9 stores a
pointer to attacker. The second stage in building the FSM consists of inserting
failure edges. When a string match is not found, it is possible for the suffix of
one string to match the prefix of another. So failure edges need to be inserted.
Failure edges are shown with dotted lines. For figure clarity, only a few failure
edges are shown. Once this FSM is built, the algorithm traverses it with the
payload bytes. In case the payload byte does not match any of the examined
edges, then the traversal is restarted from the root-node.

t

t

a

c

t

a

c

k

a

k

c

k

k 1

3

4

5

6

1016

17

25

e

a

k

7
e

r
8

9

11

2

12

13

e

14

d

15

c

18

e

19

20

n

21

22

d

n

n

23

24

h

h

26

e

27

t

t

Fig. 1. Example of the Aho-Corasick Finite State Machine

An important issue with this FSM is the large storage space needed. This
huge storage size requirement also impacts the performance efficiency of an IDS,
due to the large working set size. Some earlier works in reducing the storage
space needed for FSM have proposed removing the inherent redundancy in the
FSM. A common example of redundancy is due to failure edges. Consider node
8 and its edge d. This is a failure edge and is identical to the edge from node

1 A rule in Snort typically contains multiple attack strings. We instrumented Snort to
dump all the strings.



170 G.S. Shenoy, J. Tubella, and A. González

14. Thus Node 14 is a failure pointer of node 8, and this traversal can also be
done by jumping to node 14. In this way all failure edges are eliminated.

Figure 2(a) shows the FSM built with the failure pointer optimization. We
observe that 93% of the edges are failure edges, and hence the failure pointer
optimization provides important area benefits. As a consequence, earlier works[2,
12, 20, 22, 23, 25] have optimized the failure edges in this manner. For the rest
of the paper, we consider this optimized FSM.

The FSM constructed using the Aho-Corasick algorithm is very similar to a
deterministic finite automata (DFA). In fact Snort and other IDSs[16] also use
regular expressions to specify attack strings. These regular expressions are again
converted to DFAs or NFAs. Hence our work is equally applicable to regular ex-
pressions used in an IDS. Note that the optimized FSM thus built is very similar
to a NFA. A NFA, unlike a DFA, can have multiple active states. Further these
active states need to be traversed sequentially. In order to efficiently traverse the
FSM, the Snort[19] IDS uses a backtracking based heuristic for traversing the
NFA. This heuristic is very similar to the failure pointer optimization, and so
our work can be adapted to accelerate NFA traversal in Snort.

3 Motivation

The optimization of failure chains significantly compacts the data structure.
However this has a drawback. A node with failure pointers may need additional
processing when there are no matching edges. In some cases we observe that this
additional processing is a significant overhead.

We illustrate this more clearly with an example. Let the input bytes to the
optimized FSM in Figure 2(a) be a, t, t, a, c, k, e, t. The first 6 bytes lead
up-to node 8. For the final byte, t, the failure pointer needs to be traversed as
there are no matching edges at node 8. Hence, node 14 - the failure pointer of
node 8- is accessed. Here again there are no matching edges, and so the failure
pointer of node 14 is accessed. This is repeated until a matching edge is found,
or the traversal is restarted from the root-node. Note that these chain of failure
pointers are accessed sequentially and sometimes wastefully as well. This can
lead to significant performance degradation when large chains are visited.

Figure 2(b) shows the failure chain length distribution for various Snort
database releases. We define failure chain length of a node as the maximum
number of failure pointers that can be traversed starting from that node. The
failure chain length of node 8 in the above example is 4. It is very interesting
to observe that there are nodes with failure chain length of up-to 31. Thus for
bytes accessing failure edges of these nodes, the processing time can be high. We
investigate the performance impact of traversing failure chains.

Figure 3(a) shows the CDF of processing time per byte2. We see that 95%
of input bytes need less than 31 cc, thus leading to an average processing time

2 Processing time per byte is measured as the total number of clock cycles (cc) needed
to complete the processing of a byte.



Improving the Resilience of an IDS against Performance Throttling Attacks 171

t

t

a

c

t

a

c

k

a

k

c

k

k 1

3

4

5

6

1016

17

25

e

a

k

7
e

r
8

9

11

2

12

13

e

14

d

15

c

18

e

19

20

n

21

22

23

24

h

26

e

27

t

(a) (b)

Fig. 2. Impact of Failure chain

(a) (b) (c)

Fig. 3. Impact of Failure chains on Performance

of 23.5 cc/B. However, there are bytes that need up-to 516 cc. This clearly
indicates that there is a wide variation in processing time. We investigate the
cause of this wide variation, by examining the processing of the ten most clock
consuming bytes (refer to Figure 3(b)). This is also the tail end of the CDF. As
seen in Figure 3(b), we observe that these bytes need at-least 495 cc. The cause
of the enormous processing time is due to the traversal of a chain of failure
pointers. In contrast, on examination of the relatively lesser clock consuming
bytes (left half of 0.95 probability in the CDF plot), we observe that these bytes
traverse at most 3 failure pointers. This clearly shows the significant impact of
traversing a large chain of failure pointers.



172 G.S. Shenoy, J. Tubella, and A. González

The dependency of processing time on the failure chain length makes the IDS
vulnerable to performance throttling attacks. Hence it is important to accelerate
the failure pointer traversal. So we study techniques to do the same.

4 Proposed Counter-Measure

Intrusion detection systems are commonly deployed in routers. Routers in turn
can use network processors that have a high degree of parallelism. For example,
the Intel IXP 2400[11] has a total of 64 threads. We propose a hardware-based
mechanism that uses 2 cores and it is suitable for network processor deployment.
IDSs can also be deployed in end systems in a non parallel set-up. Hence we also
propose a software-based mechanism targeted for such an environment.

4.1 Hardware-Based Mechanism

The processing of the failure chain takes a performance hit mainly due to the se-
quential nature of its traversal. So our proposal performs a parallel traversal. One
engine performs the regular FSM traversal, while another engine concurrently
finds the candidate failure pointer. We first describe a mechanism to identify the
candidate failure pointer and to incorporate it in the traversal algorithm. Later,
we present the parallel architecture used for the traversal.

Candidate Failure Pointer Identification. The traversal of a chain of failure
pointers can be viewed as a comparison of the edges of a node to the input byte.
Further, this process is repeated for the chain of failure nodes. So we break it
into comparison of a chain of outgoing edges. We illustrate this more clearly with
an example. Let the input bytes to the FSM in Figure 2(a) be a, t, t, a, c, k,
e, t. The first 6 bytes lead up-to node 8. For the final byte, t, since there are
no matching edges the failure pointer is traversed. The failure pointer of node
8, node 14, is traversed. Since it is a mismatch, the failure chain is followed
until node 26. So the main operation in the failure pointer traversal is the
comparison of the input byte with all outgoing edges of a node. This is checking
for membership in a set of outgoing edges, and with each set corresponding to a
failure pointer.

Bloom filters[3] offer a convenient and efficient way to check - without incur-
ring any false negatives - for set memberships. We use bloom filters to do the
membership check. We create a hash for each failure pointer by using its set of
outgoing edges. We term it as a bloom filter signature. We illustrate this with an
example. Consider node 8 (from Figure 2(a)), we create and store bloom filter
signatures for all its failure chains, namely, nodes 14, 19, 23, and 26. Each
of these signatures are generated using outgoing edges of each node.

Figure 4 shows the signature storage of node 8 generated in this manner.
In addition to signatures, we also store offset and fan-out of the corresponding



Improving the Resilience of an IDS against Performance Throttling Attacks 173

Node 14

Sig

Node 19

Sig

Node 23

Sig

Node 26
Sig

fn(d) fn(n) fn(h) fn(t)

Node 26Node 23Node 19Node 14

fan−out)

(offset,(offset,(offset,

fan−out) fan−out) fan−out)

(offset,

Fig. 4. Node 6 Signature Storage

failure pointer. This is done so that when a signature matches, we can directly
jump to the matching failure pointer. The traversal using bloom filter signatures
is as follows. Consider traversing node 8 with input byte as t. Since there are
no matching edges in node 8, we check if there are any matching edges in the
failure chain. A signature is generated using t, and compared against all the
failure chain signatures of node 8. Since node 26 has a matching signature, we
directly traverse to node 26. Note that in case of multiple matches, the matches
are traversed sequentially. This preserves traversal correctness, as the signatures
are stored in the way they are originally encountered.

Signature Storage

Node 8 Signature

Fail
conventional 
node 8 storage

signature

offset Chain

Num

Fig. 5. Node 8 FSM Storage and Signature Access

The failure chain signature matching can be performed independently and in
parallel with the conventional node processing. In the above example, the failure
chain traversal is done sequentially after checking for matching edges in a node.
We accelerate it by performing the failure pointer identification concurrently
with the conventional node processing. If there is no need to traverse the failure
pointer, then the failure pointer identification is discarded. So our proposed
architecture consists of two engines: a regular FSM traversal engine and an
engine to identify the candidate failure pointer. We further decouple the memory
by storing the bloom filter signatures in a separate memory bank. Our memory
architecture consists of two memory banks, with one containing the FSM and
the other containing signatures. This helps us in decoupling the FSM traversal
from the failure chain computation. Additionally, we store a pointer to the node
signature in the FSM data structure. So every node also stores a pointer to the
signature database and its failure chain length. Figure 5 shows the storage for
node 8.



174 G.S. Shenoy, J. Tubella, and A. González

Engine

Cache Cache

Storage Storage

State Machine Signature

Traversal
Signature

Engine
Matching

FSM

Fig. 6. Hardware Architecture

Hardware Architecture. Figure 6 shows our proposed hardware architecture.
The hardware consists of a FSM traversal engine and a signature processing
engine. The FSM traversal engine performs the regular state-machine traversal.
We have used the FSM traversal engine as proposed in [20] and we provide here
a brief summary. The traversal operations essentially consist of two steps. In
the first step, all the edges of a node are scanned, and then the matching edge
information is read. So we split this engine into these operations (refer to Figure
7(a), 7(b), 7(c)). In edge scanning, the set of edges are read and compared with
the input byte. This is iterated over all edges until a matching edge is obtained. If
a matching edge exists, then the associated edge information is read. Otherwise,
the traversal is restarted from the root-node.

The signature matching engine performs the following functionalities. It gen-
erates the bloom filter signature using the input byte, and then compares it with
the stored signatures. Signatures are of length 4 B and are generated using two
hash functions3. Since the signature comparison is an AND operation, so we use
16 B AND operators for signature comparison. This allows us to compare four
signatures at a time. If a signature matches, then the matched failure pointer is
traversed. Figure 7(c) shows the flow-chart for the signature matching engine.

Our architecture concurrently perform signature comparison and the regular
FSM traversal. Hence if the input byte matches an edge, the signature processing
is flushed. However, if there are no matching edges, then the candidate failure
pointer is obtained from the signature matching engine. Subsequently, this node
is traversed by the FSM traversal engine.

4.2 Software-Based Mechanism

In this mechanism, the Aho-Corasick FSM is constructed so that there is an
upper-bound on the failure chain length. This upper-bound can also be viewed
a threshold value. In this mechanism, failure edges are inserted for nodes with
failure chain lengths a multiple of this threshold value.

3 A design space exploration was done to obtain these parameter values.



Improving the Resilience of an IDS against Performance Throttling Attacks 175

Dequeue

Compute Mem_Address

Mem Read (Node Edges)

Yes

No

No

Edge−info

Reading Yes

Fanout
<=
Index

Edge Exists ?

Index = Index + 8

(a) Edge Scanning

Mem_Addr = fn (fanout, index)

Mem Read (Edge Info)

Update Next−node info

Signal Alert

Dequeue

Yes

No

Matches
If Rule

(b) Reading Edge Infor-
mation

Mem_Read − Offsets, Failchain

failchain
exists

Generate Signature (gen_sig)

Mem_Read (Stored_Sig)

No

Yes

Yes Root
node
access

Yes

compare signature

If no match

Yes

inc index

No

Yes

Mem read (offset, fanout)

get_failstate(offset,fanout)

Yes

No

Processing complete

No

index
<=

failchain

If Sig set

Failstate==NULL

index
<= 

failchain

increment index

Exit
No

No

Exit

(c) Signature Matching Engine

Fig. 7. Functionality of Signature Matching Engine and FSM Traversal Engine

We illustrate it more clearly with an example. Consider the FSM shown in
Figure 2(a). If we use a threshold value of 3, then failure edges are inserted for
nodes with failure chain length of 3. Hence, failure edges are inserted for node
14. In this way we limit the failure chain traversal to a fixed upper bound. This
also enables in efficiently storing the FSM as failure edges are only inserted for
selective nodes and not all the nodes in the FSM. In our simulations, we explore
different values of the threshold in order to find an optimal point.



176 G.S. Shenoy, J. Tubella, and A. González

t

t

a

c

t

a

c

k

a

k

c

k

k 1

3

4

5

6

1016

17

25

e

a

k

7
e

r
8

9

11

2

12

13

e

14

d

15

c

18

e

19

20

n

21

22

23

24

h

26

e

27

t

n

h

t

Fig. 8. Software-based Mechanism

5 Simulation Methodology

We evaluate the performance of our proposed mechanisms, and compare it with
the conventional method of sequentially traversing the failure pointer. We have
used three public traces, a synthetically generated trace, and a Honeypot trace.

The public traces are from the Lincoln labs [14] and Defcon[7]. For the Lincoln
labs we have used two weeks of traces (referred to by their respective week) from
1999. In the Defcon trace, we use the trace captured for the Capture the flag
(CTF) game[7]. CTF is a hacking contest in the Defcon conference. The objective
of this contest is to break into computers of other teams, while at the same time
preventing others from do so. We have also deployed a low-interaction Honeypot
running in collaboration with the Leurrecom project[17]. This Honeypot has been
running for 3 months, and the logs indicate that there has been an interaction
with the outside world for at-least 61 days.We have used the traces collected from
this Honeypot. We also include a synthetically generated trace. The synthetic
trace was generated by randomly selecting strings from the Snort rule database
and further combining multiple strings. This was done to ensure minimum-sized
packet (64 B).

Table 1 summarizes the traces used. Note that we have inspected TCP, ICMP
and UDP packets from these traces. We have used the Snort database released
on April 2010 and containing 40,678 strings. We use average number of clock
cycles per incoming byte as the metric for performance comparison. This
is computed by dividing the total number of clock-cycles by the total number
of bytes. Total number of clock-cycles is the sum of total processing time
and total memory access time. The total processing time comprises of:
edge-scanning, reading edge-information, signature comparison, and signature



Improving the Resilience of an IDS against Performance Throttling Attacks 177

Table 1. Summary of Traces used in the Evaluation

Data-sets Mean Packet Size (B) Num Packets (M)

Defcon 71.9 15.64

synthetic 73.64 0.120

Week 2 160.51 13.18

Week 3 200.01 14.91

Honeypot 205 0.46

offset computation. These processing times are obtained by assuming each of
the arithmetic processing blocks need 1 cycle and branches need 2 cycles (refer
to Figure 7(a), 7(b), 7(c)). With this assumption, edge scanning needs 6 cc plus
the memory access latency.

The total memory access time is obtained from the trace-driven cache
simulator [8], which was modified to model cache access times and processing
times. The cache miss penalty is obtained from CACTI [24] by plugging into
the SRAM model of CACTI the FSM memory sizes. We have used a 16k direct-
mapped cache-configuration for the caches. Note that in case of the hardware-
based mechanism, there are two caches each of 16k size. The cache hit time of 2
cc is used (also obtained from CACTI). The core frequency is assumed to be 3
GHz.

6 Results

We compare the performance of our proposed architecture with the Baseline.
Note that the Baseline performs traversal using the conventional way of se-
quentially following failure pointers.

For the hardware-based mechanism, we have varied the minimal failure chain
length. Hence signatures are kept only for those nodes with a failure chain length
greater than the threshold. We have used threshold values of 1, 3, 5. A threshold
value of 1 indicates that nodes with failure chain lengths >= 2 have stored sig-
natures. For the software-based mechanism, we have similarly varied the failure
chain length threshold. So in this scheme, nodes with a given threshold failure
chain length will have all its failure edges in place. We have used threshold values
of 3, 5, 7.

In order to evaluate the worst performance cases, we compare the processing
clock cycles (cc) needed for the 10 most clock consuming bytes. Note that a
byte that performs badly in one scheme may not do so in another scheme. We
also compare the average-case performance. We initially report results for the
synthetic trace to determine the optimal points for the hardware and software-
based mechanism. Later we report results for the remaining traces.

A few terminology clarifications. Sig-1 refers to the use of bloom-filter signa-
tures of threshold value 1. Further, sw-3 refers to the failure chain length of 3



178 G.S. Shenoy, J. Tubella, and A. González

(a) Worst-case performance (b) Average-case Performance

Fig. 9. Synthetic Trace Comparison Result for Hardware-based Mechanism

(a) Worst-case performance (b) Average-case Performance

Fig. 10. Synthetic Trace Comparison Result for Software-based Mechanism

used in the software-based mechanism. Figure 9(a) shows the 10 most clock con-
suming bytes for the hardware-based mechanism for the synthetic trace. While
Baseline needs at least 495 cc, the use of signatures brings it down to at most
119 cc. Additionally, on a closer examination of various threshold values, we
see that Sig-1 gives the best performance. For Sig-1 we see a worst-case perfor-
mance of 119 cc - a 4.33X improvement over the Baseline. Figure 9(b) shows
the average-case performance, and we see that it remains unaffected.



Improving the Resilience of an IDS against Performance Throttling Attacks 179

Figure 10 shows the comparison results for the software-based mechanism.
We again observe that keeping an upper-bound of the failure chain length signif-
icantly brings down the worst-case performance. While Baseline needs at least
495 cc in these bytes, the software-based mechanism reduces it to at most 219
cc. Figure 10(b) shows the average-case performance and we see that it remains
largely unaffected.

We observe that Sig-1 is the best performing configuration for the hardware-
based mechanism. Further, sw-3 performs best for the software-based mecha-
nism. So for the remaining traces we compare the performance of Sig-1, sw-3
and Baseline.

(a) Worst-case perfor-
mance

(b) Average-case Perfor-
mance

Fig. 11. Defcon Trace Comparison Results

For Defcon trace we observe a similar performance behaviour (refer to Fig-
ure 11). Comparing the worst-case performance, the hardware-based mechanism
reduces the worst-case performance to 139 cc - over 3X improvement over the
Baseline. On the other hand, the software-based mechanism reduces the worst-
case performance to 147 cc. On comparing the hardware-based and software-
based mechanisms, we observe that the hardware-based mechanism moderately
outperforms the software-based mechanism.

Figures 12, 13 and 14 show the performance results for week2, week3, and
Honeypot respectively. We again observe a similar behaviour, with Sig-1 pro-
viding the best performance for the worst-case. Note however that there is a
mild average-case performance degradation for the software-based mechanism.

Our mechanisms needs additional memory in comparison to the Baseline.
So we evaluate the additional storage space needed (measured in KBs) for our
proposal. Figure 15 shows the storage space required for various schemes. The
memory required has been normalized to the Baseline (706 KB). In case of the
hardware-based mechanism, the additional storage space is between 34% and
84% to that of the Baseline.

In case of software-based mechanism, the additional storage space is between
1% to 140% in comparison to the Baseline. This exponential increase in storage



180 G.S. Shenoy, J. Tubella, and A. González

(a) Worst-case perfor-
mance

(b) Average-case Perfor-
mance

Fig. 12. Comparison Results for Week2 Trace

(a) Worst-case perfor-
mance

(b) Average-case Perfor-
mance

Fig. 13. Comparison Results for Week3 Trace

space is due to the following. As the threshold failure chain length is reduced from
7 to 3, the number of nodes that need to store the failure edges grows by more
than 2 order of magnitude. This consequently contributes to the exponentially
increased storage space.

It is interesting to note that our proposed mechanisms - hardware based and
software based mechanisms - are orthogonal. These mechanisms can also be
combined using an FSM constructed with an upper bound failure chain length
and a parallel FSM traversal. However, we observe no significant worst-case
or average-case performance improvement. Further, the combined scheme also
needs additional storage space.



Improving the Resilience of an IDS against Performance Throttling Attacks 181

(a) Worst-case perfor-
mance

(b) Average-case Perfor-
mance

Fig. 14. Comparison Results for Honeypot Trace

Fig. 15. Storage Space Comparison

7 Related Work

To the best of our knowledge, Crosby et al[6] were the first to introduce attacks
targeting the worst-case performance. They exploited weaknesses in the hash
tables used for port scanning in the Bro IDS[16]. A hash table needs O(n) time
for insertion on an average and O(n2) in the worst-case. They carefully construct
packets that cause collision in the hash table. In this manner, the performance
of the hash table is significantly degraded. As a counter measure, they proposed
the use of universal hash functions that significantly reduces collisions.

Smith et al[21] present algorithmic complexity attacks that exploit syntactics
of rule specification. There are rules in Snort that are dependent on the relative
position of bytes in the packet. They exploited this dependency to create pack-
ets that lead to multiple repeated and often redundant processing of the same



182 G.S. Shenoy, J. Tubella, and A. González

byte. So they propose a memoization based technique to prevent such redundant
processing of bytes.

Earlier works in this direction have focused on either compacting the FSM
or on improving the system throughput. To compact the FSM, Kumar et al[12]
used a Delayed input DFA (D2FA). A DFA is very similar to the FSM studied
in this paper. They observed that a DFA typically has numerous states with
identical outgoing transitions. So they remove this redundancy using a default
transition. This transition is very similar to the failure pointer studied in this
paper. So our proposed architecture and traversal complements the D2FA in
improving its worst-case performance.

Tuck et al[25] study different optimizations to reduce the size of each node in
the FSM. They use a 256 bit bitmap for each node in the FSM. A bit is set in the
bitmap if the corresponding character is an outgoing edge. They further compact
the FSM using the failure pointer optimization as discussed earlier. Hence our
proposed traversal and architecture is directly applicable to this work.

Becchi et al[2] propose state merging for reducing the storage space. Two
states are similar if they have multiple common output states. They combine
such states to form a compact FSM. Interestingly, they use the bit mapped
based implementation of Tuck et al [25] for representing states. So our proposed
architecture is directly applicable to it. Song et al[23] propose using a cached DFA
(CDFA) for efficient traversal. In a CDFA, a cached state is used to eliminate
1-step transitions. Among the mechanisms they investigate for compacting the
FSM, they also include failure pointer optimization as discussed earlier. So again
our proposed architecture is directly applicable to this work.

In addition, there have been numerous works that study a rich variety of
DoS attacks. A taxonomy of DoS attacks is given in[13]. Moscibroda et al[15]
study DoS attacks against DRAM scheduling in multi-cores. They observe that
a malicious application can starve other benign applications, thus leading to
significant performance degradation. So they propose a memory architecture
that provides fairness to all executing applications. Cai et al[4] study algorithmic
complexity attacks against the Unix file system. So in this attack a malicious
system process tricks the OS to access system files that are not in its access
privileges. They propose a defense mechanism that is provably secure. Hasan
et al[10] study DoS attacks that forcefully heat up certain resources in a SMT.
In this attack, a malicious thread creates a hot spot in a shared resource by
repeatedly accessing it. They study several mechanisms to mitigate the hot-spot
including selective throttling of threads.

8 Conclusion

In this paper, we have presented a counter-measure for a performance throttling
attack against the string matching algorithm in an IDS. Our study reveals that
with certain input bytes, the Aho-Corasick algorithm can end up traversing a
chain of up-to 31 pointers. Our results indicate a massive performance degra-
dation, a 22X fall in comparison to the average case performance. We investi-
gate two mechanisms to counter this performance degradation - hardware-based



Improving the Resilience of an IDS against Performance Throttling Attacks 183

mechanism and software-based mechanism. In the hardware-based mechanism
we identify the candidate pointer from the chain of pointers and directly jump to
it. We propose a parallel architecture for FSM traversal. The signature matching
engine identifies the pointer to jump to, while the FSM engine performs the regu-
lar FSM traversal. In the software-based mechanism, we propose a modified FSM
that restricts this chain of sequential pointer traversal to a fixed upper bound.
Both these scheme result in over 3X improvement in the worst-case performance.

An applicability of this work is in detecting tampering of the Snort signature
database. If an adversary corrupts the memory stack of the IDS using buffer
overflow attempts, then the pattern matching module can be compromised. In
order to detect such tampering, the hardware-based mechanism needs to be ex-
tended for detecting FSM traversal violations. Performance throttling attack
is an example of an evasion attempt, there are other ways of evasion includ-
ing packet re-assembly and packet fragmentation. In both of these attacks, the
adversary can force the IDS to maintain an infinite number of states (TCP con-
nections) that finally leads to memory exhaustion. Under this circumstance, even
benign packets suffer massively. It will be interesting to study defense mecha-
nisms against these attacks.

Acknowledgements. This work has been supported by the following
grants: TIN2010-18368, TIN2007-61763, and SGR2009-1250. We are grateful
to the Spanish Ministry and Intel Corporation for providing us the requisite
monetary and logistic support.

References

[1] Aho, A.V., Corasick, M.J.: Efficient String Matching: An Aid to Bibliographic
Search. Communications of the ACM 18(6), 333–340 (1975)

[2] Becchi, M., Cadambi, S.: Memory-Efficient Regular Expression Search Using State
Merging. In: Proceedings of INFOCOM 2007 (2007)

[3] Bloom, B.H.: Space/time Trade-offs in Hash Coding with Allowable Errors. Com-
munications of the ACM 13(7), 422–426 (1970)

[4] Cai, Q., Gui, Y., Johnson, R.: Exploiting Unix File-system Races via Algorithmic
Complexity Attacks. In: Proceedings of IEEE Symposium on Security and Privacy
(2009)

[5] Cisco Inc. The Cisco QuantumFlow Processor: Cisco’s Next Generation Network
Processor, http://www.cisco.com/en/US/prod/collateral/routers/ps9343/
solution overview c22-448936.html

[6] Crosby, S.A., Wallach, D.S.: Denial of Service via Algorithmic Complexity Attacks.
USENIX Security (2003)

[7] Defcon, http://www.defcon.org
[8] Edler, J., Hill, M.D.: Dinero IV Trace-Driven Uniprocessor Cache Simulator,

http://www.cs.wisc.edu/markhill/DineroIV

[9] Handley, M., Paxson, V., Kreibich, C.: Network Intrusion Detection: Evasion,
Traffic Normalization, and End-to-end Protocol Semantics. In: Proceedings of the
10th USENIX Security Symposium (2011)

[10] Hasan, J., Jalote, A., Vijaykumar, T.N., Brodley, C.E.: Heat Stroke: Power-
Density-Based Denial of Service in SMT. In: Proceedings of HPCA (2005)

http://www.cisco.com/en/US/prod/collateral/routers/ps9343/solution_overview_c22-448936.html
http://www.cisco.com/en/US/prod/collateral/routers/ps9343/solution_overview_c22-448936.html
http://www.defcon.org
http://www.cs.wisc.edu/markhill/DineroIV


184 G.S. Shenoy, J. Tubella, and A. González

[11] Intel Corporation. Intel IXP 2400 Network Processor Hardware Reference Manual,
Revision 7 (2003)

[12] Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.: Algorithms to
Accelerate Multiple Regular Expressions Matching for Deep Packet Inspection.
ACM SIGCOMM (2006)

[13] Mirkovic, J., Reiher, P.: A Taxonomy of DDos Attack and DDos Defense Mecha-
nisms. ACM SIGCOMM Computer Communications Review 34, 39–53 (2004)

[14] MIT Lincoln Labs, DARPA Intrusion Detection Evaluation,
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/

[15] Moscibroda, T., Mutlu, O.: Memory Performance Attacks: Denial of Memory Ser-
vice in Multi-core Systems. In: 16th USENIX Security Symposium, pp. 1–18 (2007)

[16] Paxson, V.: Bro: a System for Detecting Network Intruders in Real Time. Com-
puter Networks 31(23-24), 2435–2463 (1999)

[17] Pouget, F., Dacier, M., Hau, P.: Leurre.com: On the Advantages of Deploying a
Large Scale Distributed Honeypot Platform. In: E-Crime and Computer Confer-
ence (2005)

[18] Ptacek, T., Newsham, T.: Insertion, Evasion and Denial of Service: Eluding Net-
work Intrusion Detection. Secure Networks, Inc. (1998)

[19] Roesch, M.: SNORT - Lightweight Intrusion Detection for Networks. In: LISA
1999: USENIX 13th Systems Administration Conference (1999)

[20] Shenoy, G.S., Tubella, J., Gonzalez, A.: A Performance and Area Efficient Archi-
tecture for Intrusion Detection Systems. In: Proceedings of the 25th IEEE Inter-
national Conference on Parallel and Distributed Processing Symposium, IPDPS
(2011)

[21] Smith, R., Estan, C., Jha, S.: Backtracking Algorithmic Complexity Attacks
against a NIDS. In: ACSAC (2006)

[22] Smith, R., Estan, C., Jha, S.: XFA: Faster Signature Matching with Extended
Automata. In: IEEE Symposium on Security and Privacy (2008)

[23] Song, T., Zhang, W., Wang, D., Xue, Y.: A Memory Efficient Multiple Pattern
Matching Architecture for Network Security. In: Proceedings of IEEE Infocom
(2008)

[24] Thoziyoor, S., Muralimanohar, N., Ahn, J.H., Jouppi, N.P.: CACTI 5.1. Technical
Report HP-2008-20, HP Labs (2008)

[25] Tuck, N., Sherwood, T., Calder, B., Varghese, G.: Deterministic Memory-Efficient
String Matching Algorithms for Intrusion Detection. In: Proceedings of the IEEE
Infocom (2004)

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/

	Improving the Resilience of an IDS against Performance Throttling Attacks
	Introduction
	Background
	Motivation
	Proposed Counter-Measure
	Hardware-Based Mechanism
	Software-Based Mechanism

	Simulation Methodology
	Results
	Related Work
	Conclusion
	References




